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Cryptosystems Based on 
DL

• DL is the underlying one-way function for
– Diffie-Hellman key exchange

– DSA (Digital signature algorithm)

– ElGamal encryption/digital signature algorithm

– Elliptic curve cryptosystems

• DL is defined over finite groups
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Discrete Logarithm Problem

• Let p be a prime and α and β be nonzero integers in Zp and 
suppose 

β ≡ αx mod p.
• The problem of finding x is called the discrete logarithm 

problem. 
• We can denote it as

x = log α β
– Often, α is a primitive root mod p

• Reminder: Zp is a field {0, 1, …, p-1}
• Addendum: Z*

p is a cyclic finite group {1, …, p-1}
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Example: Discrete Log

• Example:
– Let p = 11, α = 2, and β = 9.

– By exhaustive search, 

ααααx

x

• log29 = 6.
• β ≡ αx mod p.
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Computing Discrete Log

• When p is small, it is easy to compute discrete 
logarithms by exhaustive search.

• However, it is a hard problem to solve for primes p with 
more than 200 digit.

• One-way function.
– It is easy to compute modular exponentiation
– But, it is hard to compute the inverse operation of the 

modular exponentiation, i.e. discrete log.  
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The ElGamal PKC

• Based on the difficulty of discrete logarithm, was 
invented by Tahir ElGamal in 1985.

• Alice wants to send a message m to Bob.
• Bob chooses a large prime p and a primitive root α.

– Assume m is an integer 0 < m < p.
• Bob also picks a secret integer a and computes

– β ≡ αa mod p.

• (p, α, β) is Bob’s public key.
• (a) is his private key
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The ElGamal PKC: Protocol

t·r-a ≡ βk·m·(αk)-a ≡ (αa)k·m·(αk)-a ≡ m mod p

This works since

Computes t·r –a≡ m mod p

Sends (r, t) to Bob.

Computes t ≡ βk·m mod p

Computes r ≡ αk mod p

Chooses a secret integer k 

BobAlice 
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Analysis of ElGamal PKC

• a must be kept secret.

• k is a random integer, 

– βk is also a random nonzero integer mod p.

– Therefore, t ≡ βk ·m mod p is the message m 
multiplied by a random integer.

– t is also a random integer

• Knowing r does not help either.

• If Eve knows k,  

– she can calculate t·β-k ≡ m mod p.

– k must be secret



9

Analysis of ElGamal PKC

• A different random k must be used for 
each message m.
– Assume Alice uses the same k for two 

different messages m1 and m2, 

– the corresponding ciphertexts are (r, t1) and 
(r, t2).

– If Eve finds out the plaintext m1, she can also 
determine m2 as follows

– t1/m1 ≡ βk ≡ t2/m2 (mod p) => m2 ≡ (t2m1)/t1
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Semantic Security (IND-CPA 
for Public Key Encryption)

• The IND-CPA game
Challenger Adversary

picks a random key 
pair (K, K-1), and picks 

random b∈{0,1}

picks M0, M1 of equal lengthM0, M1

K

b’ ∈{0,1}

Attacker wins game if b=b’

C = EK[Mb]



Semantic Security of ElGamal

• Note that the generic ElGamal encryption scheme is 
not semantically secure. 

• We can infer whether a ciphertext is quadratic residue 
or not.

• We can use the above fact to come up with two 
message where one of them is a quadratic residue 
and the other one is a quadratic non-residue so that 
attacker has high advantage in distinguishing 
encryptions.

• The above attack does not work if β,  every plaintext is 
quadratic residue and p=2q+1 where q is prime.
– It can be shown that this version is semantically 

secure if DL is infeasible.

CDH and DDH

• Computational Diffie-Hellman (CDH)

– Given a multiplicative group (G, *), an 
element g ∈ G having order q, given αx and 
αy, find αxy

• Decision Diffie-Hellman (DDH)

– Given a multiplicative group (G, *), an 
element g ∈ G having order q, given αx, αy, 
and αz, determine if gxy ≡ gz mod n 

• Discrete Log is at least as hard as CDH, which 
at least as hard as DDH.



CDH and ElGamal

• Prove that any algorithm that solves CDH 
can be used to decrypt ElGamal
ciphertexts

• Proof Sketch: “=>” Assume that algorithm 

OracleCHD solves CDH and let (y1, y2) be 

an ElGamal encryption and  let public key 

(p, α, β)  and y1��αk mod p

γ = OracleCDH(α, β, y1) and 

DDH => ElGamal

• Given DDH oracle, find two messages whose ElGamal
encryptions can be distinguished

• For any two x0, x1:  (β = αa)

– E(x0) = αr, x0 βr , E(x1) = αt, x1 βt

– Suppose receive ciphertext (y1, y2) 

– Feed  < y1, βαb, y2 y1
b /x0>

– when (y1, y2) is E(x0), this is < αr, αa+b, x0αrbα rb /x0> = 
< αr, αa+b, αr(a+b)>

• when (y1, y2) is E(x1), this is < αt, αa+b, αt(a+b)x1/x0>

– if the DDH oracle say yes, we say 0, otherwise we say 1


