UTID

Public Key Cryptography and RSA

Murat Kantarcioglu

UTID
 Review: Number Theory Basics

Definition An integer $n>1$ is called a prime number if its positive divisors are 1 and n.
Definition Any integer number $n>1$ that is not prime is called a composite number.

Theorem (Fundamental Theorem of Arithmetic)

$$
n=p_{1}^{e_{1}} p_{2}^{e 2} \ldots p_{k}^{e k}
$$

Definition The greatest common divisor of a and b, denoted by $\operatorname{gcd}(a, b)$, is the largest number that divides both a and b.
Definition Two integers $\mathrm{a}>0$ and $\mathrm{b}>0$ are relatively prime if $\operatorname{gcd}(a, b)=1$.

UTID Review: Extended Euclidian Algorithm

Input: $\quad \mathrm{a}, \mathrm{b}$
Output: (d, x, y) s.t. $d=\operatorname{gcd}(a, b)$ and $a x+b y=d$

```
d=a; t=b; x=1; y=0; r=0; s=1;
while (t>0) { Invariants:
    u=x-qr;v=y-qs; 隹=\d/t\rfloor}\begin{array}{l}{w=d-qt }\end{array}\quad\operatorname{gcd(a,b)=gcd(d,t)
    x=r; y=s; d=t ax by=d
    r=u; S=v; t=w ar + bs = t
}
return (d, x, y)
    How many times before this loop stops?
```


UTD Review: Chinese Reminder Theorem (CRT)

Let $\mathrm{n}_{1}, \mathrm{n}_{2},,,, \mathrm{n}_{\mathrm{k}}$ be integers s.t. $\operatorname{gcd}\left(\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right)=1, \mathrm{i} \neq \mathrm{j}$.

$$
\begin{aligned}
& x \equiv a_{1} \bmod n_{1} \\
& x \equiv a_{2} \bmod n_{2} \\
& \cdots \\
& x \equiv a_{k} \bmod n_{k}
\end{aligned}
$$

There exists a unique solution modulo $n=n_{1} n_{2} \ldots n_{k}$ The solution is given by

$$
\rho(\mathrm{a} 1, \mathrm{a} 2, \ldots, \mathrm{ak})=\left(\sum \mathrm{a}_{\mathrm{i}} \mathrm{~m}_{\mathrm{i}} \mathrm{y}_{\mathrm{i}}\right) \bmod \mathrm{n},
$$

- where $\mathrm{m}_{\mathrm{i}}=\mathrm{n} / \mathrm{n}_{\mathrm{i}}$, and $\mathrm{y}_{\mathrm{i}}=\mathrm{m}_{\mathrm{i}}^{-1} \bmod \mathrm{n}_{\mathrm{i}} \quad 4$

UTID
 Review: Euler Phi Function

Definition: A reduced set of residues (RSR) modulo m is a set of integers R each relatively prime to m, so that every integer relatively prime to m is congruent to exactly one integer in R.
Definition: Given $\mathrm{n}, \mathrm{Z}_{\mathrm{n}}{ }^{*}=\{\mathrm{a} \mid 0<\mathrm{a}<\mathrm{n}$ and $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1\}$ is the standard RSR modulo n.

Definition

Given an integer $n, \Phi(n)=\left|Z_{n}{ }^{*}\right|$ is the size of RSR modulo n.
Theorem: If $\operatorname{gcd}(\mathrm{m}, \mathrm{n})=1, \Phi(\mathrm{mn})=\Phi(\mathrm{m}) \Phi(\mathrm{n})$
Fact: $\quad \Phi(\mathrm{p})=\mathrm{p}-1$ for prime p

UTID

Review: Euler's Theorem

Euler's Theorem

Given integer $n>1$, such that $\operatorname{gcd}(a, n)=1$ then

$$
\mathrm{a}^{\Phi(n)} \equiv 1(\bmod n)
$$

Corollary: Given integer $n>1$, such that $\operatorname{gcd}(a, n)=1$ then $a^{\Phi(n)-1} \bmod n$ is a multiplicative inverse of a $\bmod n$.
Corollary: Given integer $\mathrm{n}>1, \mathrm{x}, \mathrm{y}$, and a positive integers with $\operatorname{gcd}(a, n)=1$. If $x \equiv y(\bmod \Phi(n))$, then

$$
\mathrm{a}^{\mathrm{x}} \equiv \mathrm{a}^{\mathrm{y}}(\bmod \mathrm{n}) .
$$

Corollary (Fermat's "Little" Theorem):

$$
\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{n})
$$

UTID

Lecture Outline

- Why public key cryptography?
- Overview of Public Key Cryptography
- RSA
- square \& multiply
 algorithm
- RSA implementation
- Pohlig-Hellman

UTID

Limitation of Secret Key (Symmetric) Cryptography

- Secret key cryptography
- symmetric encryption \Rightarrow confidentiality (privacy)
- MAC (keyed hash) \Rightarrow authentication (integrity)
- Sender and receiver must share the same key
- needs secure channel for key distribution
- impossible for two parties having no prior relationship
- Other limitation of authentication scheme
- cannot authenticate to multiple receivers
- does not have non-repudiation

