UTID

Primality Testing and Attacks on RSA

Murat Kantarcioglu

Based on Prof. Ninghui Li's Slides

Review of RSA

Public key: (e, n)
Secret key: d where $\mathrm{n}=\mathrm{pq}$ and $\mathrm{ed} \equiv 1(\bmod \Phi(\mathrm{n}))$

Encrypting M: Me mod n Decrypting C: $\quad \mathrm{C}^{d} \bmod \mathrm{n}$

Lecture Outline

- Number of prime numbers
- Cyclic groups
- Quadratic residues
- Primality testing
- Factorization
- Attacks on RSA

UTID

Number of Prime Numbers

Theorem

The number of prime numbers is infinite.

Proof: For the sake of contradiction, assume that the number of prime numbers is finite. Let $p_{1}, p_{2}, \ldots p_{k}$ be all primes. Let $n=p_{1} p_{2} \ldots p_{k}+1$, then n must be composite.
Then there exists a prime p s.t. $\mathrm{p} \mid \mathrm{n}$ (fundamental theorem of arithmetic), and p cannot be any of the p_{1}, $p_{2}, \ldots p_{k}$. (Why?)
Therefore, $p_{1}, \ldots p_{k}$ were not all the prime numbers.

UTID

Distribution of Prime Numbers

Theorem (Gaps between primes)
For every positive integer n, there are n or more consecutive composite numbers.

Proof Idea:
The consective numbers

$$
(n+1)!+2,(n+1)!+3, \ldots .,(n+1)!+n+1
$$

are composite.
(Why?)

UTD Distribution of Prime Numbers

Definition

Given real number x, let $\pi(x)$ be the number of prime numbers $\leq x$.

Theorem (prime numbers theorem)

$$
\lim _{x \rightarrow \infty} \frac{\pi(x)}{x / \ln x}=1
$$

For a very large number x , the number of prime numbers smaller than x is close to $\mathrm{x} / \mathrm{ln} \mathrm{x}$.

UTID Generating large prime numbers

- Randomly generate a large odd number and then test whether it is prime.
- How many random integers need to be tested before finding a prime?
- the number of prime numbers $\leq p$ is about $p / \ln p$
- roughly every In p integers has a prime
- for a 512 bit $p, \ln p=355$. on average, need to test about 177=355/2 odd numbers
- Need to solve the Primality testing problem
- the decision problem to decide whether a number is a prime

UTID

\{Complexity\}

- Complexity theory: mathematical discipline that classifies problems based on the difficulty to solve them.
- P-class (polynomial-time): number of steps needed to solve a problem is bounded by some power of the problem's size.
- NP-class (nondeterministic polynomial-time): it permits a nondeterministic solution and the number of steps to verify the solution is bounded by some power of the problem's size.

UTID Testing for Primality

Theorem

Composite numbers have a divisor less than equal to their square root.

Proof idea:
n composite, so $n=a b, 0<a \leq b<n$, then $a \leq \operatorname{sqrt}(n)$, otherwise we obtain $\mathrm{ab}>\mathrm{n}$ (contradiction).

Algorithm 1

for ($\mathrm{i}=2, \mathrm{i}<\operatorname{sqrt}(\mathrm{n})+1$); $\mathrm{i}++$) \{
If i a divisor of $n\{$
n is composite

```
        }
```

 \}
 n is prime
Running time is $\mathrm{O}(\mathrm{sqrt}(\mathrm{n})$), which is exponential in the size of the binary representation of n

UTD More Efficient Algorithms for Primality Testing

- Primality testing is easier than prime factorization, and is in P-class.

How can we tell if a number is prime or not without factoring the number?

