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Public Key Cryptography and 
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Review: Number Theory 
Basics

Definition   An integer n > 1 is called a prime number
if its positive divisors are 1 and n.
Definition   Any integer number n > 1 that is not prime 
is called a composite number.

Theorem (Fundamental Theorem of Arithmetic)

Definition The greatest common divisor of a and b, 
denoted by gcd(a, b), is the largest number that 
divides both a and b.
Definition Two integers a > 0 and b > 0 are relatively 
prime if  gcd(a, b) = 1.
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Review: Extended Euclidian 
Algorithm

Input:     a, b
Output:  (d,x,y) s.t. d=gcd(a,b) and ax + by = d

d=a; t=b; x=1;  y=0; r=0;  s=1; 
while (t>0) {

q = �d/t�
u=x-qr;  v=y-qs;  w=d-qt
x=r;       y=s;       d=t
r=u;       s=v;       t=w

}
return (d, x, y)

gcd(a,b)=gcd(d,t)

ax + by = d

ar + bs = t

Invariants:

Euclidian AlgorithmHow many times before this loop stops?
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Review: Chinese Reminder 
Theorem (CRT)

Let n1, n2, ,,, nk be integers s.t. gcd(ni, nj) = 1, i ≠ j. 

There exists a unique solution modulo n = n1 n2 … nk

The solution is given by 

ρ(a1,a2,…,ak) = (Σ aimiyi ) mod n,
• where mi = n / ni, and yi = mi

-1 mod ni
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Review: Euler Phi Function

Definition: A reduced set of residues (RSR) modulo m is a set 
of integers R each relatively prime to m, so that every 
integer relatively prime to m is congruent to exactly one 
integer in R.

Definition: Given n, Zn* ={a | 0<a<n and gcd(a,n)=1} is the 
standard RSR modulo n.

Definition
Given an integer n, Φ(n) = | Zn*|  is the size of RSR modulo n.

Theorem: If gcd(m,n) = 1, Φ(mn) = Φ(m) Φ(n)

Fact: Φ(p)=p-1 for prime p
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Review: Euler’s Theorem

Euler’s Theorem
Given integer n > 1, such that gcd(a, n) = 1   then       

aΦ(n) ≡ 1 (mod n)
Corollary: Given integer n > 1, such that gcd(a, n) = 1 
then  aΦ(n)-1 mod n is a multiplicative inverse of a mod n.

Corollary: Given integer n > 1, x, y, and a positive 
integers with gcd(a, n) = 1. If x ≡ y (mod Φ(n)), then 

ax ≡ ay (mod n).
Corollary (Fermat’s “ Little”  Theorem): 

ap-1 ≡ 1 (mod n)
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Lecture Outline

• Why public key 
cryptography?

• Overview of Public 
Key Cryptography

• RSA
– square & multiply 

algorithm

– RSA implementation

• Pohlig-Hellman
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Limitation of Secret Key 
(Symmetric) Cryptography 

• Secret key cryptography
– symmetric encryption � confidentiality (privacy)
– MAC (keyed hash) � authentication (integrity)

• Sender and receiver must share the same key
– needs secure channel for key distribution
– impossible for two parties having no prior relationship

• Other limitation of authentication scheme
– cannot authenticate to multiple receivers
– does not have non-repudiation
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Public Key Cryptography 
Overview

• Proposed in Diffie and Hellman (1976) “New Directions in 
Cryptography”
– public-key encryption schemes
– public key distribution systems

• Diffie-Hellman key agreement protocol
– digital signature

• Public-key encryption was proposed in 1970 by James 
Ellis
– in a classified paper made public in 1997 by the British 

Governmental Communications Headquarters
• Diffie-Hellman key agreement and concept of digital 

signature are still due to Diffie & Hellman
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Public Key Encryption

• Public-key encryption
– each party has a PAIR (K, K-1) of keys: K is the public

key and K-1 is the secret key, such that 
DK-1[EK[M]] = M

– Knowing the public-key and the cipher, it is 
computationally infeasible to compute the private key

– Public-key crypto system is thus known to be 
asymmetric crypto systems

– The public-key K may be made publicly available, e.g., 
in a publicly available directory

– Many can encrypt, only one can decrypt
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Public Key Cryptography 
Overview

• Public key distribution systems
– two parties who do not share any private information 

through communications arrive at some secret not 
known to any eavesdroppers

• Authentication with public keys: Digital Signature
– the authentication tag of a message can only be 

computed by one user, but can be verified by many
– called one-way message authentication in [Diffie & 

Hellman, 1976]
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Public-Key Encryption Needs 
One-way Trapdoor Functions

• Given a public-key crypto system, 
– Alice has public key K

– EK must be a one-way function, knowing y= 
EK[x], it should be difficult to find x

– However, EK must not be one-way from 
Alice’s perspective.  The function EK must 
have a trapdoor such that knowledge of the 
trapdoor enables one to invert it
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Trapdoor One-way 
Functions

Definition:
A function f: {0,1}* → {0,1}* 
is a trapdoor one-way 
function iff f(x) is a one-way 
function; however, given 
some extra information it 
becomes feasible to 
compute f-1: given y, find x 
s.t. y = f(x)