Public Key Cryptography Overview

- Proposed in Diffie and Hellman (1976) "New Directions in Cryptography"
- public-key encryption schemes
- public key distribution systems
- Diffie-Hellman key agreement protocol
- digital signature
- Public-key encryption was proposed in 1970 by James Ellis
- in a classified paper made public in 1997 by the British Governmental Communications Headquarters
- Diffie-Hellman key agreement and concept of digital signature are still due to Diffie \& Hellman

UTID

Public Key Encryption

- Public-key encryption
- each party has a PAIR ($\mathrm{K}, \mathrm{K}^{-1}$) of keys: K is the public key and K^{-1} is the secret key, such that $\mathrm{D}_{\mathrm{K}^{-1}}\left[\mathrm{E}_{\mathrm{K}}[\mathrm{M}]\right]=\mathrm{M}$
- Knowing the public-key and the cipher, it is computationally infeasible to compute the private key
- Public-key crypto system is thus known to be asymmetric crypto systems
- The public-key K may be made publicly available, e.g., in a publicly available directory
- Many can encrypt, only one can decrypt
- Public key distribution systems
- two parties who do not share any private information through communications arrive at some secret not known to any eavesdroppers
- Authentication with public keys: Digital Signature
- the authentication tag of a message can only be computed by one user, but can be verified by many
- called one-way message authentication in [Diffie \& Hellman, 1976]

UTD Public-Key Encryption Needs One-way Trapdoor Functions

- Given a public-key crypto system,
- Alice has public key K
$-E_{K}$ must be a one-way function, knowing $y=$ $\mathbf{E}_{K}[x]$, it should be difficult to find x
- However, \mathbf{E}_{K} must not be one-way from Alice's perspective. The function E_{K} must have a trapdoor such that knowledge of the trapdoor enables one to invert it

UTID
 Trapdoor One-way Functions

Definition:

A function $\mathrm{f}:\{0,1\}^{*} \rightarrow\{0,1\}^{*}$ is a trapdoor one-way function iff $f(x)$ is a one-way function; however, given some extra information it becomes feasible to compute f^{-1} : given y, find x s.t. $y=f(x)$

UTID

RSA Algorithm

- Invented in 1978 by Ron Rivest, Adi Shamir and Leonard Adleman
- Published as R L Rivest, A Shamir, L Adleman, "On Digital Signatures and Public Key
Cryptosystems", Communications of the ACM, vol 21 no 2, pp120-126, Feb 1978
- Security relies on the difficulty of factoring large composite numbers
- Essentially the same algorithm was discovered in 1973 by Clifford Cocks, who works for the British intelligence

UTID The Multiplicative Group $\mathrm{Z}_{\mathrm{pq}}{ }^{\text {* }}$

- Let p and q be two large primes
- Denote their product $\mathrm{n}=\mathrm{pq}$.
- The multiplicative group $Z_{n}{ }^{*}=Z_{p q}{ }^{*}$ contains all integers in the range [1,pq-1] that are relatively prime to both p and q
- The size of the group is

$$
\Phi(\mathrm{pq})=(\mathrm{p}-1)(\mathrm{q}-1)=\mathrm{n}-(\mathrm{p}+\mathrm{q})+1
$$

- For every $x \in Z_{p q}{ }^{*}, x^{(p-1)(q-1)} \equiv 1$

UTID

Exponentiation in $Z_{p q}{ }^{*}$

- Motivation: We want to use exponentiation for encryption
- Let e be an integer, $1<\mathrm{e}<(\mathrm{p}-1)(\mathrm{q}-1)$
- When is the function $f(x)=x^{e}$, a one-to-one function in $\mathrm{Z}_{\mathrm{pq}}{ }^{*}$?
- If x^{e} is one-to-one, then it is a permutation in $Z_{p q}{ }^{*}$.

UTID

Exponentiation in $Z_{p q}{ }^{*}$

- Claim: If e is relatively prime to ($p-1$)($q-1$) then $f(x)=x^{e}$ is a one-to-one function in $Z_{p q}{ }^{*}$
- Proof by constructing the inverse function of f. As $\operatorname{gcd}(e,(p-1)(q-1))=1$, then there exists d and k s.t. ed $=1+k(p-1)(q-1)$
- Let $y=x^{e}$, then $y^{d}=\left(x^{e}\right)^{d}=x^{1+k(p-1)}(q-1)=x(\bmod$ $p q)$, i.e., $g(y)=y^{d}$ is the inverse of $f(x)=x^{e}$.

UTID

RSA Public Key Crypto System

Key generation:
Select 2 large prime numbers of about the same size, p and q
Compute $\mathrm{n}=\mathrm{pq}$, and $\Phi(\mathrm{n})=(\mathrm{q}-1)(\mathrm{p}-1)$
Select a random integer e, $1<\mathrm{e}<\Phi(\mathrm{n})$, s.t. $\operatorname{gcd}(e, \Phi(n))=1$

Compute $\mathrm{d}, 1<\mathrm{d}<\Phi(\mathrm{n})$ s.t. $\mathrm{ed} \equiv 1 \mathrm{mod}$ $\Phi(\mathrm{n})$
Public key: (e, n)
Secret key: d

RSA Description (cont.)

