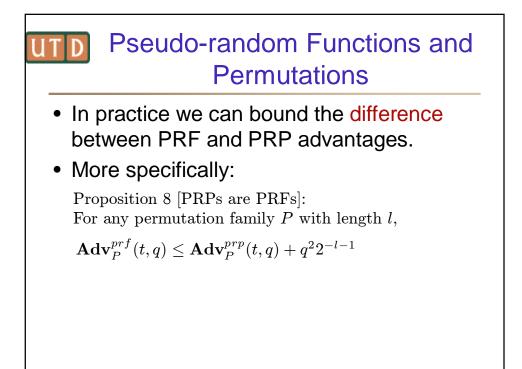


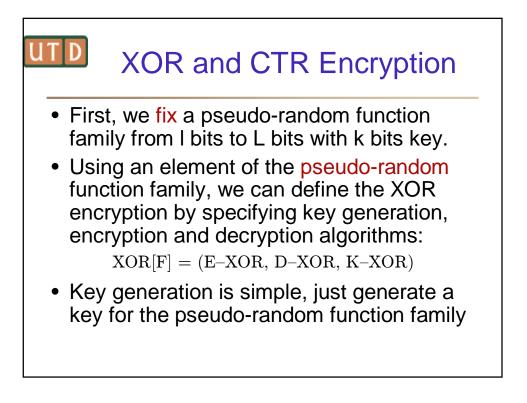
TD Pseudo-random Functions and Permutations

• Now consider the best possible performance of a distinguisher.

$$\begin{aligned} \mathbf{Adv}_{F}^{prf}(t,q) &= max\{\mathbf{Adv}_{F,D_{fn}}^{prf}\} \\ \mathbf{Adv}_{P}^{prp}(t,q) &= \max_{D_{pn}}^{D_{fn}}\{\mathbf{Adv}_{P,D_{pn}}^{prp}\} \end{aligned}$$

• We informally say a block-cipher is secure if the best possible advantage of a distinguisher is low under reasonable time and query constraints

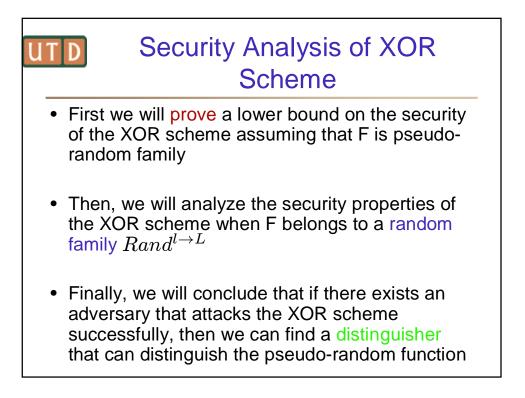




XOR Encryption/Decryption

function E-XOR^f(x) $\mathbf{r} \leftarrow \{0, 1\}^l$ for i=1,...,n do $\mathbf{y}_i = f(r+i) \oplus x_i$ return $\mathbf{r} || y_1 y_2 ... y_n$

> function D-XOR^f(z) Parse z as $\mathbf{r} || y_1 y_2 ... y_n$ for i=1,...,n do $\mathbf{x}_i = f(r+i) \oplus y_i$ return $\mathbf{x} = \mathbf{x}_1 x_2 ... x_n$



Lower Bound on Insecurity

Proposition 9 [Lower bound on insecurity of XOR using a random function]: Suppose $R = Rand^{l \leftarrow L}$. Then, for any q_e, μ_e such that $\mu_e q_e/L \leq 2^l$,

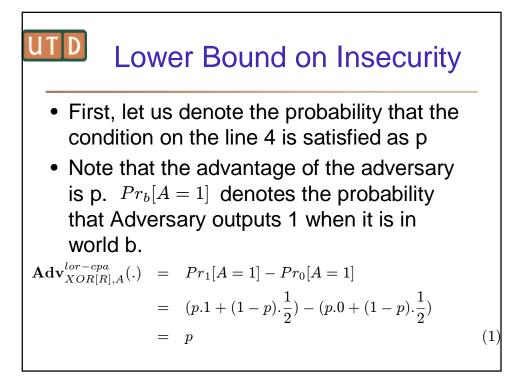
 $\mathbf{Adv}_{XOR[R]}^{lor-cpa}(.,t,q_e,\mu_e) \ge 0.316.\frac{\mu_e.(q_e-1)}{L.2^l}.$

