UTID

Rabin Crypto System Overview

Murat Kantarcioglu

UTID

The Rabin Cryptosystem

- Computationally secure against a chosen plaintext attack
- Provided that the modulus $\mathrm{n}=\mathrm{pq}$ can not be factored.

$$
p \equiv q \equiv 3(\bmod 4)
$$

- n is the public key. The primes p and q are the private key.
- Choose to simplify the computation of square roots modulo p and q

UTD

The Rabin Cryptosystem

- B encrypts a message m and sends the ciphertext c to A
- Encryption:
- Obtain A's public key n.
- Represent the message as an integer m in the range $\{0,1, \ldots, n-1\}$.
- Compute $c=m^{2} \bmod n$
- Send the ciphertext c to A

UTID

The Rabin Cryptosystem

- A decrypts the ciphertext c as follows:
- Decryption:
- Compute $\sqrt{c} \bmod n$
- There are four square roots $m_{1}, m_{2}, m_{3}, m_{4}$ of c modulo n.
- The message m is equal to one of these four messages

UTD
 The Rabin Cryptosystem

- When $p \equiv 3 \bmod 4$ there is a simple formula to compute the square root of c in $\bmod \mathrm{p}$.

$$
\begin{aligned}
\left(\pm c^{(p+1) / 4}\right)^{2} & \equiv c^{(p+1) / 2} \bmod p \\
& \equiv c^{(p-1) / 2} c \bmod p \\
& \equiv c \bmod p
\end{aligned}
$$

- Here we have made use of Euler's criterion to claim that $c^{(p-1) / 2} \equiv 1 \bmod p$

UTID
 The Rabin Cryptosystem

- Hence the two square roots of c mod p are

$$
\pm c^{(p+1) / 4} \bmod p
$$

- In a similar fashion, the two square roots of c mod q are $\quad \pm c^{(q+1) / 4} \bmod q$
- Then we can obtain the four square roots of c mod n using the Chinese Remainder Theorem

UTD

The Rabin Cryptosystem

- Example: $n=77=7 \times 11$
- Suppose $c=m^{2} \bmod 77$
- Then for message m the ciphertext c is computed as \sqrt{c} mod 77
- And for decryption we need to compute

$$
c \equiv 10^{2} \equiv 23 \bmod 77
$$

- Suppose Alice wants to send message $\mathrm{m}=$ 10

UTID

The Rabin Cryptosystem

- To find the square roots of 23 in mod 7 and in mod 11 we can use the formula since 7 and 11 are cogruent to $3 \bmod 4$.

$$
\begin{aligned}
& 23^{(7+1) / 4} \equiv 2^{2} \equiv 4 \bmod 7 \\
& 23^{(11+1) / 4} \equiv 1^{3} \equiv 1 \bmod 11
\end{aligned}
$$

UTID

The Rabin Cryptosystem

- Using the Chinese Remainder

Theorem, we compute the four square roots of 23 mod 77 to be

$$
\pm 10, \pm 32 \bmod 77
$$

- Therefore the four possible plaintexts are

$$
m_{1}=10, m_{2}=67, m_{3}=32, m_{4}=45
$$