14

RSA Algorithm

• Invented in 1978 by Ron Rivest, Adi Shamir and 
Leonard Adleman
– Published as R L Rivest, A Shamir, L Adleman, 

"On Digital Signatures and Public Key 
Cryptosystems", Communications of the ACM, 
vol 21 no 2, pp120-126, Feb 1978 

• Security relies on the difficulty of factoring large 
composite numbers 

• Essentially the same algorithm was discovered in 
1973 by Clifford Cocks, who works for the British 
intelligence
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The Multiplicative Group Zpq*

• Let p and q be two large primes
• Denote their product n=pq.
• The multiplicative group Zn*= Zpq* contains 

all integers in the range [1,pq-1] that are 
relatively prime to both p and q

• The size of the group is 
Φ(pq) = (p-1)(q-1)=n-(p+q)+1

• For every x ∈ Zpq*, x(p-1)(q-1) ≡ 1
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Exponentiation in Zpq*

• Motivation: We want to use exponentiation 
for encryption

• Let e be an integer, 1<e<(p-1)(q-1)

• When is the function f(x)=xe, a one-to-one 
function in Zpq*?

• If xe is one-to-one, then it is a permutation 
in Zpq*.
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Exponentiation in Zpq*

• Claim: If e is relatively prime to (p-1)(q-1) 
then f(x)=xe is a one-to-one function in Zpq*

• Proof by constructing the inverse function 
of f.  As gcd(e,(p-1)(q-1))=1, then there 
exists d and k s.t. ed=1+k(p-1)(q-1)

• Let y=xe, then yd=(xe)d=x1+k(p-1)(q-1)=x (mod 
pq), i.e., g(y)=yd is the inverse of f(x)=xe.
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RSA Public Key Crypto 
System

Key generation:

Select 2 large prime numbers of about the 
same size, p and q

Compute n = pq, and Φ(n) = (q-1)(p-1)

Select a random integer e,  1 < e < Φ(n), 
s.t. gcd(e, Φ(n)) = 1

Compute  d, 1< d< Φ(n) s.t.  ed ≡ 1 mod 
Φ(n)

Public key:  (e, n)
Secret key:  d
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RSA Description (cont.) 
Encryption
Given a message M, 0 < M < n M ∈ Zn− {0}
use public key (e, n) 
compute C = Me mod n  C ∈ Zn− {0}

Decryption
Given a ciphertext C, use private key (d) 
Compute 

Cd mod n = (Me mod n)d mod n = Med mod n = M
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RSA Example

• p = 11, q = 7, n = 77, Φ(n) = 60
• d = 13, e = 37   (ed = 481;  ed mod 60 = 1)

• Let M = 15.  Then C ≡ Me mod n

– C ≡ 1537 (mod 77) = 71

• M ≡ Cd mod n

– M ≡ 7113 (mod 77) = 15



11

21

Why does RSA work? 
• Need to show that (Me)d (mod n) = M, n = pq
• We have shown that when M∈Zpq*, i.e., gcd(M, n) = 1, 

then Med ≡ M     (mod n)
• What if M∈Zpq−{0}−Zpq*, e.g., gcd(M, n) = p.

– ed ≡ 1 (mod Φ(n)), so  ed = kΦ(n) + 1, for some 
integer k.

– Med mod p = (M mod p)ed mod p = 0   
so Med ≡ M mod p

– Med mod q = (Mk*Φ(n) mod q) (M mod q) = M mod q  
so Med ≡ M mod q

– As p and q are distinct primes, it follows from the 
CRT that Med ≡ M mod pq
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Square and Multiply Algorithm 
for Exponentiation

• Computing (x)c mod n 
– Example: suppose that c=53=110101
– x53=(x26)2·x=(((x3)2)2·x)2)2·x =(((x2·x)2)2·x)2)2·x  

mod n

Alg: Square-and-multiply (x, n, c = ck-1 ck-2 … c1 c0)
z=1
for i ← k-1 downto 0 {

z ← z2 mod n
if ci = 1 then z ← (z � x) mod n

}
return z
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Efficiency of computation 
modulo n

• Suppose that n is a k-bit number, and 0≤
x,y ≤ n
– computing (x+y) mod n takes time O(k) 

– computing (x-y) mod n takes time O(k)

– computing (xy) mod n takes time O(k2)

– computing (x-1) mod n takes time O(k3)

– computing (x)c mod n takes time O((log c) k2)
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RSA Implementation 

n, p, q
• The security of RSA depends on how 

large n is, which is often measured in 
the number of bits for n. Current 
recommendation is 1024 bits for n.

• p and q should have the same bit 
length, so for 1024 bits RSA, p and q 
should be about 512 bits.

• P or q should not be small !
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RSA Implementation

• Select p and q prime 
numbers

• In general, select 
numbers, then test for 
primality

• Many implementations 
use the Rabin-Miller 
test, (probabilistic test)
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Next …

• Finding large prime 
numbers

• Attacks on RSA
• Factoring


