
4/1/2008

1

Semantic Security of RSA

Murat Kantarcioglu

Semantic Security

• As before our goal is to come up with a
public key system that protects against
more than “total break”
– We want our system to be secure against

• “total break” (i.e., can recover the private key)
• “partial break” (i.e., can decrypt messages without

knowing the key)

– Also we want adversary to not to distinguish
between any given ciphertexts!

4/1/2008

2

3

Semantic Security (IND-CPA
for Public Key Encryption)

• The IND-CPA game
Challenger Adversary

picks a random key
pair (K, K-1), and picks

random b∈{0,1}

picks M0, M1 of equal lengthM0, M1

K

b’ ∈{0,1}

Attacker wins game if b=b’

C = EK[Mb]

4

Semantic Insecurity of the RSA

• RSA encryption is not semantically secure because it
is deterministic

• The encryption function f(x)=xe mod n leaks information
about x !
– it leaks the Jacobi symbol of x

– it also leaks the whether x is a QR or not, but this is not a
concern, why?

�
�

�
�
�

�=��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�

N

x

q

x

p

x

q

x

p

x

N

x eee

4/1/2008

3

Partial Information Related to
RSA function

• RSA does not leak certain type of partial
information

• Given y=xe mod n, computing the parity(y)
(i.e. parity(y)=0 if x is even parity(y)=1 if x
is odd) is equivalent to inverting RSA.

• Given y=xe mod n, computing half(y) (i.e.,
half(y)=0 if 0�X < N/2 and half(y)=1 if n/2<
x �n-1) is equivalent to inverting RSA.

Reduction of half() to
inverting RSA

• Note that for RSA
• Also note that

– half(y.Ek(2i) mod n)=half(Ek(x.2i))

• Observe that half(Ek(2x))=0 iff x � [0,n/4) U
[n/2, 3n/4) (why?)

• Using this idea, we can create an algorithm
for inverting RSA

).(mod.)()(212121 xxEnxxxExE K
ee

KK ==

4/1/2008

4

Oracle RSA Decryption
Using Half()

� �

� �hireturn
}

mid hi else mid lo then 1)(h if
lo)/2;(hi mid

{k to0 ifor
n hi 0;lo

}
n mod y.2y y);e,half(n, h

{k to0 ifor
(n)logk

i

e
i

2

←←=
+←

←
←←

←←
←

←

Example

• Consider n=1457 e=779, ciphertext y=722
• Assume half() returns the following hi

values
• h0=1, h1 =0, h2=1,h3=0,h4=1,h5=1,h6=1

h7=1, h8=1, h9= 0, h10 =0
• Following the algorithm will find the

plaintext as 999.

4/1/2008

5

Parity()

• Similar ideas work for the parity() function
as well. Note that

)mod)2(.()(
)mod)2(.()(

1 nEyhalfyparity

nEyparityyhalf

k

k

−=

=

10

The Goldwasser-Micali Probablistic
Encryption Scheme

• First provably semantically secure public key encryption
scheme, security based on the hardness of determining
whether a number x is a QR modulo n, when the
factoring of n is unknown and the Jacobi symbol is 1

• Encryption is bit by bit

• For each bit in the plaintext, the ciphertext is one
number in Zn*, expansion factor is 1024 when using
1024 moduli

�
�

�
�
�

�

n

x

4/1/2008

6

11

The Goldwasser-Micali Probablistic
Encryption Scheme

• Key generation
– randomly choose two large equal-size prime number p and q,

pick a random integer y such that

– public key is (n=pq, y)
– private key is (p,q)

• Encryption
– to encrypt one bit b, pick a random x in Zn*, and let C=x2yb

– that is, C=x2 when b=0, and C=x2y when b=1

1−=��
�

�
��
�

�
=��

�

�
��
�

�

q

y

p

y

12

The Goldwasser-Micali Probablistic
Encryption Scheme

• Consider the Jacobi symbol of the ciphertext C

• Consider whether the ciphertext C is QR modulo n
– C is QR iff. the plaintext bit b is 0

• Decryption:
– knowing p and q s.t. n=pq, one can determine whether x is QR

modulo n and thus retrieves the plaintext (how?)

111
222

=•=��
�

�
��
�

�
��
�

�
��
�

�
=��
�

�
��
�

�

q

x

p

x

n

x
111

222

=−•−=��
�

�
��
�

�
��
�

�
��
�

�
=��

�

�
��
�

�

q

yx

p

yx

n

yx

4/1/2008

7

13

Cost of Semantic Security in
Public Key Encryption

• In order to have semantic security, some
expansion is necessary
– i.e., the ciphertext must be larger than its

corresponding plaintext (why?)

– the Goldwasser-Micali encryption scheme
generate ciphertexts of size 1024m

– suppose that all plaintexts have size m, what
is the minimal size of ciphertexts to have an
adequate level of security (e.g., takes 2t to
break the semantic security)?

