
Query Optimization in
Oracle Database10g Release 2

An Oracle White Paper
June 2005

Query Optimization in Oracle Database 10g Release 2

Executive Overview..4
Introduction...4

What is a query optimizer? ...4
What does Oracle provide for query optimization?4

SQL Transformations..6
Heuristic query transformations..6

Simple view merging...6
Complex view merging...7
Subquery “flattening”..7
Transitive predicate generation...9
Common subexpression elimination...9
Predicate pushdown and pullup..9
Group pruning for “CUBE” queries...10
Outer-join to inner join conversion...11

Cost-based query transformations...11
Materialized view rewrite..11
OR-expansion..12
Star transformation..12
Predicate pushdown for outer-joined views..................................14

Access path selection...14
Join ordering..15

Adaptive search strategy..15
Multiple initial orderings heuristic..16

Bitmap indexes..16
Bitmap join indexes...18
Domain indexes and extensibility...18
Fast full index scans..18
Index joins ..19
Index skip scans ...19
Partition optimizations..19
Partition-wise joins, GROUP-BY’s and sorts...................................20
Sort elimination...20
OLAP optimizations..20
Parallel execution..21
Hints..21

Cost Model and Statistics..22
Optimizer statistics..22

Query Optimization in Oracle Database 10g Release 2 Page 2

Object-level statistics...23
System statistics...23
User-defined statistics...23

Statistics management...23
Automatic statistic gathering...24
Parallel sampling ..24
Monitoring...24
Automatic histogram determination..25

Dynamic sampling...25
Optimization cost modes...26

Dynamic Runtime Optimizations..26
Dynamic degree of parallelism...27
Dynamic memory allocation...27
Database resource manager ..29

Conclusion...29

Query Optimization in Oracle Database 10g Release 2 Page 3

Query Optimization in Oracle Database10g Release 2

EXECUTIVE OVERVIEW

This paper describes Oracle’s query optimizer, a key database component that
enables Oracle’s customers to achieve superior performance. Oracle’s query
optimizer technology is unmatched in the breadth of its functionality, and this
paper provides a detailed discussion of all major areas of query optimization.

INTRODUCTION

What is a query optimizer?

Query optimization is of great importance for the performance of a relational
database, especially for the execution of complex SQL statements. A query
optimizer determines the best strategy for performing each query. The query
optimizer chooses, for example, whether or not to use indexes for a given query,
and which join techniques to use when joining multiple tables. These decisions
have a tremendous effect on SQL performance, and query optimization is a key
technology for every application, from operational systems to data warehouse
and analysis systems to content-management systems.

The query optimizer is entirely transparent to the application and the end-user.
Because applications may generate very complex SQL, query optimizers must be
extremely sophisticated and robust to ensure good performance. For example,
query optimizers transform SQL statements, so that these complex statements
can be transformed into equivalent, but better performing, SQL statements.

Query optimizers are typically ‘cost-based’. In a cost-based optimization
strategy, multiple execution plans are generated for a given query, and then an
estimated cost is computed for each plan. The query optimizer chooses the plan
with the lowest estimated cost.

What does Oracle provide for query optimization?

Oracle’s optimizer is perhaps the most proven optimizer in the industry.
Introduced in 1992 with Oracle7, the cost-based optimizer has been continually
enhanced and improved through almost a decade’s worth of real-world customer
experiences. A good query optimizer is not developed in a laboratory based on
purely theoretical conjectures and assumptions; instead, it is developed and
honed by adapting to actual customer requirements. Oracle’s query optimizer has

Query Optimization in Oracle Database 10g Release 2 Page 4

been used in more database applications than any other query optimizer, and
Oracle’s optimizer has continually benefited from real-world input.

Oracle’s optimizer consists of four major components (each of which is discussed
in more details in subsequent sections of this paper):

SQL transformations: Oracle transforms SQL statements using a variety of
sophisticated techniques during query optimization. The purpose of this
phase of query optimization is to transform the original SQL statement into
a semantically equivalent SQL statement that can be processed more
efficiently.

Execution plan selection: For each SQL statements, the optimizer chooses an
execution plan (which can be viewed using Oracle’s EXPLAIN PLAN
facility or via Oracle’s “v$sql_plan” views). The execution plan describes
all of the steps when the SQL is processed, such as the order in which
tables are accessed, how the tables are joined together and whether tables
are accessed via indexes. The optimizer considers many possible execution
plans for each SQL statement, and chooses the best one.

Cost model and statistics: Oracle’s optimizer relies upon cost estimates for the
individual operations that make up the execution of a SQL statement. In
order for the optimizer to choose the best execution plans, the optimizer
needs the best possible cost estimates. The cost estimates are based upon
in-depth knowledge about the I/O, CPU, and memory resources required by
each query operation, statistical information about the database objects
(tables, indexes, and materialized views), and performance information
regarding the hardware server platform. The process for gathering these
statistics and performance information needs to be both highly efficient
and highly automated.

Dynamic runtime optimization: Not every aspect of SQL execution can be
optimally planned ahead of time. Oracle thus makes dynamic adjustments
to its query-processing strategies based on the current database workload.
The goal of dynamic optimizations is to achieve optimal performance even
when each query may not be able to obtain the ideal amount of CPU or
memory resources.

Oracle additionally has a legacy optimizer, the rule-based optimizer (RBO). This
optimizer exists in Oracle Database 10g Release 2 solely for backwards
compatibility. Beginning with Oracle Database 10g Release 1, the RBO is no
longer supported. The vast majority of Oracle’s customers today use the cost-
based optimizer. All major applications vendors (Oracle Applications, SAP, and
Peoplesoft, to name a few) and the vast majority of recently built custom
applications utilize the cost-based optimizer for enhanced performance, and this
paper describes only the cost-based optimizer.

Query Optimization in Oracle Database 10g Release 2 Page 5

SQL TRANSFORMATIONS

There are many possible ways to express a complex query using SQL. The style
of SQL submitted to the database is typically that which is simplest for the end-
user to write or for the application to generate. However, these hand-written or
machine-generated formulations of queries are not necessarily the most efficient
SQL for executing the queries. For example, queries generated by applications
often have conditions that are extraneous and can be removed. Or, there may be
additional conditions that can be inferred from a query and should be added to
the SQL statement. The purpose of SQL transformations is to transform a given
SQL statement into a semantically-equivalent SQL statement (that is, a SQL
statement which returns the same results) which can provide better performance.

All of these transformations are entirely transparent to the application and end-
users; SQL transformations occur automatically during query optimization.

