UTID

Semantic Security of RSA

Murat Kantarcioglu

UTID

Semantic Security

- As before our goal is to come up with a public key system that protects against more than "total break"
- We want our system to be secure against
- "total break" (i.e., can recover the private key)
- "partial break" (i.e., can decrypt messages without knowing the key)
- Also we want adversary to not to distinguish between any given ciphertexts!

UTD Semantic Security (IND-CPA for Public Key Encryption)

- The IND-CPA game

Challenger
Adversary
picks a random key
pair ($\mathrm{K}, \mathrm{K}^{-1}$), and picks
random $b \in\{0,1\}$

Attacker wins game if $b=b$ '

UTID

Semantic Insecurity of the RSA

- RSA encryption is not semantically secure because it is deterministic
- The encryption function $f(x)=x^{e}$ mod n leaks information about x!
- it leaks the Jacobi symbol of x

$$
\left(\frac{x^{e}}{N}\right)=\left(\frac{x^{e}}{p}\right)\left(\frac{x^{e}}{q}\right)=\left(\frac{x}{p}\right)\left(\frac{x}{q}\right)=\left(\frac{x}{N}\right)
$$

- it also leaks the whether x is a QR or not, but this is not a concern, why?

UT|D

Partial Information Related to RSA function

- RSA does not leak certain type of partial information
- Given $\mathrm{y}=\mathrm{x}^{\mathrm{e}}$ mod n , computing the parity(y) (i.e. parity $(y)=0$ if x is even parity $(y)=1$ if x is odd) is equivalent to inverting RSA.
- Given $\mathrm{y}=\mathrm{x}^{\mathrm{e}} \bmod \mathrm{n}$, computing half(y) (i.e., half(y) $=0$ if $0 \leq x<N / 2$ and half(y) $=1$ if $n / 2<$ $x \leq n-1$) is equivalent to inverting RSA.

UTD
 Reduction of half() to inverting RSA

- Note that for $\operatorname{RSA} E_{K}\left(x_{1}\right) E_{K}\left(x_{2}\right)=x_{1}{ }^{e} \cdot x_{2}{ }^{e} \bmod n=E_{K}\left(x_{1} \cdot x_{2}\right)$
- Also note that
- half $\left(y . E_{k}\left(2^{i}\right) \bmod n\right)=h a l f\left(E_{k}\left(x .2^{i}\right)\right)$
- Observe that half $\left(\mathrm{E}_{\mathrm{k}}(2 \mathrm{x})\right)=0$ iff $\mathrm{x} \in[0, \mathrm{n} / 4) \mathrm{U}$ [n/2, 3n/4) (why?)
- Using this idea, we can create an algorithm for inverting RSA

UTID

Oracle RSA Decryption Using Half()

```
\(\mathrm{k} \leftarrow\left\lfloor\log _{2}(\mathrm{n})\right\rfloor\)
for \(\mathrm{i} \leftarrow 0\) to \(\mathrm{k}\{\)
        \(\mathrm{h}_{\mathrm{i}} \leftarrow \operatorname{half}(\mathrm{n}, \mathrm{e}, \mathrm{y}) ; \mathrm{y} \leftarrow \mathrm{y} .2^{\mathrm{e}} \bmod \mathrm{n}\)
        \}
    \(\mathrm{lo} \leftarrow 0\); hi \(\leftarrow \mathrm{n}\)
    for \(\mathrm{i} \leftarrow 0\) to \(\mathrm{k}\{\)
        mid \(\leftarrow(\mathrm{hi}+\mathrm{lo}) / 2\);
        if \(\left(\mathrm{h}_{\mathrm{i}}=1\right.\) ) then lo \(\leftarrow\) mid else \(\mathrm{hi} \leftarrow\) mid
\}
return \(\lfloor\) hi \(\rfloor\)
```


Example

- Consider $\mathrm{n}=1457 \mathrm{e}=779$, ciphertext $\mathrm{y}=722$
- Assume half() returns the following h_{i} values
- $\mathrm{h}_{0}=1, \mathrm{~h}_{1}=0, \mathrm{~h}_{2}=1, \mathrm{~h}_{3}=0, \mathrm{~h}_{4}=1, \mathrm{~h}_{5}=1, \mathrm{~h}_{6}=1$ $h_{7}=1, h_{8}=1, h_{9}=0, h_{10}=0$
- Following the algorithm will find the plaintext as 999.