- The most efficient algorithms are randomized.
- Solovay-Strassen
- Rabin-Miler

UTD

Groups

- A group donated by (G,*) is a set of non-empty elements with binary operation *
- Closure: $a * b \in G$ for all $a, b \in G$
- Associativity: $\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)$ for all $a, b, c \in G$
- Identity Element: There exists unique e s.t. $e^{*} a=a * e=a$ for all $a \in G$
- Inverse: Every element $a \in G$ has an inverse b s.t. a*b=b*a=e
- Commutativity: $a^{*} b=b^{*} a$ for $a l l a, b \in G$

UTID

More Number Theory First

- Definition: Given a group (G, \bullet),
- the order of G is $|G|$
- the order of an element a in G is the smallest positive integer such that $a^{m}=1$
$-\left\{a, a^{2}, \ldots, a^{m}\right\}$ is a subgroup of G - (why?)
- Definition: a group (\mathbf{G}, \bullet) is a cyclic group if there exists $g \in G$ such that $G=\left\{g, g \bullet g, g^{3}, \ldots, g^{|G|}\right\}$
- g is known as a generator
- the order of g is $|\mathrm{G}|$
- (why?)

UTID

$Z_{p}{ }^{*}$ is a Cyclic Group

- Fact: Given a prime $p, Z_{p}{ }^{*}$ is a cyclic group.
- we won't prove it here.
- There exists $g \in Z_{p}{ }^{*}$ s.t. $\left\{g^{j} \mid 1 \leq j \leq p-1\right\}=Z_{p}{ }^{*}$
- g is a generator of $Z_{p}{ }^{*}$,
- g is also known as the primitive element modulo p
- what is the order of g
- For example, 2 is a generator for $Z_{11}{ }^{*}$
- $\left\{2^{j} \mid 1 \leq j \leq p-1\right\}=\{2,4,8,5,10,9,7,3,6,1\}$
- what is the order of $4=2^{2}$? what is the order of $8=2^{3}$?
- Let g be a generator of $Z_{p}{ }^{*}$, and let $a=g^{j}$
- the order of a is $(p-1) / \operatorname{gcd}(p-1, j)$
- what are the primitive elements in $\mathrm{Z}_{11}{ }^{*}$?

UTD Testing Primitive Elements Modulo p

- The number of primitive elements modulo p is $\phi(p-1)$.

Theorem: Let p be a prime, $a \in Z_{p}{ }^{*}$ is a primitive element modulo p iff. $\mathrm{a}^{(p-1) / q} \neq 1$ $(\bmod p)$ for all primes q such that $q(p-1)$.

Proof. The only if direction is straightforward.
For the if direction. If a is not primitive, it has order $d<(p-1)$.
Then d is a divisor of ($p-1$). Let q be a prime factor of (p $1) / d$, i.e., $(p-1) / d=c q$. Then $(p-1) / q=c d$. Then $a^{(p-1) / q}=1$ $(\bmod p)$.

UTD Quadratic Residues Modulo A Prime

Definition

- a is a quadratic residue modulo p if $\exists b \in Z_{p}^{*}$ such that $b^{2} \equiv a \bmod p$,
- otherwise when $a \neq 0$, a is a quadratic nonresidue
- Q_{p} is the set of all quadratic residues
- \bar{Q}_{p} is the set of all quadratic nonresidues
- If p is prime there are $(p-1) / 2$ quadratic residues in $Z_{p}{ }^{*}$, $\left|Q_{p}\right|=(p-1) / 2$
- let g be generator of $Z_{p}{ }^{*}$, then $a=g^{j}$ is a quadratic residue iff. j is even.

UTD How Many Square Roots Does an Element in Q_{p} has

- A element a in Q_{p} has exactly two square roots
- a has at least two square roots
- if $b^{2} \equiv a \bmod p$, then $(p-b)^{2} \equiv a \bmod p$
- a has at most two square roots in $Z_{p}{ }^{*}$
- if $b^{2} \equiv a \bmod p$ and $c^{2} \equiv a \bmod p$, then $b^{2}-c^{2} \equiv 0$ $\bmod p$
- then $p \mid(b+c)(b-c)$, either $b=c$, or $b+c=p$