Oracle has implemented a wide range of SQL transformations. These broadly
fall into two categories:

heuristic query transformations: These transformations are applied to
incoming SQL statements whenever possible. These transformations
always provide equivalent or better query performance, so that Oracle
knows that applying these transformations will not degrade performance.

cost-based query transformations: Oracle uses a cost-based approach for
several classes of query transformations. Using this approach, the
transformed query is compared to the original query, and Oracle’s
optimizer then selects the best execution strategy.

The following sections discuss several examples of Oracle’s transformation
technologies. This is by no means a definitive list, but instead is intended to
provide the reader with an understanding of the key transformation technologies
and their benefits.

Heuristic query transformations

Simple view merging

Perhaps the simplest form of query transformation is view merging. For queries
containing views, the reference to the view can often be removed entirely from
the query by ‘merging’ the view definition with the query. For example, consider
a very simple view and query:

CREATE VIEW TEST_VIEW AS
SELECT ENAME, DNAME, SAL FROM EMP E, DEPT D
WHERE E.DEPTNO = D.DEPTNO;

SELECT ENAME, DNAME FROM TEST_VIEW WHERE SAL > 10000;

Without any query transformations, the only way to process this query is to join
all of the rows of EMP to all of the rows of the DEPT table, and then filter the
rows with the appropriate values for SAL.

Query Optimization in Oracle Database 10g Release 2 Page 6

With view merging, the above query can be transformed into:

SELECT ENAME, DNAME FROM EMP E, DEPT D
WHERE E.DEPTNO = D.DEPTNO
AND E.SAL > 10000;

When processing the transformed query, the predicate ‘SAL>10000’ can be
applied before the join of the EMP and the DEPT tables. This transformation can
vastly improve query performance by reducing the amount of data to be joined.
Even in this very simple example, the benefits and importance of query
transformations is apparent.

Complex view merging

Many view-merging operations are very straightforward, such as the previous
example. However, more complex views, such as views containing GROUP BY
or DISTINCT operators, cannot be as easily merged. Oracle provides several
sophisticated techniques for merging even complex views.

Consider a view with a GROUP BY clause. In this example, the view computes
the average salary for each department:

CREATE VIEW AVG_SAL_VIEW AS
SELECT DEPTNO, AVG(SAL) AVG_SAL_DEPT FROM EMP
GROUP BY DEPTNO

A query to find the average salary for each department in Oakland:

SELECT DEPT.NAME, AVG_SAL_DEPT
FROM DEPT, AVG_SAL_VIEW
WHERE DEPT.DEPTNO = AVG_SAL_VIEW.DEPTNO
AND DEPT.LOC = 'OAKLAND'

can be tranformed into:

SELECT DEPT.NAME, AVG(SAL)
FROM DEPT, EMP
WHERE DEPT.DEPTNO = EMP.DEPTNO
AND DEPT.LOC = 'OAKLAND'
GROUP BY DEPT.ROWID, DEPT.NAME

The performance benefits of this particular transformation are immediately
apparent: instead of having to group all of the data in the EMP table before doing
the join, this transformation allows for the EMP data to be joined and filtered
before being grouped.

Subquery “flattening”

Oracle has a variety of transformations that convert various types of subqueries
into joins, semi-joins, or anti-joins. As an example of the techniques in this area,
consider the following query, which selects those departments that have
employees that make more than 10000:

SELECT D.DNAME FROM DEPT D WHERE D.DEPTNO IN
(SELECT E.DEPTNO FROM EMP E WHERE E.SAL > 10000)

There are a variety of possible execution plans that could be optimal for this
query. Oracle will consider the different possible transformations, and select the
best plan based on cost.

Query Optimization in Oracle Database 10g Release 2 Page 7

Without any transformations, the execution plan for this query would be similar
to:

OPERATION OBJECT_NAME OPTIONS
SELECT STATEMENT
 FILTER
 TABLE ACCESS DEPT FULL
 TABLE ACCESS EMP FULL

With this execution plan, the all of the EMP records satisfying the subquery’s
conditions will be scanned for every single row in the DEPT table. In general,
this is not an efficient execution strategy. However, query transformations can
enable much more efficient plans.

One possible plan for this query is to execute the query as a ‘semi-join’. A ‘semi-
join’ is a special type of join which eliminates duplicate values from the inner
table of the join (which is the proper semantics for this subquery). In this
example, the optimizer has chosen a hash semi-join, although Oracle also
supports sort-merge and nested-loop semi-joins:

OPERATION OBJECT_NAME OPTIONS
SELECT STATEMENT
 HASH JOIN SEMI
 TABLE ACCESS DEPT FULL
 TABLE ACCESS EMP FULL

Since SQL does not have a direct syntax for semi-joins, this transformed query
cannot be expressed using standard SQL. However, the transformed pseudo-SQL
would be:

SELECT DNAME FROM EMP E, DEPT D
WHERE D.DEPTNO <SEMIJOIN> E.DEPTNO
AND E.SAL > 10000;

Another possible plan is that the optimizer could determine that the DEPT table
should be the inner table of the join. In that case, it will execute the query as a
regular join, but perform a unique sort of the EMP table in order to eliminate
duplicate department numbers:

OPERATION OBJECT_NAME OPTIONS
SELECT STATEMENT
 HASH JOIN
 SORT UNIQUE
 TABLE ACCESS EMP FULL
 TABLE ACCESS DEPT FULL

The transformed SQL for this statement would be:

SELECT D.DNAME FROM (SELECT DISTINCT DEPTNO FROM EMP) E, DEPT D
WHERE E.DEPTNO = D.DEPTNO
AND E.SAL > 10000;

Subquery flattening, like view merging, is a fundamental optimization for good
query performance.

Query Optimization in Oracle Database 10g Release 2 Page 8

Transitive predicate generation

In some queries, a predicate on one table can be translated into a predicate on
another table due to the tables' join relationship. Oracle will deduce new
predicates in this way; such predicates are called transitive predicates. For
example, consider a query that seeks to find all of the line-items that were
shipped on the same day as the order data:

SELECT COUNT(DISTINCT O_ORDERKEY) FROM ORDER, LINEITEM
WHERE O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE = L_SHIPDATE
AND O_ORDERDATE BETWEEN '1-JAN-2002' AND '31-JAN-2002'

Using transitivity, the predicate on the ORDER table can also be applied to the
LINEITEM table:

SELECT COUNT(DISTINCT O_ORDERKEY) FROM ORDER, LINEITEM
WHERE O_ORDERKEY = L_ORDERKEY
AND O_ORDERDATE = L_SHIPDATE
AND O_ORDERDATE BETWEEN '1-JAN-2002' AND '31-JAN-2002'
AND L_SHIPDATE BETWEEN '1-JAN-2002' AND '31-JAN-2002'

The existence of new predicates may reduce the amount of data to be joined, or
enable the use of additional indexes.