Lower Bound on Insecurity

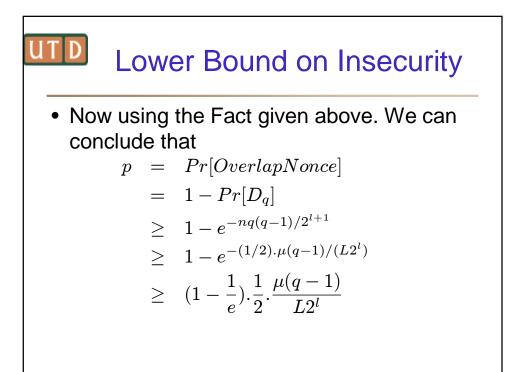
• To prove the claim, we specify an adversary:

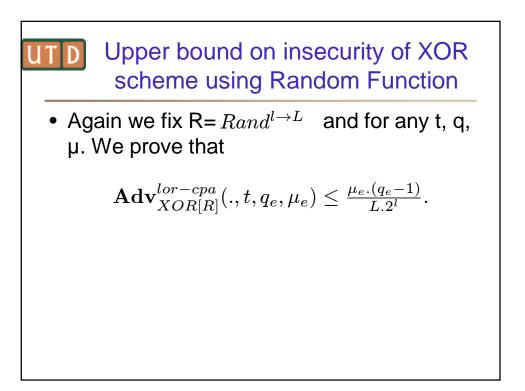
Algorithm $A^{\mathcal{O}(\cdot,\cdot)}(k)$

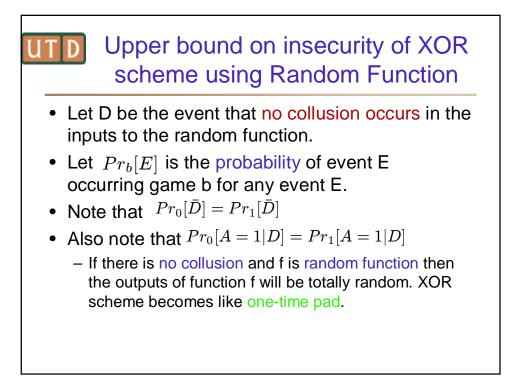
- (1) Let $n = \mu/(Lq)$. (This will be the number of blocks in all queried messages.)
- (2) Choose messages N_1, \ldots, N_q , all *n* blocks long, such that $N_i[k] \neq N_j[k']$ for all $i, j = 1, \ldots, q$ and $k, k' = 1, \ldots, n$ satisfying $(i, k) \neq (j, k')$. (For example, set $N_i[k]$ to the *L*-bit binary encoding of the integer n(i-1) + k for $i = 1, \ldots, q$ and $k = 1, \ldots, n$.)
- (3) For $i = 1, \ldots, q$ do: $(r_i, y_i[1] \ldots y_i[n]) \leftarrow \mathcal{O}(0^{n l}, N_i)$. We call r_i the *i*'th nonce.
- (4) If there is some $i \neq j$ that $|r_i r_j| < n$ (treat r_i, r_j as integers here!) then determine the values $k, k' \in \{1, \ldots, n\}$ such that $r_i + k = r_j + k'$. Output \bigcirc if $y_i[k] = y_j[k']$ and \bigcirc otherwise.
- (5) If there is no $i \neq j$ that $|r_i r_j| < n$, output a coin flip.

