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Primality Testing and Attacks 
on RSA

Murat Kantarcioglu

Based on Prof. Ninghui Li’s Slides
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Review of RSA

Public key:  (e, n)
Secret key:  d

where n=pq and ed≡1 (mod Φ(n))

Encrypting M: Me mod n
Decrypting C:      Cd mod n
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Lecture Outline

• Number of prime numbers
• Cyclic groups
• Quadratic residues
• Primality testing
• Factorization
• Attacks on RSA
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Number of Prime Numbers

Theorem
The number of prime numbers is infinite.

Proof: For the sake of contradiction, assume that the 
number of prime numbers is finite.  Let p1, p2, … pk be 
all primes.  Let n = p1 p2 … pk+1, then n must be 
composite. 
Then there exists a prime p s.t. p | n (fundamental 
theorem of arithmetic), and p cannot be any of the p1, 
p2, … pk.  (Why?)
Therefore, p1, … pk were not all the prime numbers.
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Distribution of Prime Numbers

Theorem  (Gaps between primes)
For every positive integer n, there are n or 
more consecutive composite numbers.

Proof Idea:   
The consective numbers 

(n+1)! + 2, (n+1)! + 3, …., (n+1)! + n+1 
are composite.
(Why?) 
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Distribution of Prime Numbers

Definition
Given real number x, let π(x) be the 
number of prime numbers � x.

Theorem (prime numbers theorem)

For a very large number x, the number of 
prime numbers smaller than x is close to 
x/ln x.

lim
x →∞

π (x)
x /ln x

=1
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Generating large prime 
numbers

• Randomly generate a large odd number and then test 
whether it is prime.

• How many random integers need to be tested before 
finding a prime?
– the number of prime numbers ≤ p is about p/ ln p
– roughly every ln p integers has a prime

• for a 512 bit p, ln p = 355.  on average, need to 
test about 177=355/2 odd numbers 

• Need to solve the Primality testing problem
– the decision problem to decide whether a number is a 

prime
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{Complexity}

� Complexity theory:  mathematical discipline that 
classifies problems based on the difficulty to solve 
them. 

� P-class (polynomial-time):  number of steps 
needed to solve a problem is bounded by some 
power of the problem's size. 

� NP-class (nondeterministic polynomial-time): it 
permits a nondeterministic solution and the 
number of steps to verify the solution is bounded 
by some power of the problem's size.
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Testing for Primality

Theorem
Composite numbers have a divisor less than equal to their square 
root.

Proof idea:
n composite, so n = ab,  0 < a � b < n, then a � sqrt(n), otherwise 
we obtain ab > n (contradiction). 

Algorithm 1
for (i=2, i < sqrt(n) + 1); i++) {

If i a divisor of n {
n is composite

}
}
n is prime

Running time is O(sqrt(n)), which is exponential in the size of the 
binary representation of n
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More Efficient Algorithms for 
Primality Testing 

� Primality testing is easier than prime 
factorization, and is in P-class.

How can we tell if a number is prime or not 
without factoring the number?

• The most efficient algorithms are randomized.
• Solovay-Strassen
• Rabin-Miler
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Groups

• A group donated by (G,*) is a set of non-empty elements 
with binary operation *

• Closure: a*b ∈ G for all a,b ∈ G
• Associativity: (a*b)*c=a*(b*c) for all a,b,c ∈ G
• Identity Element: There exists unique e s.t. e*a=a*e=a  for 

all a ∈ G
• Inverse: Every element a ∈ G has an inverse b s.t. 

a*b=b*a=e
• Commutativity: a*b=b*a for all a,b ∈ G
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More Number Theory First

• Definition: Given a group (G,•), 

– the order of G is |G|

– the order of an element a in G is the smallest 
positive integer such that am=1

– {a,a2,…,am} is a subgroup of G
• (why?)

• Definition: a group (G,•) is a cyclic group if there exists 
g∈G such that G={g, g•g, g3, …, g|G|}
– g is known as a generator
– the order of g is |G|

• (why?)
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Zp* is a Cyclic Group

• Fact: Given a prime p, Zp* is a cyclic group.
– we won’t prove it here.