Common subexpression elimination

When the same subexpression or calculation is used multiple times in a query,
Oracle will only evaluate the expression a single time for each row.

Consider a query to find all employees in Dallas that are either Vice Presidents
or with a salary greater than 100000.

SELECT * FROM EMP, DEPT
WHERE
(EMP.DEPTNO = DEPT.DEPTNO AND LOC = 'DALLAS' AND SAL > 100000)
OR
(EMP.DEPTNO = DEPT.DEPTNO AND LOC = 'DALLAS' AND JOB_TITLE = 'VICE
PRESIDENT')

The optimizer recognizes that the query can be evaluated more efficiently when
transformed into:

SELECT * FROM EMP, DEPT
WHERE EMP.DEPTNO = DEPT.DEPTNO AND
LOC = ‘DALLAS’ AND
(SAL > 100000 OR JOB_TITLE = 'VICE PRESIDENT');

With this transformed query, the join predicate and the predicate on LOC only
need to be evaluated once for each row of DEPT, instead of twice for each row. .

Predicate pushdown and pullup

A complex query may contain multiple views and subqueries, with many
predicates that are applied to these views and subqueries. Oracle can move
predicates into and out of views in order to generate new, better performing
queries.

Query Optimization in Oracle Database 10g Release 2 Page 9

A single-table view can be used to illustrate predicate push-down:

CREATE VIEW EMP_AGG AS
 SELECT
 DEPTNO,
 AVG(SAL) AVG_SAL,
 FROM EMP
 GROUP BY DEPTNO;

Now suppose the following query is executed:

SELECT DEPTNO, AVG_SAL FROM EMP_AGG WHERE DEPTNO = 10;

Oracle will ‘push’ the predicate DEPTNO=10 into the view, and transform the
query into the following SQL:

SELECT DEPTNO, AVG(SAL)5 FROM EMP WHERE DEPTNO = 10
GROUP BY DEPTNO;

The advantage of this transformed query is that the DEPTNO=10 predicate is
applied before the GROUP-BY operation, and this could vastly reduce the
amount of data to be aggregated.

Oracle has many other sophisticated techniques for pushing WHERE-clause
conditions into a query block from outside, pulling conditions out of a query
block, and moving conditions sideways between query blocks that are joined.
Anytime a WHERE-clause condition can be propagated, it may open
opportunities to filter out rows and reduce the size of data set to be processed at
an earlier stage. Hence, subsequent operations, like joins or GROUP-BYs, can
be applied to much smaller data sets and be performed more efficiently.
Additionally, predicate pushdown and pullup may also improve performance by
enabling new access paths that may not have been possible without the addition
of new predicates.

Group pruning for “CUBE” queries

The SQL CUBE expression is an extension to the SQL group-by operator, which
allows multiple aggregations to be retrieved in a single SQL statement. For
queries containing views with CUBE expressions, it is sometimes possible to
reduce the amount of data which is needed to evaluate the query. For example,
consider the following query:

SELECT MONTH, REGION, DEPARTMENT FROM
(SELECT MONTH, REGION, DEPARTMENT,
 SUM(SALES_AMOUNT) AS REVENUE FROM SALES
 GROUP BY CUBE (MONTH, REGION, DEPT))
WHERE MONTH = ‘JAN-2001’;

This query can be transformed into the following SQL:

SELECT MONTH, REGION, DEPARTMENT FROM
(SELECT MONTH, REGION, DEPARTMENT,
 SUM(SALES_AMOUNT) AS REVENUE FROM SALES
 WHERE MONTH = ‘JAN-2001’
 GROUP BY MONTH, CUBE(REGION, DEPT))
WHERE MONTH = ‘JAN-2001’;

This transformed SQL involves much less aggregation, since the amount of data
to be aggregated is vastly reduced (only the January, 2001 data needs to be
aggregated) and the number of aggregates is additionally reduced. This is an
important transformation for SQL-generators for analytic applications, since

Query Optimization in Oracle Database 10g Release 2 Page 10

these tools may want to query logical ‘cubes’ which have been pre-defined with
views containing the CUBE operator.

Outer-join to inner join conversion

In some circumstances, it is possible to determine that an outer join in a query
will return the same result as an inner join. In those cases, the optimizer will
convert that outer join to an inner join. This transformation may enable Oracle to
do further view merging or choose new join orders, which may not be possible if
the query is an outer join.

Cost-based query transformations

Materialized view rewrite

Precomputing and storing commonly-used data in the form of a materialized
view can greatly speed up query processing. Oracle can transform SQL queries
so that one or more tables referenced in a query can be replaced by a reference to
a materialized view. If the materialized view is smaller than the original table or
tables, or has better available access paths, the transformed SQL statement could
be executed much faster than the original one.

For example, consider the following materialized view:

CREATE MATERIALIZED VIEW SALES_SUMMARY
AS SELECT SALES.CUST_ID, TIME.MONTH, SUM(SALES_AMOUNT) AMT
FROM SALES, TIME
WHERE SALES.TIME_ID = TIME.TIME_ID
GROUP BY SALES.CUST_ID, TIME.MONTH;

This materialized view can be used to optimize the following query:

SELECT CUSTOMER.CUST_NAME, TIME.MONTH, SUM(SALES.SALES_AMOUNT)
FROM SALES, CUSTOMER, TIME
WHERE SALES.CUST_ID = CUST.CUST_ID
AND SALES.TIME_ID = TIME.TIME_ID
GROUP BY CUSTOMER.CUST_NAME, TIME.MONTH;

The rewritten query would be:

SELECT CUSTOMER.CUST_NAME, SALES_SUMMARY.MONTH, SALES_SUMMARY.AMT
FROM CUSTOMER, SALES_SUMMARY
WHERE CUSTOMER.CUST_ID = SALES_SUMMARY.CUST_ID;

In this example, the transformed query is likely much faster for several reasons:
the sales_summary table is likely much smaller than the sales table and the
transformed query requires one less join and no aggregation.

Oracle has a very robust set of rewrite techniques for materialized views, in order
to allow each materialized view to be used for as broad a set of queries as
possible.

Another notable trait of Oracle’s materialized views is its integration with
declarative dimensions within the Oracle database. Oracle allows for the creation
of dimension metadata objects, which describe the hierarchies within each
dimension. This hierarchical metadata is used to support more sophisticated
materialized-view query rewrite. For example, a materialized view containing
monthly sales data could be used to support a query requesting quarterly sales

Query Optimization in Oracle Database 10g Release 2 Page 11

data if there is a time dimension which describes the hierarchical relationship
between months and quarters.