Legendre Symbol

- Let p be an odd prime and a an integer. The Legendre symbol is defined

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{c}
0, \text { if } p \mid a \\
1, \text { if } a \in Q_{p} \\
-1, \text { if } a \in \bar{Q}_{p}
\end{array}\right.
$$

UTD Euler's Criterion

Theorem: If $\mathrm{a}^{(\mathrm{p}-1) / 2} \equiv 1 \bmod \mathrm{p}$, then a is a quadratic residue (if $\equiv-1$ then a is a quadratic nonresidue)
l.e., the Legendre symbol $\left(\frac{a}{p}\right)=\mathrm{a}^{(\mathrm{p}-1) / 2} \bmod \mathrm{p}$

Proof. If $a=y^{2}$, then $a^{(p-1) / 2}=y^{(p-1)}=1(\bmod p)$ If $\mathrm{a}^{(\mathrm{p}-1) / 2}=1$, let $\mathrm{a}=\mathrm{g}^{\mathrm{j}}$, where g is a generator of the group $Z_{p}{ }^{*}$. Then $g^{j(p-1) / 2}=1(\bmod p)$. Since g is a generator, $(p-1) \mid j(p-1) / 2$, thus j must be even.
Therefore, $a=g^{j}$ is $Q R$.

UTID

Jacobi Symbol

- let $\mathrm{n} \geq 3$ be odd with prime factorization

$$
n=p_{1}^{e_{1}} p_{2}^{e_{2}} \ldots p_{k}^{e_{k}}
$$

- the Jacobi symbol is defined to be

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p_{1}}\right)^{e_{1}}\left(\frac{a}{p_{2}}\right)^{e_{2}} \ldots\left(\frac{a}{p_{k}}\right)^{e_{k}}
$$

- the Jacobi symbol can be computed without factoring n (see the textbook for details)

UTD Euler Pseudo-prime

- For any prime p , the Legendre symbol $\left(\frac{a}{p}\right)=\mathrm{a}^{(\mathrm{p}-1) / 2} \bmod \mathrm{p}$
- For a composite n , if the Jacobi symbol $\left(\frac{a}{n}\right)=\mathrm{a}^{(\mathrm{n}-1) / 2} \bmod \mathrm{n}$ then n is called an Euler pseudo-prime to the base a,
- i.e., a is a "pseudo" evidence that n is prime
- For any composite n, the number of "pseudo" evidences that n is prime for at most half of the integers in $\mathrm{Z}_{\mathrm{n}}{ }^{*}$

UTID

Randomized Algorithms

- A yes-biased Monte Carlo algorithm is a randomized algorithm for a decision problem in which a "yes" answer is (always correct), but a "no" answer may be incorrect
- error probability for an instance is the probability that instance is answered incorrectly
- error probability for the algorithm is the max among all instance error probabilities
- A no-biased Monte Carlo algorithm is defined similarly
- A Las Vegas algorithm may not give an answer, but any answer it gives is correct

UTD
 The Solovay-Strassen Algorithm

```
Solovay-Strassen(n)
    choose a random integer a s.t. 1\leqa\leqn-1
    X}\leftarrow(\frac{a}{n}
    if }x=0\mathrm{ then return (" }\textrm{n}\mathrm{ is composite") // gcd(x,n)=1
    y}\leftarrow\mp@subsup{\textrm{a}}{}{(n-1)/2}\operatorname{mod}
    if ( }x=y\mathrm{ ) then return (" }n\mathrm{ is prime")
            // either n is a prime, or a pseudo-prime
        else return ("n is composite")
            // violates Euler's criterion
    If }\textrm{n}\mathrm{ is composite, it passes the test with at most }1/2 prob
            Use multiple tests before accepting n as prime.
```


UTID

Rabin-Miller Test

- Another efficient probabilistic algorithm for determining if a given number n is prime.
- Write n-1 as $2^{k} m$, with m odd.
- Choose a random integer $a, 1 \leq a \leq n-1$.
$-\mathrm{b} \leftarrow \mathrm{a}^{\mathrm{m}} \bmod \mathrm{n}$
- if $b=1$ then return " n is prime"
- compute $b, b^{2}, b^{4}, \ldots, b^{2^{\wedge}(k-1)}$, if we find -1 , return " n is prime"
- return " n is composite"
- A composite number pass the test with $1 / 4$ prob.
- When t tests are used with independent a, a composite passes with $(1 / 4)^{t}$ prob.
- The test is fast, used very often in practice.