• There exists g∈ Zp* s.t. {gj |  1≤j ≤p-1} = Zp*
– g is a generator of Zp*, 
– g is also known as the primitive element modulo p
– what is the order of g

• For example, 2 is a generator for Z11*
– {2j |  1≤ j ≤p-1}  = {2,4,8,5,10,9,7,3,6,1}
– what is the order of 4=22?  what is the order of 8=23?

• Let g be a generator of Zp*, and let a=gj

– the order of a is (p-1)/gcd(p-1,j)
– what are the primitive elements in Z11*?
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Testing Primitive Elements 
Modulo p

• The number of primitive elements modulo 
p is φ(p-1).

Theorem: Let p be a prime, a∈Zp* is a 
primitive element modulo p iff. a(p-1)/q ≠1 
(mod p) for all primes q such that q|(p-1).

Proof. The only if direction is straightforward.
For the if direction.  If a is not primitive, it has order d<(p-1).  

Then d is a divisor of (p-1).  Let q be a prime factor of (p-
1)/d, i.e., (p-1)/d=cq.  Then (p-1)/q=cd. Then a(p-1)/q =1 
(mod p).
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Quadratic Residues Modulo A 
Prime

Definition
• a is a quadratic residue modulo p if  ∃ b ∈Zp

* such 
that  b2 ≡ a mod p, 

• otherwise when a≠0, a is a quadratic nonresidue
• is the set of all quadratic residues

• is the set of all quadratic nonresidues

• If p is prime there are (p-1)/2 quadratic residues in Zp
*, 

|Qp| = (p-1)/2

– let g be generator of Zp
*, then a=gj is a quadratic residue iff. j 

is even.

Qp

Qp
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How Many Square Roots Does 
an Element in  Qp has

• A element a in Qp has exactly two square 
roots
– a has at least two square roots

• if b2 ≡ a mod p, then (p-b)2 ≡ a mod p

– a has at most two square roots in Zp*
• if b2 ≡ a mod p and c2 ≡ a mod p, then b2 –c2 ≡ 0 

mod p
• then p | (b+c)(b-c), either b=c, or b+c=p
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Legendre Symbol

• Let p be an odd prime and a an 
integer. The Legendre symbol is 
defined 

a

p

� 

� 
� 
� 

� 
� =

   0, if p | a

   1, if a ∈ Qp

−1, if a ∈ Q p

� 

� 
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Euler’s Criterion

Theorem: If  a (p-1)/2 ≡ 1 mod p, then a is a quadratic 
residue ( if ≡ -1 then a is a quadratic nonresidue)

I.e., the Legendre symbol           = a (p-1)/2 mod p

Proof. If a = y2, then a (p-1)/2 = y(p-1) = 1  (mod p)
If a (p-1)/2=1, let a = gj, where g is a generator of the 
group Zp*.  Then gj (p-1)/2 = 1 (mod p).  Since g is a 
generator, (p-1) | j (p-1)/2, thus j must be even.  
Therefore, a=gj is QR.
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Jacobi Symbol

• let n ≥ 3 be odd with prime factorization

• the Jacobi symbol is defined to be

• the Jacobi symbol can be computed without 
factoring n (see the textbook for details)
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Euler Pseudo-prime

• For any prime p, the Legendre symbol         = a(p-1)/2 mod p

• For a composite n, if the Jacobi symbol       = a(n-1)/2 mod n 
then n is called an Euler pseudo-prime to the base a, 
– i.e., a is a “pseudo” evidence that n is prime

• For any composite n, the number of “pseudo” evidences 
that n is prime for at most half of the integers in Zn*
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Randomized Algorithms

• A yes-biased Monte Carlo algorithm is a randomized 
algorithm for a decision problem in which a “yes” answer 
is (always correct), but a “no” answer may be incorrect
– error probability for an instance is the probability that instance is 

answered incorrectly
– error probability for the algorithm is the max among all instance 

error probabilities

• A no-biased Monte Carlo algorithm is defined similarly
• A Las Vegas algorithm may not give an answer, but any 

answer it gives is correct

22

The Solovay-Strassen Algorithm

Solovay-Strassen(n)
choose a random integer a s.t. 1≤a≤n-1
x ←
if x=0 then return (“n is composite”) // gcd(x,n)≠1
y ← a(n-1)/2 mod n
if (x=y) then return (“n is prime”)

// either n is a prime, or a pseudo-prime
else return (“n is composite”)

// violates Euler’s criterion
If n is composite, it passes the test with at most ½ prob.  