Encryption

Given a message $M, 0<M<n \quad M \in Z_{n}-\{0\}$
use public key (e, n)
compute $\mathrm{C}=\mathrm{M}^{e} \bmod \mathrm{n} \quad \mathrm{C} \in \mathrm{Z}_{\mathrm{n}}-\{0\}$

Decryption

Given a ciphertext C, use private key (d)
Compute
$C^{d} \bmod n=\left(M^{e} \bmod n\right)^{d} \bmod n=M^{e d} \bmod n=M$

RSA Example

- $\mathrm{p}=11, \mathrm{q}=7, \mathrm{n}=77, \Phi(\mathrm{n})=60$
- $d=13, e=37 \quad(e d=481 ; e d \bmod 60=1)$
- Let $\mathrm{M}=15$. Then $\mathrm{C} \equiv \mathrm{M}^{\mathrm{e}} \bmod \mathrm{n}$
$-C \equiv 15^{37}(\bmod 77)=71$
- $M \equiv C^{d} \bmod n$
$-\mathrm{M} \equiv 71^{13}(\bmod 77)=15$

UTID

Why does RSA work?

- Need to show that $\left(M^{e}\right)^{d}(\bmod n)=M, n=p q$
- We have shown that when $M \in Z_{p q}{ }^{*}$, i.e., $\operatorname{gcd}(M, n)=1$, then $\mathrm{M}^{e d} \equiv \mathrm{M} \quad(\bmod \mathrm{n})$
- What if $M \in Z_{p q}-\{0\}-Z_{p q}{ }^{*}$, e.g., $\operatorname{gcd}(M, n)=p$.
$-\mathrm{ed} \equiv 1(\bmod \Phi(n))$, so $\mathrm{ed}=\mathrm{k} \Phi(n)+1$, for some integer k .
$-M^{\text {ed }} \bmod p=(M \bmod p)^{\text {ed }} \bmod p=0$
so $\mathrm{Med}^{\text {ed }} \equiv \mathrm{M} \bmod \mathrm{p}$
$-M^{\text {ed }} \bmod q=\left(M^{k^{*} \Phi(n)} \bmod q\right)(M \bmod q)=M \operatorname{modq}$ so $\mathrm{M}^{\text {ed }} \equiv \mathrm{M} \bmod \mathrm{q}$
- As p and q are distinct primes, it follows from the CRT that $\mathrm{M}^{\text {ed }} \equiv \mathrm{M}$ mod pq

UTD Square and Multiply Algorithm for Exponentiation

- Computing (x) ${ }^{c} \bmod n$
- Example: suppose that $\mathrm{C=}=53=110101$
$\left.\left.-x^{53}=\left(x^{26}\right)^{2} \cdot x=\left(\left(\left(x^{3}\right)^{2}\right)^{2} \cdot x\right)^{2}\right)^{2} \cdot x=\left(\left(\left(x^{2} \cdot x\right)^{2}\right)^{2} \cdot x\right)^{2}\right)^{2} \cdot x$ $\bmod n$

Alg: Square-and-multiply ($\mathrm{x}, \mathrm{n}, \mathrm{c}=\mathrm{c}_{\mathrm{k}-1} \mathrm{c}_{\mathrm{k}-2} \ldots \mathrm{c}_{1} \mathrm{c}_{0}$)
z=1
for $\mathrm{i} \leftarrow \mathrm{k}$-1 downto 0 \{
$\mathrm{z} \leftarrow \mathrm{z}^{2} \bmod \mathrm{n}$ if $\mathrm{c}_{\mathrm{i}}=1$ then $\mathrm{z} \leftarrow(\mathrm{z} \times \mathrm{x}) \bmod \mathrm{n}$
\}
return z

UT D Efficiency of computation modulo n

- Suppose that n is a k -bit number, and $0 \leq$ $\mathrm{x}, \mathrm{y} \leq \mathrm{n}$
- computing ($\mathrm{x}+\mathrm{y}$) mod n takes time $\mathrm{O}(\mathrm{k})$
- computing ($x-y$) mod n takes time $O(k)$
- computing (xy) mod n takes time $\mathrm{O}\left(\mathrm{k}^{2}\right)$
- computing (x^{-1}) mod n takes time $\mathrm{O}\left(\mathrm{k}^{3}\right)$
- computing $(x)^{c}$ mod n takes time $O\left((\log c) k^{2}\right)$

UTID

RSA Implementation

$\mathrm{n}, \mathrm{p}, \mathrm{q}$

- The security of RSA depends on how large n is, which is often measured in the number of bits for n. Current recommendation is 1024 bits for n.
- p and q should have the same bit length, so for 1024 bits RSA, p and q should be about 512 bits.
- P or q should not be small!

UTID

RSA Implementation

- Select p and q prime numbers
- In general, select numbers, then test for primality

- Many implementations use the Rabin-Miller test, (probabilistic test)

Next ...

- Finding large prime numbers
- Attacks on RSA
- Factoring