UTID
 Why Rabin-Miller Test Work

Claim: If the algorithm returns " n is composite", then n is not a prime.
Proof: if we choose a and returns composite on n , then
$-a^{m} \neq 1, a^{m \neq-1}, a^{2 m} \neq-1, a^{4 m} \neq-1, \ldots, a^{2^{2\{ }\{k-1\} m} \neq-1(\bmod n$)

- suppose, for the sake of contradiction, that n is prime,
- then $\mathrm{a}^{\mathrm{n}-1}=\mathrm{a}^{2 \mathrm{n}\{k\} \mathrm{m}}=1(\bmod \mathrm{n})$
- then there are two square roots modulo $n, 1$ and -1
- then $\mathrm{a}^{2^{\Lambda}\{k-1\} \mathrm{m}}=\mathrm{a}^{2^{n}\{k-2\} \mathrm{m}}=\mathrm{a}^{2 \mathrm{~m}}=\mathrm{a}^{\mathrm{m}}=1$ (contradiction!)
- so if n is prime, the algorithm will not return "composite"

UTD Quadratic Residues Modulo a Composite

Definition: a is a quadratic residue modulo $n\left(a \in Q_{n}\right)$ if $\exists b$ $\in Z_{n}^{*}$ such that $b^{2} \equiv a \bmod n$, otherwise when $a \neq 0$, a is a quadratic nonresidue
Fact: $\mathrm{a} \in \mathrm{Q}_{\mathrm{n}}{ }^{*}$, where $\mathrm{n}=\mathrm{pq}$, iff. $\mathrm{a} \in \mathrm{Q}_{\mathrm{p}}$ and $\mathrm{a} \in \mathrm{Q}_{\mathrm{q}}$

- If $b^{2} \equiv a \bmod n$, then $b^{2} \equiv a \bmod p$ and $b^{2} \equiv a \bmod q$
- If $b^{2} \equiv a \bmod p$ and $c^{2} \equiv a \bmod q$, then the solutions to
$x \equiv b \bmod p$ and $x \equiv c \bmod q$
$x \equiv b \bmod p$ and $x \equiv-c \bmod q$
$x \equiv-b \bmod p$ and $x \equiv c \bmod q$
$x \equiv-b \bmod p$ and $x \equiv-c \bmod q$
satisfies $\mathrm{x}^{2} \equiv \mathrm{amodn}$

UTID
 Quadratic Residues Modulo a Composite

- $\left|\mathrm{Q}_{\mathrm{n}}\right|=\left|\mathrm{Q}_{\mathrm{p}}\right| \bullet\left|\mathrm{Q}_{\mathrm{q}}\right|=(\mathrm{p}-1)(\mathrm{q}-1) / 4$
- $Q_{n}=3(\mathrm{p}-1)(\mathrm{q}-1) / 4$
- Jacobi symbol does not tell whether a number a is a QR

$$
\left(\frac{a}{n}\right)=\left(\frac{a}{p}\right)\left(\frac{a}{q}\right)
$$

- when it is - 1 , then either $a \in Q_{p} \wedge a \notin Q_{q}$ or $a \notin Q_{p} \wedge a \in Q_{q}$
- when it is 1 , then either $a \in Q_{p} \wedge a \in Q_{q}$ or $a \notin Q_{p} \wedge a \notin Q_{q}$
- it is widely believed that determining QR modulo n given
- that $\left(\frac{a}{n}\right)=1$ is equivalent to factoring n , no proof is
- without factoring, one can guess correctly with prob. $1 / 2$