14

A Padding Scheme for Semantically
Secure Public-key Encryption

• Padding Scheme 1: given a public-key
encryption scheme E,
– to encrypt x, generates a random r, the

ciphertext is (f(r), H(r)⊕x) , where H is a
cryptographic hash function

– to decrypt (y1,y2), one compute H(f-1 (y1))⊕y2

– requires an extra random number generation
and an XOR operation for each bit

4/1/2008

8

15

Example of the Padding
Scheme

• Example of the Padding Scheme for RSA
– Public key: (n,e),

– The ciphertext for x is (re mod n, x⊕H(r))

– To decrypt a ciphertext (y1, y2), compute r=
y1

d mod n, and x= y2⊕H(r)

– To encrypt a 128-bit message, the ciphertext
has 1024+128 bits

16

Why is This Padding Scheme
Secure?

• This padding scheme is provably IND-CPA secure, when
H is modeled as a random oracle (i.e., H is a random
function) and f is a trapdoor one-way permutation
– to learn any information about x from (f(r), x⊕H(r)), one

has to learn some information about H(r)
– as H is a random function, the only way to learn any

information about H(r) is to evaluate H at the point r
– an adversary who can learn anything about x thus

knows r
– the adversary can thus invert f

4/1/2008

9

Random Oracle Model

• Random Oracle Model

– Use hash function H in your design

– Give security proofs assuming that H is a
random function. Replace H with some
cryptographic hash function in practice.

• Random Oracle Assumption is
– not valid in general
– feasible and efficient in practice

Proof Sketch

• Assuming the existence of algorithm D() that can
distinguish between the two ciphertexts with
probability 0.5 + � with at most q query queries to
random oracle, we will show that we can define an
algorithm that can invert given trapdoor function f
with probability at least �.

• In other words, if f is a secure trapdoor function
then above scheme is secure in the random
oracle model.

4/1/2008

10

Proof Sketch

• Consider the following simulator simH() for random oracle H().
Given the y=f(x) that we want to invert, random y2 , two
plaintexts x1, x2

• SimH(r){
if r is queried before in the ith query then return Glist[i] ;
else {

if f(r)=y then {
g � y2� xj for random j�{1,2}; }

else {
g� r for some random r; }

l � l+1; Glist[l] �g; Rlist[l] �r; }

return g
}

Proof Sketch

Invert(y)
{

y1�y; y2 �r for random r;
Run D(x1,x2,(y1,y2)) for arbitrary x1�x2

Answer D’s queries to H using simH() until
D stops.
if f(Rlist[i])=y for some i then return Rlist[i]

}

4/1/2008

11

Proof Sketch

• Let us compute the success probability of invert(y) given
that D() is successful with at least probabiliy 0.5+ �

0.5s](y)succeedPr[inverse
 0.5Rlist](y)Pr[f

Rlist](y)Pr[f 0.5Rlist](y)Pr[f
Rlist](y)fRlist].Pr[(y)f |succeeds Pr[D()
Rlist](y)fRlist].Pr[(y)f |succeeds Pr[D()

succeeds] Pr[D()

1-

1-1-

1-1-

1-1-

+≤
+∈≤

∉+∈≤
∉∉

+∈∈
=

Proof Sketch

• If Distinguish algorithm D() runs with time
t1 using at most q random oracle queries,
f() requires t2 then Inverse() runs with time
t1 +O(q2 +qt2)

• Note Inverse()
– calls f function O(q) times

– calls Distinguish function once

– each call to simh() may require search over
list size O(q)

4/1/2008

12

23

OAEP
• M. Bellare and P. Rogaway, Optimal asymmetric

encryption, Advances in Cryptology - Eurocrypt '94,
Springer-Verlag (1994), 92-111.

• [Optimal Asymmetric Encryption Padding (OAEP)]:
method for encoding messages.

• Uses one trapdoor permutation functions f and two hash
functions: H: {0,1}m→{0,1}t and G: {0,1}t→{0,1}m

• To encrypt x∈{0,1}m, chooses random r∈{0,1}t and
computes f[x⊕G(r) || r⊕H(x⊕G(r))]

• How to decrypt given y?
• Security intuitions?

24

OAEP (cont.)

• OAEP: f[x⊕G(r) || r⊕H(x⊕G(r))]
– H: {0,1}m→{0,1}t and G: {0,1}t→{0,1}m

• OAEP is provably IND-CPA secure when H and G
are modeled as random oracles and f is a trapdoor
one-way permutation.

• A ciphertext has size n (≈1024 for RSA)
• The padding size t should be s.t. 2t computing time

is infeasible, why?
– t ≈128

• The plaintext size m can be up to 1024-128=896
• Expansion is optimal