Note that it is not always the case that a transformed query, which uses a
materialized view, is more efficient than the original version of the query. Even
if the materialized view is smaller than the table or tables upon which it is based,
the base tables could be indexed more extensively and, hence, provide for faster
access. The only way to choose the optimal execution plan is to calculate the best
execution plans with and without the materialized views and compare their costs.
Oracle does just that, so materialized view rewrite is an example of a cost-based
query transformations. (For more information on materialized views, see the
white paper “Oracle10g Materialized Views”).

OR-expansion

This technique converts a query with ORs in the WHERE-clause into a UNION
ALL of several queries without ORs. It can be highly beneficial when the ORs
refer to restrictions of different tables. Consider the following query to find all
the shipments that went either from or to Oakland.

SELECT * FROM SHIPMENT, PORT P1, PORT P2
WHERE SHIPMENT.SOURCE_PORT_ID = P1.PORT_ID
AND SHIPMENT.DESTINATION_PORT_ID = P2.PORT_ID
AND (P1.PORT_NAME = 'OAKLAND' OR P2.PORT_NAME = 'OAKLAND')

The query can be transformed into:

SELECT * FROM SHIPMENT, PORT P1, PORT P2
WHERE SHIPMENT.SOURCE_PORT_ID = P1.PORT_ID
AND SHIPMENT.DESTINATION_PORT_ID = P2.PORT_ID
AND P1.PORT_NAME = 'OAKLAND'
UNION ALL
SELECT * FROM SHIPMENT, PORT P1, PORT P2
WHERE SHIPMENT.SOURCE_PORT_ID = P1.PORT_ID
AND SHIPMENT.DESTINATION_PORT_ID = P2.PORT_ID
AND P2.PORT_NAME = 'OAKLAND' AND P1.PORT_NAME <> 'OAKLAND'

Note that each UNION ALL branch can have different optimal join orders. In
the first branch, Oracle could take advantage of the restriction on P1 and drive
the join from that table. In the second branch, Oracle could drive from P2
instead. The resulting plan can be orders of magnitude faster than for the original
version of the query, depending upon the indexes and data for these tables. This
query transformation is by necessity cost-based because this transformation does
not improve the performance for every query.

Star transformation

A star schema is a one modeling strategy commonly used for data marts and data
warehouses. A star schema typically contains one or more very large tables,
called fact tables, which store transactional data, and a larger number of smaller
lookup tables, called dimension tables, which store descriptive data.

Oracle supports a technique for evaluating queries against star schemas known as
the “star transformation”. This technique improves the performance of star
queries by applying a transformation that adds new subqueries to the original

Query Optimization in Oracle Database 10g Release 2 Page 12

SQL. These new subqueries will allow the fact tables to be accessed much more
efficiently using bitmap indexes.

The star transformation is best understood by examining an example. Consider
the following query that returns the sum of the sales of beverages by state in the
third quarter of 2001. The fact table is sales. Note that the time dimension is a
“snowflake” dimension since it consists of two tables, DAY and QUARTER.

SELECT STORE.STATE, SUM(SALES.AMOUNT)
FROM SALES, DAY, QUARTER, PRODUCT, STORE
WHERE SALES.DAY_ID = DAY.DAY_ID AND DAY.QUARTER_ID =
QUARTER.QUARTER_ID
AND SALES.PRODUCT_ID = PRODUCT.PRODUCT_ID
AND SALES.STORE_ID = STORE.STORE_ID
AND PRODUCT.PRODUCT_CATEGORY = 'BEVERAGES'
AND QUARTER.QUARTER_NAME = '2001Q3'
GROUP BY STORE.STATE

The transformed query may look like

SELECT STORE.STATE, SUM(SALES.AMOUNT) FROM SALES, STORE
WHERE SALES.STORE_ID = STORE.STORE_ID
AND SALES.DAY_ID IN
(SELECT DAY.DAY_ID FROM DAY, QUARTER
WHERE DAY.QUARTER_ID = QUARTER.QUARTER_ID
AND QUARTER.QUARTER_NAME = '2001Q3')
AND SALES.PRODUCT_ID IN
(SELECT PRODUCT.PRODUCT_ID FROM PRODUCT
WHERE PRODUCT.PRODUCT_CATEGORY = 'BEVERAGES')
GROUP BY STORE.STATE

With the transformed SQL, this query is effectively processed in two main
phases. In the first phase, all of the necessary rows are retrieved from the fact
table using the bitmap indexes. In this case, the fact table will be accessed using
bitmap indexes on day_id and product_id, since those are the two columns which
appear in the subquery predicates.

In the second phase of the query (the ‘join-back’ phase), the dimension tables are
joined back to the data set from the first phase. Since, in this query, the only
dimension-table column which appears in the select-list is store.state, the store
table is the only table which needs to be joined. The existence of the subqueries
containing PRODUCT, DAY, and QUARTER in the first phase of the queries
obviated the need to join those tables in second phase, and the query optimizer
intelligently eliminates those joins.

The star transformation is a cost-based query transformation and both the
decision whether the use of a subquery for a particular dimension is cost
effective and whether the rewritten query is better than the original are done
based on the optimizer's cost estimates.

This star-query execution technique is unique technology patented by Oracle.
While other vendors have similar query-transformation capabilities for star
queries, no other vendor combines this with static bitmap indexes and intelligent
join-back elimination.

Query Optimization in Oracle Database 10g Release 2 Page 13

Predicate pushdown for outer-joined views

Typically, when a query contains a view that is being joined to other tables, the
views can be merged in order to better optimize the query. However, if a view is
being joined using an outer join, then the view cannot be merged. In this case,
Oracle has specific predicate pushdown operations which will allow the join
predicate to pushed into the view; this transformation allows for the possibility of
executing the outer join using an index on one of the tables within the view. This
transformation is cost-based because the index access may not be the most
effective

ACCESS PATH SELECTION

The object of access path selection is to decide on the order in which to join the
tables in a query, what join methods to use, and how to access the data in each
table. All of this information for a given query can be viewed using Oracle’s
EXPLAIN PLAN facility or using Oracle’s v$sql_plan view.

Oracle’s access path selection algorithms are particularly sophisticated because
Oracle provides a particularly rich set of database structures and query evaluation
techniques. Oracle’s access path selection and cost model incorporate a complete
understanding of each of these features, so that each feature can be leveraged in
the optimal way.