UTID Summary of Number Theory Results Covered

- $Z_{p}{ }^{*}$ is a cyclic group
- has generators
- QR and QNR in $Z_{p}{ }^{*}$ can be easily determined by computing the Legendre symbol
- Jacobi symbol (generalizes Legendre symbol to composites)
- can be computed without factoring n
- Jacobi symbol does not determine QR in $Z_{n}{ }^{*}$
$-Q R$ in $Z_{n}{ }^{*}$ is hard
- Primality Testing
- Solovay-Strassen
- Rabin-Miller

UTID Brief Overview of Attacks on RSA

- Goals:
- recover secret key d
- Brute force key search
- infeasible
- Timing attacks
- Mathematical attacks
- decrypt one message
- learn information from the cipher texts

UTID

Timing Attacks

- Timing Attacks on Implementations of DiffieHellman, RSA, DSS, and Other Systems (1996), Paul C. Kocher
- By measuring the time required to perform decryption (exponentiation with the private key as exponent), an attacker can figure out the private key
- Possible countermeasures:
- use constant exponentiation time
- add random delays
- blind values used in calculations

UTID

Timing Attacks (cont.)

- Is it possible in practice? YES.

OpenSSL Security Advisory [17 March 2003]
Timing-based attacks on RSA keys

OpenSSL v0.9.7a and 0.9.6i vulnerability

Researchers have discovered a timing attack on RSA keys, to which OpenSSL is generally vulnerable, unless RSA blinding has been turned on.

UTD Math-Based Key Recovery Attacks

- Three possible approaches:

1. Factor $\mathrm{n}=\mathrm{pq}$
2. Determine $\Phi(\mathrm{n})$
3. Find the private key d directly

- All the above are equivalent to factoring n

- 1 implies 2
- 2 implies 3
- needs to show that 3 implies 1

UTID

$\Phi(\mathrm{n})$ implies factorization

- Knowing both n and $\Phi(\mathrm{n})$, one knows

$$
\begin{aligned}
& \mathrm{n}=\mathrm{pq} \\
& \Phi(\mathrm{n})=(\mathrm{p}-1)(\mathrm{q}-1)=p q-\mathrm{p}-\mathrm{q}+1 \\
& \quad=\mathrm{n}-\mathrm{p}-\mathrm{n} / \mathrm{p}+1 \\
& \mathrm{p} \Phi(\mathrm{n})=\mathrm{n} \mathrm{p}-\mathrm{p}^{2}-\mathrm{n}+\mathrm{p} \\
& \mathrm{p}^{2}-\mathrm{np}+\Phi(\mathrm{n}) \mathrm{p}-\mathrm{p}+\mathrm{n}=0 \\
& \mathrm{p}^{2}-(\mathrm{n}-\Phi(\mathrm{n})+1) \mathrm{p}+\mathrm{n}=0
\end{aligned}
$$

- There are two solutions of p in the above equation.
- Both p and q are solutions.

UTD

Factoring Large Numbers

- Three most effective algorithms are
- quadratic sieve
- elliptic curve factoring algorithm
- number field sieve
- One idea many factoring algorithms use:
- Suppose one find $x^{2} \equiv y^{2}(\bmod n)$ such that $x \neq y$ $(\bmod n)$ and $x \neq-\mathrm{y}(\bmod \mathrm{n})$. Then $\mathrm{n} \mid(\mathrm{x}-$ $y)(x+y)$. Neither $(x-y)$ or $(x+y)$ is divisible by n; thus, $\operatorname{gcd}(x-y, n)$ has a non-trivial factor of n

