Elgamal CryptoSystem

Murat Kantarcioglu

Cryptosystems Based on

 DL- DL is the underlying one-way function for
- Diffie-Hellman key exchange
- DSA (Digital signature algorithm)
- ElGamal encryption/digital signature algorithm
- Elliptic curve cryptosystems
- DL is defined over finite groups

UTD Discrete Logarithm Problem

- Let p be a prime and α and β be nonzero integers in Z_{p} and suppose

$$
\beta \equiv \alpha^{x} \bmod p .
$$

- The problem of finding x is called the discrete logarithm problem.
- We can denote it as

$$
x=\log _{\alpha} \beta
$$

- Often, α is a primitive root $\bmod p$
- Reminder: Z_{p} is a field $\{0,1, \ldots, p-1\}$
- Addendum: $\mathrm{Z}_{\mathrm{p}}^{*}$ is a cyclic finite group $\{1, \ldots, \mathrm{p}-1\}$

Example: Discrete Log

- Example:
- Let $p=11, \alpha=2$, and $\beta=9$.
- By exhaustive search,

x	0	1	2	3	4	5	6	7	8	9	10
α^{x}	1	2	4	8	5	10	9	7	3	6	1

- $\log _{2} 9=6$.
- $\beta \equiv \alpha^{x} \bmod p$.

Computing Discrete Log

- When p is small, it is easy to compute discrete logarithms by exhaustive search.
- However, it is a hard problem to solve for primes p with more than 200 digit.
- One-way function.
- It is easy to compute modular exponentiation
- But, it is hard to compute the inverse operation of the modular exponentiation, i.e. discrete log.

The ElGamal PKC

- Based on the difficulty of discrete logarithm, was invented by Tahir ElGamal in 1985.
- Alice wants to send a message m to Bob.
- Bob chooses a large prime p and a primitive root α.
- Assume m is an integer $0<m<p$.
- Bob also picks a secret integer a and computes
$-\beta \equiv \alpha^{2} \bmod p$.
- (p, α, β) is Bob's public key.
- (a) is his private key

The ElGamal PKC: Protocol

Alice

Chooses a secret integer k
Computes $r \equiv \alpha^{k} \bmod p$
Computes $t \equiv \beta^{k} \cdot m$ mod p
Sends (r, t) to Bob.

Computes $\mathrm{t} \cdot \mathrm{r}^{-\mathrm{a}} \equiv \mathrm{m} \bmod \mathrm{p}$

This works since
$\mathrm{t} \cdot \cdot^{-\mathrm{a}} \equiv \beta^{\mathrm{k}} \cdot \mathrm{m} \cdot\left(\alpha^{\mathrm{k}}\right)^{-\mathrm{a}} \equiv\left(\alpha^{\mathrm{a}}\right)^{\mathrm{k}} \cdot \mathrm{m} \cdot\left(\alpha^{k}\right)^{-\mathrm{a}} \equiv \mathrm{m} \bmod \mathrm{p}$

Analysis of ElGamal PKC

- a must be kept secret.
- k is a random integer,
$-\beta^{\mathrm{k}}$ is also a random nonzero integer mod p.
- Therefore, $t \equiv \beta^{k} \cdot m$ mod p is the message m multiplied by a random integer.
-t is also a random integer
- Knowing r does not help either.
- If Eve knows k,
- she can calculate $t \cdot \beta^{-k} \equiv \mathrm{~m}$ mod p .
- k must be secret

Analysis of ElGamal PKC

- A different random k must be used for each message m.
- Assume Alice uses the same k for two different messages m_{1} and m_{2},
- the corresponding ciphertexts are $\left(r, t_{1}\right)$ and ($\mathrm{r}, \mathrm{t}_{2}$).
- If Eve finds out the plaintext m_{1}, she can also determine m_{2} as follows
$-\mathrm{t}_{1} / \mathrm{m}_{1} \equiv \beta^{\mathrm{k}} \equiv \mathrm{t}_{2} / \mathrm{m}_{2}(\bmod \mathrm{p})=>\mathrm{m}_{2} \equiv\left(\mathrm{t}_{2} \mathrm{~m}_{1}\right) / \mathrm{t}_{1}$

Semantic Security (IND-CPA for Public Key Encryption)

- The IND-CPA game

Challenger

Adversary
picks a random key
pair ($\mathrm{K}, \mathrm{K}^{-1}$), and picks
random $b \in\{0,1\}$

Attacker wins game if $b=b^{\prime}$

Semantic Security of ElGamal

- Note that the generic ElGamal encryption scheme is not semantically secure.
- We can infer whether a ciphertext is quadratic residue or not.
- We can use the above fact to come up with two message where one of them is a quadratic residue and the other one is a quadratic non-residue so that attacker has high advantage in distinguishing encryptions.
- The above attack does not work if β, every plaintext is quadratic residue and $p=2 q+1$ where q is prime.
- It can be shown that this version is semantically secure if DL is infeasible.

CDH and DDH

- Computational Diffie-Hellman (CDH)
- Given a multiplicative group (G, *), an element $\alpha \in$ G having order q , given α^{x} and α^{y}, find α^{xy}
- Decision Diffie-Hellman (DDH)
- Given a multiplicative group (G, *), an element $\alpha \in$ G having order q , given $\alpha^{\mathrm{x}}, \alpha^{y}$, and α^{z}, determine if α^{xy}
$\equiv \alpha^{2}$
- Discrete Log is at least as hard as CDH, which at least as hard as DDH.

CDH and ElGamal

- Prove that any algorithm that solves CDH can be used to decrypt ElGamal ciphertexts
- Proof Sketch: "=>" Assume that algorithm OracleCDH solves CDH and let (r, t) be an ElGamal encryption and let public key (p, α, β) and $r=\alpha^{k} \bmod p$
$\gamma=\operatorname{OracleCDH}(\alpha, \beta, r)$ and $\mathrm{m}=\mathrm{t} \gamma^{-1}$ then m is the decryption of (r, t)

DDH => ElGamal

- Given DDH oracle, find two messages whose ElGamal encryptions can be distinguished
- For any two $m_{0}, m_{1}:\left(\beta=\alpha^{a}\right)$
$-E\left(m_{0}\right)=\alpha^{k 1}, m_{0} \beta^{k 1}, E\left(m_{1}\right)=\alpha^{k 2}, m_{1} \beta^{k 2}$
- Suppose receive ciphertext (r, t)
- Feed <r, $\beta \alpha^{b}$, ($\left.\mathrm{r}^{\mathrm{b}}\right) / \mathrm{m}_{0}>$
- when ($r, t)$ is $E\left(m_{0}\right)$, this is $<\alpha^{k 1}, \alpha^{a+b},\left(m_{0} \alpha^{k 1 a} \alpha^{k 1 b}\right) / m_{0}>$ $=\left\langle\alpha^{k 1}, \alpha^{a+b}, \alpha^{k 1(a+b)}>\right.$
- when (r, t) is $E\left(m_{1}\right)$, this is $<\alpha^{k 2}, \alpha^{a+b},\left(\alpha^{k 2(a+b)} m_{1}\right) / m_{0}>$
- if the DDH oracle say yes, we say 0 , otherwise we say 1

