1 Introduction to Cryptography: HMW 1

1. Prove that $n^{5}-n$ for positive n is always divisible by 30
2. Prove that $(p-1)!=-1 \bmod p$ for any prime p.
3. Find the smallest non-negative integer x such that

$$
\begin{aligned}
& x=2 \bmod 3 \\
& x=3 \bmod 5 \\
& x=4 \bmod 11 \\
& x=5 \bmod 16
\end{aligned}
$$

4. Let N be an extremely large secret integer used to launch nuclear missiles. Suppose you have a commanding general and m different lieutenant generals. In the case that commanding general is incapacitated, you want each lieutenant generals to have enough partial information about N so that any three of them can agree to launch the missiles (but any one or two of them should not)
Let p_{1}, \ldots, p_{m} be m different primes, all of which are greater than $N^{\frac{1}{3}}$ but smaller than \sqrt{N}. Using p_{i}, describe the partial information about N that should be given to the lieutenant generals.
5. Calculate $38^{75} \bmod 103$ using repeated squaring method. Show every execution step of the algorithm.
6. Calculate 3125^{-1} mod 9987 using extended Euclidean Algorithm. Show each step clearly.
7. Prove that DES decryption can be done by applying DES encryption algorithm to ciphertext with the key schedule reversed.
8. Bellare-Rogaway Book: Problem 2.1
9. Bellare-Rogaway Book: Problem 2.4
10. Bellare-Rogaway Book: Problem 2.6
