1 Introduction to Cryptography: HMW 1

- 1. Prove that $n^5 n$ for positive n is always divisible by 30
- 2. Prove that $(p-1)! = -1 \mod p$ for any prime p.
- 3. Find the smallest non-negative integer x such that

 $x = 2 \mod 3$ $x = 3 \mod 5$ $x = 4 \mod 11$ $x = 5 \mod 16$

4. Let N be an extremely large secret integer used to launch nuclear missiles. Suppose you have a commanding general and m different lieutenant generals. In the case that commanding general is incapacitated, you want each lieutenant generals to have enough partial information about N so that any three of them can agree to launch the missiles (but any one or two of them should not)

Let p_1, \ldots, p_m be *m* different primes, all of which are greater than $N^{\frac{1}{3}}$ but smaller than \sqrt{N} . Using p_i , describe the partial information about *N* that should be given to the lieutenant generals.

- 5. Calculate 38⁷⁵ mod 103 using repeated squaring method. Show every execution step of the algorithm.
- 6. Calculate 3125^{-1} mod 9987 using extended Euclidean Algorithm. Show each step clearly.
- 7. Prove that DES decryption can be done by applying DES encryption algorithm to ciphertext with the key schedule reversed.
- 8. Bellare-Rogaway Book: Problem 2.1
- 9. Bellare-Rogaway Book: Problem 2.4
- 10. Bellare-Rogaway Book: Problem 2.6