Oracle’s database structures include:
Table Structures
Tables (default)
Index-organized tables
Nested tables
Clusters
Hash Clusters

Index Structures
B-tree Indexes
Bitmap Indexes
Bitmap Join Indexes
Reverse-key B-tree indexes
Function-based B-tree indexes
Function-based bitmap indexes
Domain indexes

Partitioning Techniques
Range Partitioning
Hash Partitioning
Composite Range-Hash Partitioning
List Partitioning
Composite Range-List Partitioning

Query Optimization in Oracle Database 10g Release 2 Page 14

Oracle’s access techniques include:
Index Access Techniques
Index unique key look-up
Index max/min look-up
Index range scan
Index descending range scan
Index full scan
Index fast full scan
Index skip scan
Index and-equal processing
Index joins
Index B-tree to bitmap conversion
Bitmap index AND/OR processing
Bitmap index range processing
Bitmap index MINUS (NOT) processing
Bitmap index COUNT processing

Join Methods
Nested-loop inner-joins, outer-joins, semi-joins, and anti-joins
Sort-merge inner-joins, outer-joins, semi-joins, and anti-joins
Hash inner-joins, outer-joins, semi-joins, and anti-joins
Partition-wise joins

While this paper will not discuss all of the processing techniques, several of the
key attributes of Oracle’s access path selection are discussed below.

Join ordering

When joining a large number of tables, the space of all possible execution plans
can be extremely large and it would be prohibitively time consuming for the
optimizer to explore this space exhaustively. For example, a query with 5 tables
has 5! = 120 possible join orders, and each join order has dozens of possible
execution plans based on various combinations of indexes, access methods and
join techniques. With a 5-table query, the total number of execution plans is in
the thousands and thus the optimizer can consider most possible execution plans.
However, with a 10-table join, there are over 3 million join orders and, typically,
well over 100 million possible execution plans. Therefore, it is necessary for the
optimizer to use intelligence in its exploration of the possible execution plans
rather than a brute-force algorithm.

Adaptive search strategy

Oracle’s optimizer uses many techniques to intelligently prune the search space.
One notable technique is that Oracle uses an adaptive search strategy. If a query
can be executed in one second, it would be considered excessive to spend 10

Query Optimization in Oracle Database 10g Release 2 Page 15

seconds for query optimization. On the other hand, if the query is likely to run for
minutes or hours, it may well be worthwhile spending several seconds or even
minutes in the optimization phase in the hope of finding a better plan. Oracle
utilizes an adaptive optimization algorithm to ensure that the optimization time
for a query is always a small percentage of the expected execution time of the
query, while devoting extra optimization time for complex queries.

Some database systems allow the DBA to specify an ‘optimization level’ which
controls the amount of time spent on query optimization. However, this adaptive
search strategy is a more effective technique than a system-level parameter
which control optimization. With a system-level parameter, the DBA determines
the optimization for all queries uniformly, while Oracle’s adaptive search
strategy determines the best level of optimization for each individual query.

Multiple initial orderings heuristic

Another important technique of the Oracle optimizer’s search algorithm is an
innovative “multiple initial orderings heuristic”. If the optimizer finds the
optimal plan early in the search process, then the optimizer will finish earlier. So,
this heuristic uses sophisticated methods for instantaneously finding particular
plans in the search space which are likely to be nearly optimal or, at least, very
good execution plans. The optimizer starts its search with these plans, rather than
with randomly generated plans. This heuristic is crucial for efficient query
optimization, since it vastly decreases the amount of time required for query
optimization.

Bitmap indexes

Oracle innovative and patented bitmap indexes are widely used, particularly in
data warehouse applications. While other database vendors provide ‘dynamic’
bitmap indexes, Oracle supports real bitmap indexes (in addition to dynamic
bitmap indexes). Real bitmap indexes are index structures in which the
compressed bitmap representation of the index is stored in the database, while
dynamic bitmap indexes convert b-tree index structures in the database into
bitmap structures during query processing. Real bitmap indexes provide very
significant advantages, since they can provide large space savings compared to
regular B-tree indexes. These space savings also translate to performance
benefits in the form of fewer disk I/Os. Real bitmap indexes can process many
queries 10 times faster with 10 times less index storage space. For more
information on quantifying the benefits of bitmap indexes, see the performance
white paper “Key Data Warehousing Features in Oracle10g: A Comparative
Analysis” .

Query Optimization in Oracle Database 10g Release 2 Page 16

Bitmap indexes are extremely efficient for evaluating multiple predicates which
are combined with AND and OR operations. In addition, bitmap indexes use
Oracle's standard consistency model so that complete data consistency is
maintained when performing DML operations (inserts, updates, deletes)
concurrently with queries on tables with bitmap indexes.

The richness of Oracle’s bitmap index capabilities offers many new execution
strategies for the query optimizer. Oracle's query optimizer can generate
execution plans that contain complex trees of bitmap operations that combine
indexes corresponding to AND, OR, and NOT conditions in the WHERE-clause
on both real bitmap indexes and dynamic bitmap indexes. These boolean
operations on bitmaps are very fast, and queries that can take extensive
advantage of bitmap operations usually perform very well.

In addition, Oracle supports ‘index-only’ accesses for bitmap index queries. An
index-only access uses an exact algorithm for ANDing bitmaps. This exactness
is in contrast to those database systems that use dynamic bitmap indexing, and
rely upon hashing to intersect rowid lists (see for instance
http://as400bks.rochester.ibm.com/cgi - bin/bookmgr/BOOKS/EZ30XB00/2.4.1). Such
a system cannot avoid a table access, even when using dynamic bitmap indexes,
in order to guarantee correct results. In contrast, Oracle can evaluate a wide
variety of queries without accessing the table. For example, suppose a bank
wants to know how many married customers it has in California.

SELECT COUNT(*) FROM CUSTOMER
WHERE STATE = 'CA' AND MARITAL_STATUS = 'MARRIED'

Assuming there are bitmap indexes on state and marital_status, Oracle can
simply perform a bitwise AND of the bitmaps for 'CA' and 'married' and count
the number of 1s in the resulting bitmap, an operation that is extremely fast and
efficient since the entire query can be executed simply be accessing two highly-
compressed index structures. A database system that cannot compute the result
of this query merely from the indexes may be forced to access millions of rows
in the table resulting in much slower performance.

The exactness of Oracle's real bitmap indexes (compared to dynamic bitmap
indexes) is also crucial to the join-back elimination feature of Oracle's star
transformation and bitmap join indexes. Database systems that lack exact bitmap
operations always have to join every dimension table in the ‘join-back’ phase,
whereas Oracle will only need to join the minimal set of dimension tables.

Oracle’s bitmap indexes also have key advantages over other types of
compressed index structures. For example, when accessing a range of values
using Oracle’s bitmap indexes, the query optimizer will generate start keys and
stop keys so that only a portion of the index structure is accessed. This starkly
contrasts with indexes such as "encoded vector indexes" where each index
always has to be scanned in full to execute a query -- a horrendously wasteful
practice.

Query Optimization in Oracle Database 10g Release 2 Page 17

Oracle’s query optimizer has the ability to combine multiple types of indexes to
access the same table. For example, a bitmap index can be combined with a
domain index and a B-tree index to access a given table. The domain index and
B-tree index are accessed using dynamic bitmap indexing techniques in order to
be combined with the bitmap index.