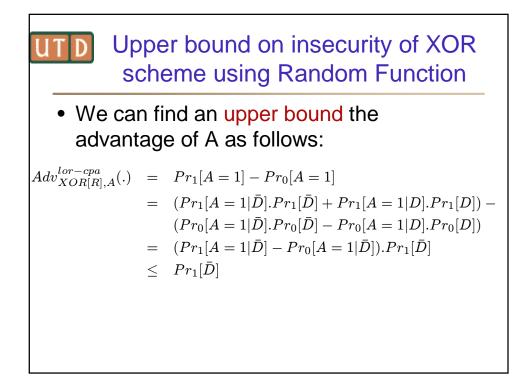


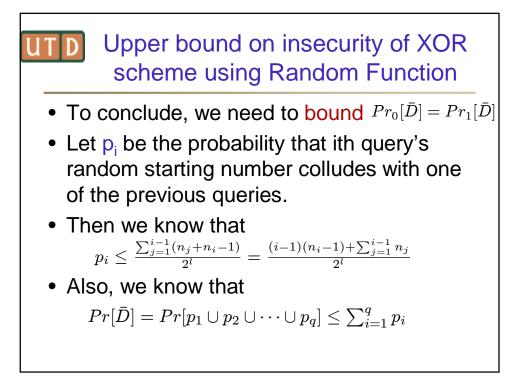
• Use the set of the probability D_i that ith query does not cause any overlap. • $Pr[D_{i+1}|D_i] \le \frac{2^l - in}{2^l} = 1 - \frac{in}{2^l}.$ • Fact For any real number x with $0 \le x \le 1$ we have $(1 - e^{-1})x \le 1 - e^{-x} \le x$ • Let us calculate an upper bound on prob. that no query overlaps. $Pr[D_q] = \prod_{i=1}^{q-1} Pr[D_{i+1}|D_i] \le \prod_{i=1}^{q-1} (1 - \frac{in}{2^l}) \le \prod_{i=1}^{q-1} e^{-in/2^l} = e^{-nq(q-1)/2^{l+1}}$

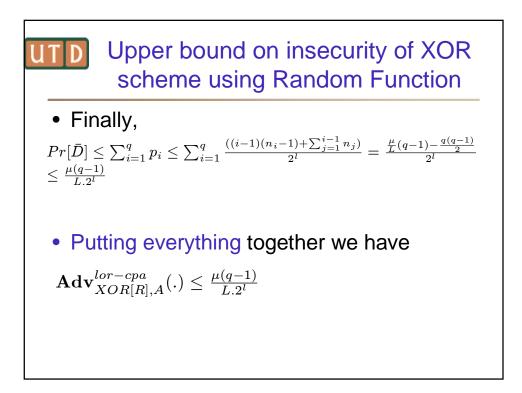


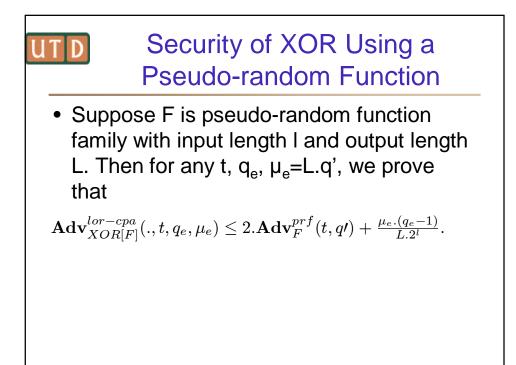


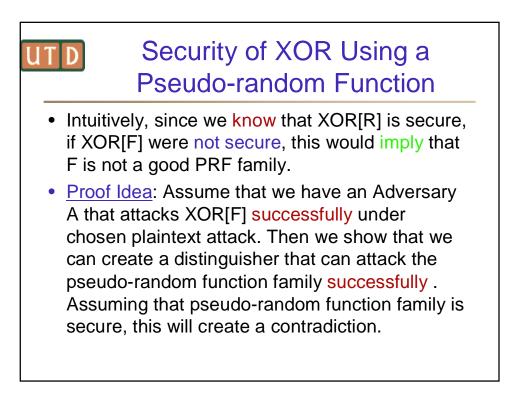


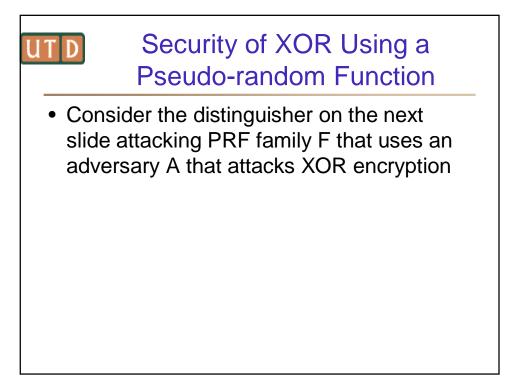












Security of XOR Using a Pseudo-random Function

Algorithm $D^{f}(k)$ (1) $b \leftarrow \{0,1\}$. (This represents a choice to play either left or right oracle for A.) (2) Run A, responding to its oracle queries as follows. When A makes an oracle query (M_1, M_2) , let $z \leftarrow \varepsilon - XOR^{f}(M_b)$, and return z to A as the answer to the oracle query. (It is important here that D can implement the encryption function given an oracle for f.) (3) Eventually A stops and outputs a guess d to indicate whether it thought its oracle was the left oracle or the right oracle. If d = b then output 1, else output 0.