Use multiple tests before accepting n as prime.
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Rabin-Miller Test
• Another efficient probabilistic algorithm for determining if a 

given number n is prime. 
– Write n-1 as 2km, with m odd. 
– Choose a random integer a,  1 � a �  n-1. 
– b ← am mod n 
– if b=1 then return “n is prime”
– compute b, b2,b4,…,b2^(k-1), if we find -1, return “n is 

prime”
– return “n is composite”

• A composite number pass the test with ¼ prob.
• When t tests are used with independent a, a composite 

passes with (¼)t prob. 
• The test is fast, used very often in practice.
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Why Rabin-Miller Test Work

Claim: If the algorithm returns “n is composite”, then n is not 
a prime.

Proof: if we choose a and returns composite on n, then
– am≠1, am≠-1, a2m ≠ -1, a4m ≠ -1, …, a2^{k-1}m ≠ -1 (mod n 

)
– suppose, for the sake of contradiction, that n is prime, 
– then an-1=a2^{k}m=1 (mod n)
– then there are two square roots modulo n, 1 and -1
– then a2^{k-1}m = a2^{k-2}m = a2m = am = 1 (contradiction!)
– so if n is prime, the algorithm will not return 

“composite”
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Quadratic Residues Modulo a 
Composite

Definition: a is a quadratic residue modulo n (a∈Qn) if  ∃ b 
∈Zn

* such that  b2 ≡ a mod n, otherwise when a≠0, a is a 
quadratic nonresidue

Fact: a∈Qn*, where n=pq, iff. a∈Qp and a∈Qq

• If b2 ≡ a mod n, then b2 ≡ a mod p and b2 ≡ a mod q
• If b2 ≡ a mod p and c2 ≡ a mod q, then the solutions to

x ≡ b mod p and x ≡ c mod q
x ≡ b mod p and x ≡ -c mod q
x ≡ -b mod p and x ≡ c mod q
x ≡ -b mod p and x ≡ -c mod q

satisfies x2 ≡ a mod n 
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Quadratic Residues Modulo a 
Composite

• |Qn| = |Qp| • |Qq| = (p-1)(q-1)/4
• = 3(p-1)(q-1)/4
• Jacobi symbol does not tell whether a number a is a QR

• when it is -1, then either a∈Qp ∧ a∉Qq or  a∉Qp ∧ a∈Qq

• when it is 1, then either a∈Qp ∧ a∈Qq or  a∉Qp ∧ a∉Qq

• it is widely believed that determining QR modulo n given 
• that              is equivalent to factoring n,  no proof is 

known
– without factoring, one can guess correctly with prob. ½ 
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Summary of Number Theory 
Results Covered

• Zp* is a cyclic group
– has generators

• QR and QNR in Zp* can be easily determined by 
computing the Legendre symbol

• Jacobi symbol (generalizes Legendre symbol to 
composites)
– can be computed without factoring n
– Jacobi symbol does not determine QR in Zn*
– QR in Zn* is hard

• Primality Testing
– Solovay-Strassen
– Rabin-Miller
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Brief Overview of Attacks on 
RSA 

• Goals:
– recover secret key d

• Brute force key search 
– infeasible

• Timing attacks
• Mathematical attacks 

– decrypt one message

– learn information from the cipher texts
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Timing Attacks

• Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems (1996), 
Paul C. Kocher

• By measuring the time required to perform 
decryption (exponentiation with the private key as 
exponent), an attacker can figure out the private 
key

• Possible countermeasures:
– use constant exponentiation time
– add random delays
– blind values used in calculations
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Timing Attacks (cont.)

• Is it possible in practice? YES.

OpenSSL Security Advisory [17 March 2003]
Timing-based attacks on RSA keys
================================
OpenSSL v0.9.7a and 0.9.6i vulnerability
----------------------------------------

Researchers have discovered a timing attack on RSA keys, to 
which OpenSSL is generally vulnerable, unless RSA blinding has 
been turned on.



