

| D                | Divisibility                                                                                                                                                 |  |  |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| D<br>()<br>(     | Definition<br>Given integers a and b, $b \neq 0$ , b divides a<br>denoted b a) if $\exists$ integer c, s.t. $a = cb$ .<br>b is called a <b>divisor</b> of a. |  |  |
| T<br>C<br>tł     | T <b>heorem (Transitivity)</b><br>Given integers a, b, c, all > 1, with a b and b c,<br>men a c.                                                             |  |  |
| F<br>a<br>b<br>V | Proof:<br>  b => ∃ m s.t. ma = b<br>  c => ∃ n s.t. nb = c, nma = c,<br>Ve obtain that ∃ q = mn, s.t c = aq, so a   c                                        |  |  |
|                  |                                                                                                                                                              |  |  |























| UT D | Euclidian Algorithm<br>Example                                                  |  |  |  |  |  |
|------|---------------------------------------------------------------------------------|--|--|--|--|--|
|      | Find gcd(143, 110)                                                              |  |  |  |  |  |
|      | $143 = 1 \times 110 + 33$<br>$110 = 3 \times 33 + 11$<br>$33 = 3 \times 11 + 0$ |  |  |  |  |  |
|      | gcd (143, 110) = 11                                                             |  |  |  |  |  |
|      |                                                                                 |  |  |  |  |  |
|      |                                                                                 |  |  |  |  |  |



| UTD                                      | Euclidian Algorithm<br>Example                                                            |                                                                                                                                                       |  |  |  |  |
|------------------------------------------|-------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Find g<br>143 =<br>111 =<br>32 =<br>15 = | $gcd(143, 111) = 1 \times 111 + 32 = 3 \times 32 + 15 = 2 \times 15 + 2 = 7 \times 2 + 1$ | $32 = 143 - 1 \times 111$<br>$15 = 111 - 3 \times 32$<br>$= 4 \times 111 - 3 \times 143$<br>$2 = 32 - 2 \times 15$<br>$= 7 \times 143 - 9 \times 111$ |  |  |  |  |
| gcd (                                    | (143, 111) = 1                                                                            | $= 67 \times 111 - 52 \times 143$                                                                                                                     |  |  |  |  |
|                                          |                                                                                           |                                                                                                                                                       |  |  |  |  |























| UTD                                                                   | Proof               | Proof of CMT                          |                     |  |  |  |  |  |
|-----------------------------------------------------------------------|---------------------|---------------------------------------|---------------------|--|--|--|--|--|
| • Example of the mappings: n <sub>1</sub> =3, n <sub>2</sub> =5, n=15 |                     |                                       |                     |  |  |  |  |  |
| χ:                                                                    | ρ: m <sub>1</sub> = | =5, y <sub>1</sub> =2, m <sub>1</sub> | y <sub>1</sub> =10, |  |  |  |  |  |
| m <sub>2</sub> y <sub>2</sub> =6,                                     |                     |                                       |                     |  |  |  |  |  |
| 1 (1,1)                                                               | (1,1)               | 10+6                                  | 1                   |  |  |  |  |  |
| 2 (2,2)                                                               | (1,2)               | 10+12                                 | 7                   |  |  |  |  |  |
| 4 (1,4)                                                               | (1,3)               | 10+18                                 | 13                  |  |  |  |  |  |
| 7 (1,2)                                                               | (1,4)               | 10+24                                 | 4                   |  |  |  |  |  |
| 8 (2,3)                                                               | (2,1)               | 20+6                                  | 11                  |  |  |  |  |  |
| 11 (2,1)                                                              | (2,2)               | 20+12                                 | 2                   |  |  |  |  |  |
| 13 (1,3)                                                              | (2,3)               | 20+18                                 | 8                   |  |  |  |  |  |
| 14 (2,4)                                                              | (2,4)               | 20+24                                 | 14                  |  |  |  |  |  |













