UTD

Unconditional Secrecy

Murat Kantarcioglu

UTID

Secure Communication

- Our goal is to provide secure channel between Alice and Bob so that they can securely communicate with each other remotely even if malicious Malory is eavesdropping on their communication.
- We will assume that Alice and Bob shares a common secret in this setting

Definitions of Security

- Computational Security
- Assuming that Malory has limited computational resources, it will be infeasible for Malory to infer anything useful from the communication between Alice and Bob
- In practice, we will prove that if a certain problem is hard (e.g. factoring large integers) than breaking a certain cryptographic primitive will be computationally infeasible (also known as provable security)

UTID

Definitions of Security

- Unconditional Security (i.e. Perfect Security)
- Even if Malory has infinite amount of computational resources, he cannot learn anything from the communication
- Pros: Better Protection compared Computational Security
- Cons: Secret keys have to be as large as the message size

Review of Elementary Probability

\star A discrete random variable \mathbf{X} is defined by specifying - A finite set X
(e.g. the possible values a tossed dice can take.)

- A probability distribution on X such that the probability of \mathbf{X} takes on the value x is denoted as $\operatorname{Pr}[\mathbf{X}=x]$ (e.g. the probability that we get tails after a coin flip)
If \mathbf{X} is fixed define $\operatorname{Pr}[\mathbf{X}=x]$ as $\operatorname{Pr}[x]$
$\operatorname{Pr}[x]>=0$ for all $x \in X$
$\star \quad\left(\sum_{x \in X} \operatorname{Pr}[x]\right)=1$

UTID

Review of Elementary Probability Theory

Given an event $E \subset X$, define
$\operatorname{Pr}[x \in E]=\sum_{x \in E} \operatorname{Pr}[x]$
Example:

- Random variable Z: result of throwing a pair of dic€
- Defined on set $Z=\{1,2,3,4,5,6\} \times\{1,2,3,4,5,6\}$
- Define event S_{4} as the sum of the dices is 4 .
- $S_{4}=\{(1,3),(2,2),(3,1)\}$
- $\operatorname{Pr}\left[S_{4}\right]=1 / 12$

Review of Elementary Probability Theory

Given two random variables \mathbf{X} and \mathbf{Y}
$-\operatorname{Pr}[x, y]$ is the joint probability

- $\operatorname{Pr}[x \mid y]$ is the conditional probability
\star Random variables \mathbf{X} and \mathbf{Y} are independent if
- $\operatorname{Pr}[x, y]=\operatorname{Pr}[x] \cdot \operatorname{Pr}[y]$
$\star \operatorname{Pr}[x, y]=\operatorname{Pr}[x \mid y] \cdot \operatorname{Pr}[y]$
* Bayes Theorem
- If $\operatorname{Pr}[y]>0$ then $\operatorname{Pr}[x \mid y]=\frac{\operatorname{Pr}[y \mid x] \cdot \operatorname{Pr}[x]}{\operatorname{Pr}[y]}$

UTD Formal Definitions of Perfect Secrecy

* A CryptoSystem Definition:
- A cryptosystem is a five tuple $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ where

1. \mathcal{P} is a finite set of plaintexts
2. \mathcal{C} is a finite set of ciphertexts
3. \mathcal{K} is a finite set of possible keys
4. \mathcal{E} is the set of encryption rules for each key
5. \mathcal{D} is the set of correct decryption rules for each key

Perfect Secrecy

Perfect Secrecy: A cryptosystem has perfect secrecy
if $\operatorname{Pr}[x \mid y]=\operatorname{Pr}[x]$ for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$
This definition states that a posteriori probability that the plaintext is x given that ciphertext is y is equal to the a priori probability that the plaintext is x

Perfectly Secure CryptoSystem Example (Onetime Pad):

- $\mathcal{P}=\mathcal{C}=\mathcal{K}=\{0,1\}^{n}$ where $n \geq 1, x \in \mathcal{P}, y \in \mathcal{C}$
- Define encryption with one-time random key $\mathrm{K}, e_{K}(x)=x \oplus K$ (i.e., bitwise)
- Define decryption with one-time random key $\mathrm{K}, d_{K}(y)=y \oplus K$ (i.e., bitwise xor)

UTD Perfect Secrecy Proof for OneTime Pad

\star We need to prove that perfect secrecy definition is satisfied
\star We need to show $\operatorname{Pr}[x \mid y]=\operatorname{Pr}[x]$ for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$
Note that

$$
\begin{aligned}
\operatorname{Pr}[x \mid y] & =\frac{\operatorname{Pr}[x] \cdot \operatorname{Pr}[y \mid x]}{\operatorname{Pr}[y]} \\
& =\frac{\operatorname{Pr}[x] \cdot \operatorname{Pr}[\mathbf{K}=y \oplus x]}{\operatorname{Pr}[y]} \\
& =\frac{\operatorname{Pr}[x] \cdot 2^{-n}}{\sum_{k \in \mathcal{K}} \operatorname{Pr}[\mathbf{K}=k] \cdot \operatorname{Pr}\left[\mathbf{x}=d_{k}(y)\right]} \\
& =\frac{\operatorname{Pr}[x] \cdot 2^{-n}}{2^{-n} \cdot \sum_{k \in \mathcal{K}} \operatorname{Pr}\left[\mathbf{x}=d_{k}(y)\right]} \\
& =\operatorname{Pr}[x]
\end{aligned}
$$

UTD
 Properties of Crytosystems that have Perfect Secrecy

\star A cryptosystem $(\mathcal{P}, \mathcal{C}, \mathcal{K}, \mathcal{E}, \mathcal{D})$ that has perfect secrecy satisfies $\operatorname{Pr}[x \mid y]=$ $\operatorname{Pr}[x]$ for all $x \in \mathcal{P}$ and $y \in \mathcal{C}$.
\star This implies (assuming $\operatorname{Pr}[y]>0$) (why can we assume this??)

$$
\begin{aligned}
& \Longrightarrow \quad \forall x \in \mathcal{P}, \operatorname{Pr}[y]=\operatorname{Pr}[y \mid x]>0 \\
& \Longrightarrow \quad \forall x \in \mathcal{P}, \exists k \in \mathcal{K} \text { s.t.e } e_{k}(x)=y \\
& \Longrightarrow \quad|\mathcal{K}| \geq|\mathcal{C}| \geq|\mathcal{P}|
\end{aligned}
$$

* We can also show other properties about perfectly secure cryptosystems. See Thm 2.4 in the book.