16

31

Math-Based Key Recovery 
Attacks

• Three possible approaches: 

1. Factor n = pq
2. Determine Φ(n)
3. Find the private key d 

directly

• All the above are equivalent 
to factoring n

– 1 implies 2
– 2 implies 3
– needs to show that 3 implies 1
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Φ(n) implies factorization

• Knowing both n and Φ(n), one knows 
n = pq
Φ(n) = (p-1)(q-1) = pq – p – q + 1

= n – p – n/p + 1
pΦ(n) = np – p2 – n + p
p2 – np + Φ(n)p – p + n = 0
p2 – (n – Φ(n) + 1) p + n = 0

• There are two solutions of p in the above equation.
• Both p and q are solutions. 
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Factoring Large Numbers

• Three most effective algorithms are
– quadratic sieve

– elliptic curve factoring algorithm

– number field sieve

• One idea many factoring algorithms use:
– Suppose one find x2≡y2 (mod n) such that x≠y 

(mod n) and x≠-y (mod n).  Then  n | (x-
y)(x+y).  Neither (x-y) or (x+y) is divisible by n; 
thus, gcd(x-y,n) has a non-trivial factor of n
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Time complexity of factoring

• quadratic sieve:
– O(e(1+o(1))sqrt(ln n ln ln n)) for n around 21024, O(e68)

• elliptic curve factoring algorithm
– O(e(1+o(1))sqrt(2 ln p ln ln p)), where p is the smallest prime factor
– for n=pq and p,q around 2512, for n around 21024 O (e65)

• number field sieve
– O(e(1.92+o(1)) (ln n)^1/3 (ln ln n)^2/3), for n around 21024 O (e60)

• Multiple 512-bit moduli have been factored
• Extrapolating trends of factoring suggests that

– 768-bit moduli will be factored by 2010
– 1024-bit moduli will be factored by 2018
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Factoring when knowing e 
and d

• Fact: if n=pq, then x2≡1 (mod n) has four solutions that 
are <n.   
– x2≡1 (mod n) if and only if 

both x2≡1 (mod p) and x2≡1 (mod q)
– Two trivial solutions: 1 and n-1

• 1 is solution to x ≡ 1 (mod p) and x ≡ 1 (mod q)
• n-1 is solution to x ≡ -1 (mod p) and x ≡ -1 (mod q)

– Two other solutions
• solution to x ≡ 1 (mod p) and x ≡ -1 (mod q)
• solution to x ≡ -1 (mod p) and x ≡ 1 (mod q)

– E.g., n=3�5=15, then x2≡1 (mod 15) has the following solutions: 
1, 4, 11, 14
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Factoring when knowing e 
and d

• Knowing a nontrivial solution to x2≡1 (mod 
n)
– compute gcd(x+1,n) and gcd(x-1,n)

• E.g., 4 and 11 are solution to x2≡1 (mod 
15)
– gcd(4+1,15) = 5

– gcd(4-1,15) = 3

– gcd(11+1,15) = 3

– gcd(11-1, 15) = 5
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Factoring when knowing e 
and d

• Knowing ed such that ed ≡ 1 (mod Φ(n))
write ed – 1 = 2s r (r odd)
choose w at random such that 1<w<n-1
if w not relative prime to n then return gcd(w,n)

(if gcd(w,n)=1, what value is (w2^s r mod n)?)
compute wr, w2r, w4r, …, by successive 
squaring until find w2 t̂ r ≡ 1 (mod n)

Fails when wr≡ 1 (mod n)  or w2 t̂ r≡ -1 (mod n)
Failure probability is less than ½ (Proof is complicated)
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Summary of Key Recovery 
Math-based Attacks on RSA

• Three possible approaches: 

1.Factor n = pq

2.Determine Φ(n)

3.Find the private key d directly
• All are equivalent

– finding out d implies factoring n
– if factoring is hard, so is finding out d

• Should never have different users share one common 
modulus 
– (why?)
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Decryption attacks on RSA 
• The RSA Problem: Given a positive integer n that is a 

product of two distinct large primes p and q, a positive 
integer e such that gcd(e, (p-1)(q-1))=1, and an integer c, 
find an integer m such that me≡c (mod n)
– widely believed that the RSA problem is 

computationally equivalent to integer factorization; 
however, no proof is known

• The security of RSA encryption’s scheme depends on the 
hardness of the RSA problem.