Bitmap join indexes

A ‘join index’ is an index structure which spans multiple tables, and improves
the performance of joins of those tables.

A join index is an index where the indexed column(s) and the rowid/bitmap
representation in the index refer to different tables. Part of the definition of a
bitmap join index therefore also includes join conditions specifying how the rows
of the tables match. Typically, one would create a join index on a fact table,
where the indexed column would belong to a dimension table. For example,
given a fact table, sales, and a dimension table, product, a bitmap join index
could be created on sales, but where the indexed column is product category in
the product table subject to a join condition on product_id. With such an index, it
is possible to find all the sales rows for products in a given product category
directly from the index without performing the join. Bitmap join indexes have
two major advantages:

1. Cardinality reduction: There are likely far fewer distinct product categories
than product ids. Hence, the bitmap join index would have a much lower
cardinality than any index on the join column of the fact table, something that,
for bitmap indexes, translates to smaller size.

2. Join-back elimination. In many cases, it is possible to eliminate joins from the
query when bitmap join indexes are used.

Bitmap join indexes can be used together with non-join indexes in the same
access path using the bitmap technology for combining multiple indexes.
Typically, those other indexes would be used due to the star transformation,
which works in conjunction with bitmap join indexes.

Domain indexes and extensibility

Oracle supports application domain indexes to provide efficient access to
customized complex data types such as documents, spatial data, images, and
video clips. Such indexes are different than the built-in Oracle indexes, but their
properties can be registered with Oracle. Oracle's optimizer is extensible so that
domain indexes and user-defined functions can have associated statistics and
cost functions. They are considered in the same cost model and search space as
Oracle's built-in indexes and functions and can even be combined with regular
Oracle indexes in the same access path using Oracle's bitmap technology.

Query Optimization in Oracle Database 10g Release 2 Page 18

Fast full index scans

A fast full scan of an index is the ability to scan through the index as a table, not
in a tree-based order like an index. This can be used if all the needed table
columns are contained in the index so that no table access is necessary. Fast full
scans are useful when a large amount of data needs to be retrieved since they can
take maximum advantage of multiblock disk-I/Os and also parallelize better than
range scans. Since the index is likely to be much smaller than the table, it is
usually much cheaper to scan the index than the table itself.

Index joins

Index joins allow a subset of the columns from the table to be reconstructed from
multiple indexes in case there is not a single index that contains all the needed
columns. If there is a set of indexes that together contains all the needed table
columns, the optimizer can use those indexes to avoid a potentially expensive
table access, either by rowid or as a full scan. First, the WHERE-clause
conditions, if any, are applied to the indexes and the set of index entries are
returned. The resulting entries from the different indexes are then joined on their
rowid values. This access method is useful when the underlying table has many
columns, but only a small number of columns are needed for the query.

Index skip scans

Index skip scan is a feature that allows the optimizer to utilize a multicolumn
index even if there is no start/stop key on the leading column. If the trailing
columns of an index have selective predicates, but not the leading column(s), the
optimizer might still be able to take advantage of the index provided that the
number of values of the leading column(s) is relatively limited. For each value
for the leading column(s), the index is probed using the selective trailing
columns to reach the relevant leaf block efficiently. Hence, the index can be
traversed based on a limited number of skips, where each skip probe is very
efficient. This technique is very useful for ameliorating situations where no index
is a perfect match for the query and the only alternative would be to perform a
full table scan or a full index scan.

Partition optimizations

Partitioning is an important feature for manageability. Oracle supports the
partitioning on both tables and indexes. While Oracle supports a variety of
partitioning methods, range partitioning (or composite partitioning range/hash or
range/list) is perhaps the most useful partitioning method, particularly in data
warehousing where “rolling windows” of data are common. Range partitioning
on date ranges can have enormous benefits for the load/drop cycle in a data
warehouse, both in terms of efficiency and manageability.

However, partitioning is useful for query processing as well and Oracle’s
optimizer is fully partition aware. Again, date range partitioning is typically by

Query Optimization in Oracle Database 10g Release 2 Page 19

far the most important technique since decision support queries usually contain
conditions that constrain to a specific time period. Consider the case where two
years' worth of sales data is stored partitioned by month. Assume that we want to
calculate the sum of the sales in the last three months. Oracle's optimizer will
know that the most efficient way to access the data is by scanning the partitions
for the last three months. That way, exactly the relevant data is scanned. A
system lacking range partitioning would either have to scan the entire table -- 8
times more data -- or use an index, which is an extremely inefficient access
method when the amount of data that needs to be accessed is large. The ability of
the optimizer to avoid scanning irrelevant partitions is known as partition
pruning.

Partition-wise joins, GROUP-BY’s and sorts

Certain operations can be conducted on a ‘partition-wise’ basis when those
operations involve the partitioning key of a table. For example, suppose that a
sales table was range-partitioned by date. When a query requests sales records
ordered by data, Oracle’s optimizer realizes that each partition could be sorted
independently (on a partition-wise basis) and then the results could simply be
concatenated afterwards. Sorting each partitioning separately is much more
efficient than sorting the entire table at one time. Similar optimizations are made
for join and GROUP-BY operations.

Sort elimination

Sorting a large amount of data is one of the most resource intensive operations in
query processing. Oracle eliminates unneeded sort operations. There are multiple
reasons a sort (for DISTINCT, GROUP BY, ORDER BY) can be eliminated. For
instance, the use of an index may guarantee that the rows will already have the
right order or be unique; a unique constraint may guarantee that only a single row
will be returned; it may be known that all the rows will have the same value for
an ORDER BY column; an earlier sort operation, say for a sort-merge join may
already have generated the right order. Oracle’s optimizer knows that a local
decision about, say, what index to use for a table can have more far-reaching
side-effect of determining whether an ORDER BY sort can be eliminated once
that table has been joined to all the other tables in the query. That determination
will also be influenced by the join order and join methods used, factors that may
not be known when the index on the table was picked. Therefore, in addition to
creating an execution plan based on the locally optimal choices, the best index,
cheapest join method, etc., the optimizer will try to generate an execution plan
that is explicitly geared towards global sort elimination choosing the right
indexes, join methods, and join order. When the overall cost is computed, the
plan with sort elimination often turns out to be better than the plan based on the
locally least expensive operations.

Query Optimization in Oracle Database 10g Release 2 Page 20

OLAP optimizations

Oracle supports various SQL constructs that are commonly used in OLAP. When
processing queries with CUBE, ROLLUP, or grouping set constructs, as well as
SQL analytic functions, there may be a large number of sorts required since the
number of different groupings might be large. However, if the data is already
sorted according to one grouping, it may eliminate the need for (or ameliorate the
cost of) the sort for a different grouping depending on how the grouping columns
match up. Hence, being clever about how to perform the grouping sorts can result
in large performance gains. Oracle's optimizer uses sophisticated algorithms for
ordering the sorts and rearranging the grouping columns so that the result of one
sort can speed up or eliminate next one.

