Public Key Infrastructure

Murat Kantarcioglu

What is **PKI**

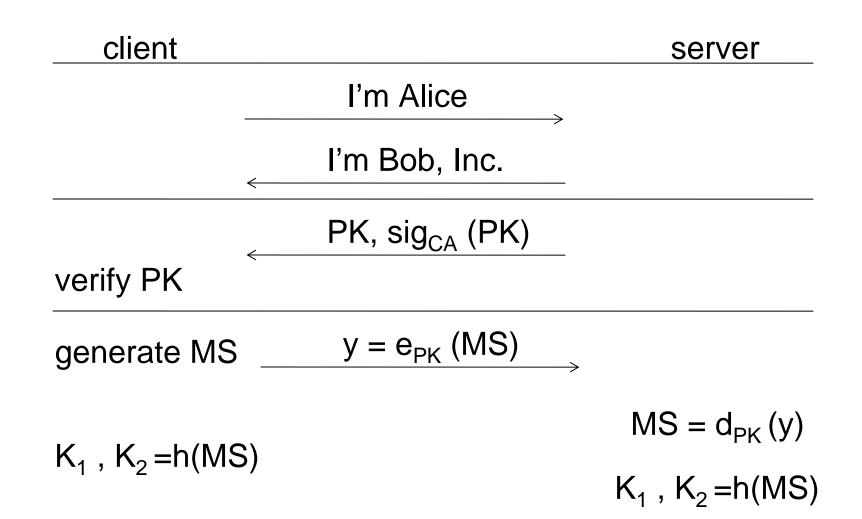
- How to ensure the authenticity of public keys
- How can Alice be sure that Bob's purported public key really is Bob's key (not Charlie's)
- A PKI is a secure system that is used to manage and control certificates
- Several aspects:
 - The system should function without the active intervention of the user.
 - Public key signature scheme is used
 - No need to keep prior shared secret keys between two parties

- Certificate Issuance:
 - Most PKIs have one or more trusted authorities (certification authorities) that control the issuing of certificates.
 - Before a certificate issued the identity of the user must be verified.
 - A secure procedure is needed to generate and transmit the public key and private key to the user

- Certificate Revocation:
 - Revoking certificate before a normal expiration date
 - When private key being lost or other fraudulent use of the key
 - Similar to credit cards stolen
 - Additional infrastructure is required to recognize revoked certificates

- Key backup / recovery / update:
 - Secure storage of users' private keys by the administrator of the PKI, in case users lose or forget their private keys
 - User has to prove its identity before being allowed to access a stored private key
 - When a certificate is about to expire the old key can be used to transfer the new key
 - More efficient than generating new keys and certificates from scratch

- Timestamping:
 - Certificates usually have fixed length validity periods.



Secure Socket Layer

- SSL is used to facilitate online purchases from a company's web page using a web browser
- Only the server is required to supply a certificate during an SSL session
- The client may not even have a public key or certificate

Setting up an SSL Session

Certificates

- Certificates are building blocks of PKIs
- A certificate binds an identity to a public key
- Everyone has access to an authentic copy of the public key of the CA
- X.509 v3 certificates contain the following fields:
 - Version number
 - Serial number
 - Signature algorithm ID

Certificates

- X.509 v3 certificates contain the following fields:
 - Issuer name
 - Validity period
 - Subject name (i.e. the certificate owner)
 - The cert. owner public key
 - Optional fields
 - The CA's signature on all the previous fields

Trust Models

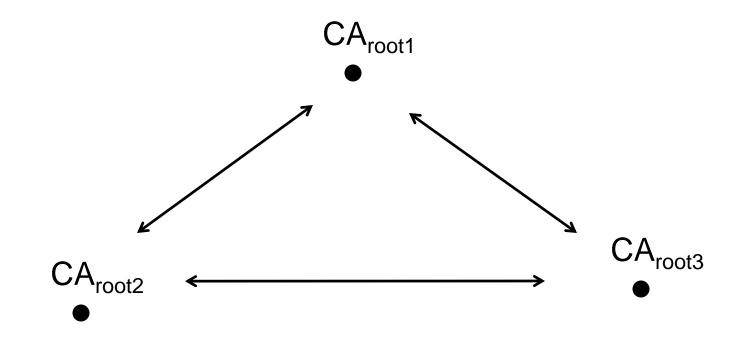
- Using certificate paths to sign a certificate
- Trust models:
 - Strict hierarchy
 - Networked PKIs
 - Web browser model
 - User centric model

1) Strict Hierarchy Model

- The root CA is called a trust anchor
- Root CA may issue certificates for lower level CAs
- Any CA can issue certificates for end users
- x → y means that the entity corresponding to node x has signed a certificate for the entity corresponding to node y.

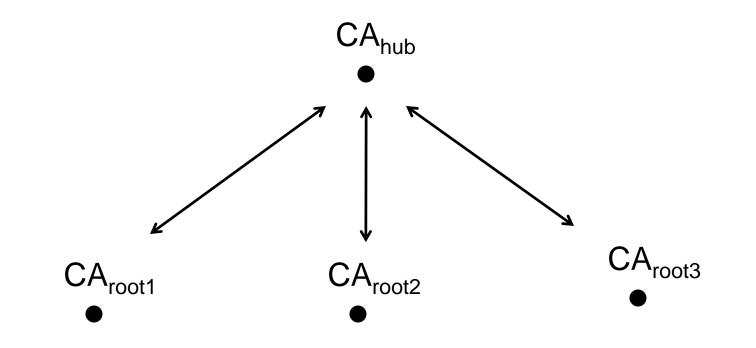
1) Strict Hierarchy Model (Cont.)

FEARLESS engineering



2) Networked PKIs

- Strict hierarchy may work well within a single organization.
- Sometimes it may be desirable to connect root CAs of two or more different PKI domains.


Networked PKIs – The Mesh Configuration

Cross certification is used among multiple CAs n root CAs will require n(n-1) cross certifications

The Hub-and-spoke Configuration

n root CAs each cross-certify independently with a new hub CA.

2n cross certifications are required

3) The Web Browser Model

- Web browsers come preconfigured with a set of "independent" root CAs
- These are treated by the user of the browser as trust anchors.
- The provider of the browser is assumed to be trusted.
- Problems:
 - No information about the preconfigured CAs
 - Not enough expertise to edit the lists

3) The Web Browser Model (Cont.)

- Problems:
 - No mechanism to revoke a root CA
 - User may accept self signed certificates
 - Expiration dates

4) Pretty Good Privacy (PGP)

- Every user is his or her own CA.
- A PGP certificate contains an e-mail address (ID), a public key (PK) and one or more signatures on this (ID, PK) pair.
- Alice's self signed certificate:

```
– Cert(Alice) : (data, signatures)
```

where

```
data: (ID = alice@utdallas.edu, PK = 12345)
```

signatures : sig_{Alice}(data)

4) Pretty Good Privacy (PGP)

- Other users might also create signatures on the data on Alice's certificate.
- signatures : (sig_{Alice}(data), sig_{Bob}(data))
- The signatures on a certificate help to verify the certificate's authenticity to other users
- Collection of certificates: keyring
- Associated with each certificate in the keyring is an owner trust field (OTF) and a key legitimacy field (KLF)

The Future of PKI

- Many potential difficulties associated with large-scale deployments of PKIs
- Who should be responsible for development, maintenance and regulation of PKIs? Governments? Industry?
- What standards should be used in PKIs?
- Interoperability problems
- Different PKI needs in different environments

