Introduction to Cryptography: HW 4 Solutions

1. Assume that a company called NSC ("No such Company") starts a web service such that given a cyclic group G and a generator g of group G, it calculates $D L_{g, G}(a)$ for any $a \in G$. Assume that you do not want the NSC to learn $D L_{g, G}(a)$. Devise a scheme such that you can use the NSC discrete logarithm service without letting NSC know which a you want to learn the discrete logarithm for.
Answer:
Choose a random $r \in[0, \ldots|G|]$ and send $a . g^{r}$ to NSC. Note that $D L_{g, G}\left(a . g^{r}\right)=D L_{g, G}(a)+r \bmod |G|$. Since r is totally random NSC does not learn anything.
2. Let $\mathrm{p} ; \mathrm{q}$ be distinct primes with $p=q=3 \bmod 4$. Consider the following encryption scheme based on the quadratic residuosity assumption: the public key is $N=p q$ and to encrypt a 0 the sender sends a random quadratic residue, while to encrypt a 1 she sends a random non-quadratic residue with Jacobi symbol +1
(a) Assuming that given N and an element a in Z_{N}^{*} with Jacobi symbol +1 , predicting whether a is a quadratic residue or not is a trapdoor predicate. Prove that the above scheme is semantically secure public key encryption. (Hint: You can use any theorem from the book. Your proof should not be longer than 3 lines)

Answer:

Note that under the trapdoor predicate assumption, we can directly use the Definition 7.7 and Claim 7.8 of the GoldwasserBellare book.
(b) Assume that bit b_{1} is encrypted as C_{1} and bit b_{2} is encrypted as C_{2}, show how to calculate $E\left(b_{1} \oplus b_{2}\right)$ just using C_{1} and C_{2}. (Note that you do not know b_{1} or b_{2})

Answer:

$E\left(b_{1} \oplus b_{2}\right)=C_{1} \cdot C_{2} \bmod N$. Note that if both b_{1} and b_{2} is O. then both C_{1} and C_{2} is QR and $C_{1} \cdot C_{2}$ is a QR . If $b_{1}=0$ then C_{1} is QR and $b_{2}=1$ is QNR then $C_{1} \cdot C_{2}$ is QNR. Similarly for $b_{1}=1$ and $b_{2}=0$. Also note that if $b_{1}=b_{2}=1$ then both C_{1} and C_{2} are QNR. Since we know that $Q N R . Q N R$ is a $Q R$.
(c) Assume that you are given an encryption C of bit b. Show how to generate an another C^{\prime} using C without knowing b such that C^{\prime} is also an encryption of b.
Answer:
Let $C^{\prime}=C \cdot r^{2} \bmod N$. Note that C^{\prime} is QR iff C is a QR .
3. Assume that you have given an algorithm A that can invert the RSA function with given N and public key e if the ciphertext C where $C=$ $m^{e} \bmod N$ is an element of some set S. Assume that $|S|$ is small compared to Z_{N}^{*} (i.e., $\frac{|S|}{\left|Z_{N}^{*}\right|}=0.01$). In other words, if $C \in S$, A will find the correct m such that $A(C)=C^{d}=m \bmod N$ else A will not be successful.
(a) First show that if we can invert RSA function on C^{\prime} for $C^{\prime}=$ $C . r^{e} \bmod N$ then we can invert C
Answer:
Note that $C^{\prime d}=\left(C . r^{e}\right)^{d}=C^{d} . r \bmod N$. Therefore $C^{d}=r^{-1} C^{\prime D} \bmod$ N. Also note that if r^{-1} does not exist, this implies $\operatorname{gcd}(r, N)>1$ and this means we can factor N.
(b) Using the Question 3a, devise a randomized algorithm that uses the algorithm A as a subroutine to invert RSA on any ciphertext C. (A is successful only if $C^{\prime} \in S$, how to map given C to some $C^{\prime} \in S$? Repeating may also help)

Answer:

Above algorithm works because C^{\prime} is always in S and the loop

```
Algorithm 1 B uses A to invert RSA
    \(C^{\prime} \leftarrow C\)
    if \(C\) is not in \(S\) then
        repeat
            \(C^{\prime} \leftarrow C . r^{e} \bmod N\)
        until \(C^{\prime} \in S\)
    end if
    return \(A\left(C^{\prime}\right)\)
```

will execute expectedly 100 times.
4. Consider the FDH-RSA signature scheme. Assume that Alice wants Bob to sign a message such that Bob does not have any idea about the message he signed. Devise a scheme such that given any message M, Alice generates some M^{\prime}, Bob returns $C^{\prime}=M^{\prime d} \bmod N$ to Alice, and finally Alice applies some function g where $g\left(C^{\prime}\right)=H(M)^{d} \bmod N$. Precisely define how to generate M^{\prime} such that Bob learns nothing about M or $H(M)$ from M^{\prime}. Also define the function g and show that $g\left(C^{\prime}\right)=H(M)^{d} \bmod N$
Answer:
Alice sends Bob $M^{\prime} \leftarrow H(M) . r^{e} \bmod N$ for random $r \in Z_{N}^{*}$ Bob returns $M^{\prime d}=H(M)^{d} . r \bmod N$. Alice sets the signature as $M^{\prime d} . r^{-1} \bmod$ N. Since r is random, Bob does not learn anything about the message.
5. Suppose Bob is using the ElGamal signature scheme. Bob signs m_{1} and m_{2} and gets signatures $\left(r, s_{1}\right)$ and $\left(r, s_{2}\right)$ (i.e., the same r occurs in both of them). Also assume that $\operatorname{gcd}\left(s_{1}-s_{2}, p-1\right)=1$.
(a) Show how to efficiently compute k (as defined in class) given the above information

Answer:

Note that

$$
\begin{aligned}
s_{1}-s_{2} & =k^{-1}\left(H\left(m_{1}\right)-a r\right)-k^{-1}\left(H\left(m_{2}\right)-a r\right) \bmod (p-1) \\
& =k^{-1}\left(H\left(m_{1}\right)-H\left(m_{2}\right)\right) \bmod (p-1)
\end{aligned}
$$

Since $\operatorname{gcd}(k, p-1)=1$ and $\operatorname{gcd}\left(s_{1}-s_{2}, p-1\right)=1$, this implies that $\operatorname{gcd}\left(H\left(m_{1}\right)-H\left(m_{2}\right), p-1\right)=1$. Therefore

$$
k=\left(\left(s_{1}-s_{2}\right)\left(H\left(m_{1}\right)-H\left(m_{2}\right)\right)^{-1}\right)^{-1} \bmod p-1
$$

(b) Show how to break the signature scheme completely using the given information
Answer:
Given k, s_{1}, m_{1}, we can retrieve a and sign any message we want.