Parallel execution

Parallel execution is the ability to apply multiple processes (generally involving
multiple CPU’s and possibly multiple nodes) to the execution of a single SQL
statement. Parallelism is a fundamental capability for querying and managing
large data sets.

Oracle’s parallel execution architecture allows virtually any SQL statement to be
executed with any degree of parallelism. Notably, the degree of parallelism is
not based upon the partitioning scheme of the underlying database objects. This
flexible parallel architecture provides significant. advantages, since Oracle can
adjust the degree of parallelism based upon factors such as the size of tables to
be queried, the workload, and the priority of the user issuing the query.

The optimizer fully incorporates parallel execution, and takes into account the
impact of parallel execution when choosing the best execution plan.

Hints

Hints are directives added to a SQL query to influence the execution plan. Hints
are most commonly used to address the rare cases in which the optimizer chooses
a suboptimal plan, yet hints are often misunderstood or misused in marketing or
sales presentations. While some would claim that the existence of hints is a sign
of weakness in the optimizer, in fact most major database products (Oracle,
Microsoft SQL Server, IBM Informix, Sybase) support some form of optimizer
directives. No optimizer is perfect (see, for instance, “Why does DB2's optimizer
generate wrong plans?” a presentation from the IBM Almaden Research Center
at the International DB2 Users Group Meeting, 1999), and directives such as
Oracle’s hints provide the simplest workaround situations in which the optimizer
has chosen a suboptimal plan.

Hints are useful tools not just to remedy an occasional suboptimal plan, but also
for users who want to experiment with access paths, or simply have full control
over the execution of a query. For example, a user can compare the performance
of a suboptimal index in a query to the performance of the optimal index. If the
optimal index is only used in this particular query, but the suboptimal one is used

Query Optimization in Oracle Database 10g Release 2 Page 21

by many different queries, the user can consider dropping the optimal index if
the performance difference is small enough. Hints make it very simple and quick
to conduct these types of performance experiments (since, without hints, a user
would have to drop and then rebuild the optimal index in order to do this
experiment).

Hints are designed to be used only in unusual cases to address performance
issues; hints should be rarely used and in fact the over-use of hints can
detrimentally affect performance since these hints can prevent the optimizer
from adjusting the execution plans as circumstances change (tables grow,
indexes are added, etc) and may mask problems such as stale optimizer statistics.
One example of an appropriate use of hints is Oracle’s own applications: the
highly-tuned ERP modules of Oracle’s E-Business Suite 11i utilize hints in .3%
of the 270,000 SQL statements in these modules.

COST MODEL AND STATISTICS

A cost-based optimizer works by estimating the cost of various alternative
execution plans and choosing the plan with the best (that is, lowest) cost
estimate. Thus, the cost model is a crucial component of the optimizer, since the
accuracy of the cost model directly impacts the optimizer’s ability to recognize
and choose the best execution plans.

The ‘cost’ of an execution plan is based upon careful modeling of each
component of the execution plan. The cost model incorporates detailed
information about all of Oracle’s access methods and database structures, so that
it can generate an accurate cost for each type of operation. Additionally, the cost
model relies on ‘optimizer statistics’, which describe the objects in the database
and the performance characteristics of the hardware platform. These statistics are
described in more detail below. In order for the cost-model to work effectively,
the cost model must have accurate statistics. Oracle has many features to help
simplify and automate statistics-gathering.

The cost model is a very sophisticated component of the query optimizer. Not
only does the cost-model understand each access method provided by the
database, but it must also consider the performance effects of caching, I/O
optimizations, parallelism, and other performance features. Moreover, there is no
single definition for costs. For some applications, the goal of query optimization
is to minimize the time to return the first row or first set of N rows, while for
other applications, the goal is to return the entire result set in the least amount of
time. Oracle’s cost-model supports both of these goals by computing different
types of costs based upon the DBA’s preference.

Optimizer statistics

When optimizing a query, the optimizer relies on a cost model to estimate the
cost of the operations involved in the execution plan (joins, index scans, table
scans, etc.). This cost model relies on information about the properties of the

Query Optimization in Oracle Database 10g Release 2 Page 22

database objects involved in the SQL query as well as the underlying hardware
platform. In Oracle, this information, the optimizer statistics, comes in two
flavors: object-level statistics and system statistics.

Object-level statistics

Object-level statistics describe the objects in the database. These statistics track
values such as the number of blocks and the number of rows in each table, and
the number of levels in each b-tree index. There are also statistics describing the
columns in each table. Column statistics are especially important because they
are used to estimate the number of rows that will match the conditions in the
WHERE-clauses of each query. For every column, Oracle’s column statistics
have the minimum and maximum values, and the number of distinct values.
Additionally, Oracle supports histograms to better optimize queries on columns
which contain skewed data distributions. Oracle supports both height-balanced
histograms and frequency histograms, and automatically chooses the appropriate
type of histogram depending on the exact properties of the column.

System statistics

System statistics describe the performance characteristics of the hardware
platform. The optimizer’s cost model distinguishes between the CPU costs and
I/O costs. However, the speed of the CPU varies greatly between different
systems and moreover the ratio between CPU and I/O performance also varies
greatly. Hence, rather than relying upon a fixed formula for combining CPU and
I/O costs, Oracle provides a facility for gathering information about the
characteristics of an individual system during a typical workload in order to
determine the best way to combine these costs for each system. The information
collected includes CPU-speed and the performance of the various types of I/O
(the optimizer distinguishes between single-block, multi-block, and direct-disk
I/Os when gathering I/O statistics). By tailoring the system statistics for each
hardware environment, Oracle’s cost model can be very accurate on any
configuration from any combination of hardware vendors.

User-defined statistics

Oracle also supports user-defined cost functions for user-defined functions and
domain indexes. Customers who are extending Oracle’s capabilities with their
own functions and indexes can fully integrate their own access methods into
Oracle’s cost model. Oracle’s cost model is modular, so that these user-defined
statistics are considered within the same cost model and search space as Oracle’s
own built-in indexes and functions.

Statistics management

The properties of the database tend to change over time as the data changes,
either due to transactional activity or due to new data being loaded into a data
warehouse. In order for the object-level optimizer statistics to stay accurate, those

Query Optimization in Oracle Database 10g Release 2 Page 23

statistics need to be updated when the underlying data has changed. The problem
of gathering the statistics poses several challenges for the DBA:

Statistics gathering can be very resource intensive for large databases.