UTD
 Time complexity of factoring

- quadratic sieve:
$-\mathrm{O}\left(\mathrm{e}^{(1+0(1)) \operatorname{sqr}(\ln n \ln \ln n)}\right) \quad$ for n around $2^{1024}, \mathrm{O}\left(\mathrm{e}^{68}\right)$
- elliptic curve factoring algorithm
- $O\left(e^{(1+o(1)) s q r t(2 \ln p \ln \ln p)}\right)$, where p is the smallest prime factor
- for $n=p q$ and p, q around 2^{512}, for n around $2^{1024} \mathrm{O}\left(e^{65}\right)$
- number field sieve
$-\mathrm{O}\left(\mathrm{e}^{(1.92+0(1))(\ln n)^{\wedge 1 / 3}(\ln \ln n)^{\wedge} 2 / 3}\right), \quad$ for n around $2^{1024} \mathrm{O}\left(e^{60}\right)$
- Multiple 512-bit moduli have been factored
- Extrapolating trends of factoring suggests that
- 768-bit moduli will be factored by 2010
- 1024-bit moduli will be factored by 2018

UTI Factoring when knowing e and d

- Fact: if $n=p q$, then $x^{2} \equiv 1(\bmod n)$ has four solutions that are $<n$.
- $x^{2} \equiv 1(\bmod n)$ if and only if
both $x^{2} \equiv 1(\bmod p)$ and $x^{2} \equiv 1(\bmod q)$
- Two trivial solutions: 1 and $n-1$
- 1 is solution to $x \equiv 1(\bmod p)$ and $x \equiv 1(\bmod q)$
- $\mathrm{n}-1$ is solution to $\mathrm{x} \equiv-1(\bmod \mathrm{p})$ and $\mathrm{x} \equiv-1(\operatorname{modq})$
- Two other solutions
- solution to $x \equiv 1(\bmod p)$ and $x \equiv-1(\bmod q)$
- solution to $x \equiv-1(\bmod p)$ and $x \equiv 1(\bmod q)$
- E.g., $n=3 \times 5=15$, then $x^{2} \equiv 1(\bmod 15)$ has the following solutions: 1, 4, 11, 14

UTI Factoring when knowing e and d

- Knowing a nontrivial solution to $x^{2} \equiv 1(\bmod$ n)
- compute $\operatorname{gcd}(x+1, n)$ and $\operatorname{gcd}(x-1, n)$
- E.g., 4 and 11 are solution to $x^{2} \equiv 1(\bmod$ 15)
$-\operatorname{gcd}(4+1,15)=5$
$-\operatorname{gcd}(4-1,15)=3$
$-\operatorname{gcd}(11+1,15)=3$
$-\operatorname{gcd}(11-1,15)=5$

UTD Factoring when knowing e and d

- Knowing ed such that ed $\equiv 1(\bmod \Phi(\mathrm{n}))$
write ed - $1=2^{s} r$ (r odd)
choose w at random such that $1<w<n-1$
if w not relative prime to n then return $\operatorname{gcd}(w, n)$
(if $\operatorname{gcd}(w, n)=1$, what value is ($w^{2 \wedge s} r \bmod n$)?)
compute $w^{r}, w^{2 r}, w^{4 r}, \ldots$, by successive squaring until find $w^{2^{n} t} \equiv 1(\bmod n)$
Fails when $w^{r} \equiv 1(\bmod n)$ or $w^{2^{n t}} \equiv-1(\bmod n)$
Failure probability is less than $1 / 2$ (Proof is complicated)

UTD Summary of Key Recovery Math-based Attacks on RSA

- Three possible approaches:
1.Factor $\mathrm{n}=\mathrm{pq}$

2. Determine $\Phi(\mathrm{n})$
3.Find the private key d directly

- All are equivalent
- finding out d implies factoring n
- if factoring is hard, so is finding out d
- Should never have different users share one common modulus
- (why?)

Decryption attacks on RSA

- The RSA Problem: Given a positive integer n that is a product of two distinct large primes p and q, a positive integer e such that $\operatorname{gcd}(e,(p-1)(q-1))=1$, and an integer c, find an integer m such that $m e c(m o d n)$
- widely believed that the RSA problem is computationally equivalent to integer factorization; however, no proof is known
- The security of RSA encryption's scheme depends on the hardness of the RSA problem.