UTID

Parity()

- Similar ideas work for the parity() function as well. Note that

$$
\begin{aligned}
& \text { half }(y)=\text { parity }\left(y \cdot E_{k}(2) \bmod n\right) \\
& \text { parity }(y)=\text { half }\left(y \cdot E_{k}\left(2^{-1}\right) \bmod n\right)
\end{aligned}
$$

UTD The Goldwasser-Micali Probablistic Encryption Scheme

- First provably semantically secure public key encryption scheme, security based on the hardness of determining whether a number x is a QR modulo n , when the factoring of n is unknown and the Jacobi symbol $\left(\frac{x}{n}\right)$ is 1
- Encryption is bit by bit
- For each bit in the plaintext, the ciphertext is one number in $Z_{n}{ }^{*}$, expansion factor is 1024 when using 1024 moduli

The Goldwasser-Micali Probablistic Encryption Scheme

- Key generation
- randomly choose two large equal-size prime number p and q, pick a random integer y such that

$$
\left(\frac{y}{p}\right)=\left(\frac{y}{q}\right)=-1
$$

- public key is ($n=p q, y$)
- private key is (p, q)
- Encryption
- to encrypt one bit b, pick a random x in $\mathrm{Z}_{\mathrm{n}}{ }^{*}$, and let $\mathrm{C}=\mathrm{x}^{2} \mathrm{y}^{\text {b }}$
- that is, $C=x^{2}$ when $b=0$, and $C=x^{2} y$ when $b=1$

UTD

The Goldwasser-Micali Probablistic Encryption Scheme

- Consider the Jacobi symbol of the ciphertext C

$$
\left(\frac{x^{2}}{n}\right)=\left(\frac{x^{2}}{p}\right)\left(\frac{x^{2}}{q}\right)=1 \bullet 1=1 \quad\left(\frac{y x^{2}}{n}\right)=\left(\frac{y x^{2}}{p}\right)\left(\frac{y x^{2}}{q}\right)=-1 \bullet-1=1
$$

- Consider whether the ciphertext C is QR modulo n
- C is QR iff. the plaintext bit b is 0
- Decryption:
- knowing p and q s.t. $n=p q$, one can determine whether x is $Q R$ modulo n and thus retrieves the plaintext (how?)

UTID Cost of Semantic Security in Public Key Encryption

- In order to have semantic security, some expansion is necessary
- i.e., the ciphertext must be larger than its corresponding plaintext (why?)
- the Goldwasser-Micali encryption scheme generate ciphertexts of size 1024m
- suppose that all plaintexts have size m, what is the minimal size of ciphertexts to have an adequate level of security (e.g., takes 2^{t} to break the semantic security)?

UT D A Padding Scheme for Semantically Secure Public-key Encryption

- Padding Scheme 1: given a public-key encryption scheme E,
- to encrypt x, generates a random r, the ciphertext is $(f(r), H(r) \oplus x)$, where H is a cryptographic hash function
- to decrypt $\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)$, one compute $\mathrm{H}\left(\mathbf{f}^{-1}\left(\mathrm{y}_{1}\right)\right) \oplus \mathrm{y}_{2}$
- requires an extra random number generation and an XOR operation for each bit

UTID
 Example of the Padding

 Scheme- Example of the Padding Scheme for RSA
- Public key: (n,e),
- The ciphertext for x is $\left(r^{e} \bmod n, x \oplus H(r)\right)$
- To decrypt a ciphertext $\left(y_{1}, y_{2}\right)$, compute $r=$ $y_{1}{ }^{d} \bmod n$, and $x=y_{2} \oplus H(r)$
- To encrypt a 128-bit message, the ciphertext has 1024+128 bits

UTID Why is This Padding Scheme Secure?

This padding scheme is provably IND-CPA secure, when H is modeled as a random oracle (i.e., H is a random function) and \mathbf{f} is a trapdoor one-way permutation

- to learn any information about x from $(f(r), x \oplus H(r))$, one has to learn some information about $\mathrm{H}(\mathrm{r})$
- as H is a random function, the only way to learn any information about $\mathrm{H}(\mathrm{r})$ is to evaluate H at the point r
- an adversary who can learn anything about x thus knows r
- the adversary can thus invert f

UTID

Random Oracle Model

- Random Oracle Model
- Use hash function H in your design
- Give security proofs assuming that H is a random function. Replace H with some cryptographic hash function in practice.
- Random Oracle Assumption is
- not valid in general
- feasible and efficient in practice

UTID

Proof Sketch

- Assuming the existence of algorithm D() that can distinguish between the two ciphertexts with probability $0.5+\epsilon$ with at most q query queries to random oracle, we will show that we can define an algorithm that can invert given trapdoor function f with probability at least ϵ.
- In other words, if f is a secure trapdoor function then above scheme is secure in the random oracle model.

UTID

Proof Sketch

- Consider the following simulator $\operatorname{simH}()$ for random oracle H() . Given the $\mathrm{y}=\mathrm{f}(\mathrm{x})$ that we want to invert, random y_{2}, two plaintexts $\mathrm{x}_{1}, \mathrm{x}_{2}$
- $\operatorname{SimH}(r)\{$
if r is queried before in the $\mathrm{i}^{\text {th }}$ query then return Glist[$[\mathrm{i}$;
else \{
if $f(r)=y$ then $\{$

$$
\left.\mathrm{g} \leftarrow \mathrm{y}_{2} \oplus \mathrm{x}_{\mathrm{j}} \text { for random } \mathrm{j} \in\{1,2\} ;\right\}
$$

else \{
$g \leftarrow r$ for some random $r ;\}$
$\mathrm{I} \leftarrow \mathrm{I}+1$; Glist[l] \leftarrow g; Rlist[l] $\leftarrow \mathrm{r}$; \}
return g
\}

UTID

Proof Sketch

Invert(y)
\{
$y_{1} \leftarrow y ; y_{2} \leftarrow r$ for random r;
Run $\mathrm{D}\left(\mathrm{x}_{1}, \mathrm{x}_{2},\left(\mathrm{y}_{1}, \mathrm{y}_{2}\right)\right)$ for arbitrary $\mathrm{x}_{1} \neq \mathrm{x}_{2}$
Answer D's queries to H using simH() until D stops.
if $f($ Rlist $[i])=y$ for some i then return Rlist[i]
\}

UTID

Proof Sketch

- Let us compute the success probability of invert(y) given that $D()$ is successful with at least probabiliy $0.5+\epsilon$
$\operatorname{Pr}[\mathrm{D}()$ succeeds $]=$

$$
\begin{aligned}
& \operatorname{Pr}\left[\mathrm{D}() \text { succeeds } \mid \mathrm{f}^{-1}(\mathrm{y}) \in \text { Rlist }\right] \cdot \operatorname{Pr}\left[\mathrm{f}^{-1}(\mathrm{y}) \in \text { Rlist }\right]+ \\
& \operatorname{Pr}\left[\mathrm{D}() \text { succeeds } \mid \mathrm{f}^{-1}(\mathrm{y}) \notin \text { Rlist }\right] \cdot \operatorname{Pr}\left[\mathrm{f}^{-1}(\mathrm{y}) \notin \text { Rlist }\right] \\
\leq & \operatorname{Pr}\left[\mathrm{f}^{-1}(\mathrm{y}) \in \text { Rlist }\right]+0.5 \operatorname{Pr}\left[\mathrm{f}^{-1}(\mathrm{y}) \notin \text { Rlist }\right] \\
\leq & \operatorname{Pr}\left[\mathrm{f}^{-1}(\mathrm{y}) \in \text { Rlist }\right]+0.5 \\
\leq & \operatorname{Pr}[\text { inverse }(\mathrm{y}) \text { succeed } \mathrm{s}]+0.5
\end{aligned}
$$

UTID

Proof Sketch

- If Distinguish algorithm $D()$ runs with time t_{1} using at most q random oracle queries, $f()$ requires t_{2} then Inverse() runs with time $\mathrm{t}_{1}+\mathrm{O}\left(\mathrm{q}^{2}+\mathrm{qt}_{2}\right)$
- Note Inverse()
- calls f function O(q) times
- calls Distinguish function once
- each call to $\operatorname{simh}()$ may require search over list size O (q)

UTID

OAEP

- M. Bellare and P. Rogaway, Optimal asymmetric encryption, Advances in Cryptology - Eurocrypt '94, Springer-Verlag (1994), 92-111.
- [Optimal Asymmetric Encryption Padding (OAEP)]: method for encoding messages.
- Uses one trapdoor permutation functions f and two hash functions: $\mathrm{H}:\{0,1\}^{\mathrm{m}} \rightarrow\{0,1\}^{\mathrm{t}}$ and $\mathrm{G}:\{0,1\}^{\mathrm{t}} \rightarrow\{0,1\}^{\mathrm{m}}$
- To encrypt $x \in\{0,1\}^{m}$, chooses random $r \in\{0,1\}^{t}$ and computes $f[x \oplus G(r) \| r \oplus H(x \oplus G(r))]$
- How to decrypt given y?
- Security intuitions?

UTID

OAEP (cont.)

- OAEP: $f[\mathrm{x} \oplus \mathrm{G}(\mathrm{r})|\mid \mathrm{r} \oplus \mathrm{H}(\mathrm{x} \oplus \mathrm{G}(\mathrm{r}))]$
$-H:\{0,1\}^{\mathrm{m}} \rightarrow\{0,1\}^{\mathrm{t}}$ and $\mathrm{G}:\{0,1\}^{\mathrm{t}} \rightarrow\{0,1\}^{\mathrm{m}}$
- OAEP is provably IND-CPA secure when H and G are modeled as random oracles and f is a trapdoor one-way permutation.
- A ciphertext has size n (≈ 1024 for RSA)
- The padding size t should be s.t. 2^{t} computing time is infeasible, why?
- $\mathrm{t} \approx 128$
- The plaintext size m can be up to $1024-128=896$
- Expansion is optimal