Determining which tables need updated statistics can be difficult. Many of the
tables may not have changed very much and recalculating the statistics for
those would be a waste of resources. However, in a database with
thousands of tables, it is difficult for the DBA to manually track the level
of changes to each table and which tables require new statistics.

Determining which columns need histograms can be difficult. Some columns
may need histograms, others not. Creating histograms for columns that do
not need them is a waste of time and space. However, not creating
histograms for columns that need them could lead to bad optimizer
decisions.

Oracle’s statistics-gathering routines address each of these challenges.

Automatic statistic gathering

In Oracle Database 10g Release 2 the recommended approach to gathering
statistics is to allow Oracle to automatically gather the statistics. Oracle will
gather statistics on all database objects automatically and maintains those
statistics in a regularly-scheduled maintenance job (GATHER STATS job). This
job gathers statistics on all objects in the database, which have missing, or stale
statistics (more than 10% of the rows have changed since it was last analyzed).
The GATHER STATS job is created automatically at database creation time and
is managed by the Scheduler. The Scheduler runs this job when the maintenance
window is opened. By default, the maintenance window opens every night from
10 P.M. to 6 A.M. and all day on weekends. Automated statistics collection
eliminates many of the manual tasks associated with managing the query
optimizer, and significantly reduces the chances of getting poor execution plans
because of missing or stale statistics. The GATHER STATS job can be stopped
completely using the DBMS_SCHEDULER package.

Parallel sampling

The basic feature that allows efficient statistics gathering is sampling. Rather
than scanning (and sorting) an entire table to gather statistics, good statistics can
often be gathered by examining a small sample of rows. The speed-up due to
sampling can be dramatic since sampling not only the amount of time to scan a
table, but also subsequently reduces the amount of time to process the data (since
there is less data to sorted and analyzed). Further speed-up for gathering statistics
on very large databases can be achieved by using sampling in conjunction with
parallelism. Oracle’s statistics gathering routines automatically determines the
appropriate sampling percentage as well as the appropriate degree of parallelism,
based upon the data-characteristics of the underlying table.

Query Optimization in Oracle Database 10g Release 2 Page 24

Monitoring

Another key feature for simplifying statistics management is monitoring. Oracle
keeps track of how many changes (inserts, updates, and deletes) have been made
to a table since the last time statistics were collected. Those tables that have
changed sufficiently to merit new optimizer statistics are marked automatically
by the monitoring process. When the DBA gathers statistics, Oracle will only
gather statistics on those tables which have been significantly modified.

Automatic histogram determination

Oracle’s statistics-gathering routines also implicitly determine which columns
require histograms. Oracle makes this determination by examining two
characteristics: the data-distribution of each column, and the frequency with
which the column appears in the WHERE-clause of SQL statements. For
columns which are both highly-skewed and commonly appear in WHERE-
clauses, Oracle will create a histogram.

These features together virtually automate the process of gathering optimizer
statistics. With a single command, the DBA can gather statistics on an entire
schema, and Oracle will implicitly determine which tables require new statistics,
which columns require histograms, and the sampling level and degree of
parallelism appropriate for each table.

Dynamic sampling

Unfortunately, even accurate statistics are not always sufficient for optimal query
execution. The optimizer statistics are by definition only an approximate
description of the actual database objects. In some cases, these static statistics
are incomplete. Oracle addresses those cases by supplementing the static object-
level statistics with additional statistics that are gathered dynamically during
query optimization.

There are primarily two scenarios in which the static optimizer statistics are
inadequate:

Correlation. Often, queries have complex WHERE-clauses in which there are
two or more conditions on a single table. Here is a very simple example:

SELECT * FROM EMP
WHERE JOB_TITLE = 'VICE PRESIDENT'
AND SAL < 40000

The naïve optimization approach is to assume that these two columns are
independent. That is, if 5% of the employees are ‘Vice President’ and 40%
of the employees have a salary less than 40,000, then the simple approach
is to assume that .05 * .40 = .02 of employees match both criteria of this
query. This simple approach is incorrect in this case. Job_title and salary
are correlated, since employees with a job_title of ‘Vice President’ are
much more likely to have higher salaries. Although the simple approach

Query Optimization in Oracle Database 10g Release 2 Page 25

indicates that this query should return 2% of the rows, this query may in
actuality return zero rows.

The static optimizer statistics, which store information about each column
separately, do not provide any indication to the optimizer of which
columns may be correlated. Moreover, trying to store statistics to capture
correlation information is a daunting task: the number of potential column
combinations is exponentially large.

Transient data. Some applications will generate some intermediate result set
that is temporarily stored in a table. The result set is used as a basis for
further operations and then is deleted or simply rolled back. It can be very
difficult to capture accurate statistics for the temporary table where the
intermediate result is stored since the data only exists for a short time and
might not even be committed. There is no opportunity for a DBA to gather
static statistics on these transient objects.

Oracle's dynamic sampling feature addresses these problems. While a query is
being optimized, the optimizer may notice that a set of columns may be
correlated or that a table is missing statistics. In those cases, the optimizer will
sample a small set of rows from the appropriate table(s) and gather the
appropriate statistics on-the-fly. In the case of correlation, all of the relevant
conditions in the WHERE-clause are applied to those rows simultaneously to
directly measure the impact of correlation. This dynamic sampling technique is
also very effective for transient data; since the sampling occurs in the same
transaction as the query, the optimizer can see the user's transient data even if
that data is uncommitted.

Optimization cost modes

A cost-based optimizer works by estimating the cost for various alternative
execution plans and picking the one with the lowest cost estimate. However, the
notion of "lowest cost" can vary based upon the requirements of a given
application. In an operational system, which displays only a handful of rows to
the end-user at a time, the “lowest cost” execution plan may be the execution
plan which returns the first row in the shortest amount of time. On the other
hand, in a system in which the end-user is examining the entire data set returned
by a query, the “lowest cost” execution plan is the execution plan which returns
all of the rows in the least amount of time.

Oracle provides two optimizer modes: one for minimizing the time to return the
first N rows of query, and another for minimizing the time to return all of the
rows from a query. The database administrator can additionally specify the value
for N. In this way, Oracle’s query optimizer can be easily tuned to meet the
specific requirements of different types of applications.

Query Optimization in Oracle Database 10g Release 2 Page 26

DYNAMIC RUNTIME OPTIMIZATIONS

The workload on every database fluctuates, sometimes greatly, from hour to
hour, from daytime workloads to evening workloads, from weekday workloads to
weekend workloads, and from normal workloads to end-of-quarter and end-of-
year workloads. No set of static optimizer statistics and fixed optimizer models
can cover all of the dynamic aspects of these ever-changing systems. Dynamic
adjustments to the execution strategies are mandatory for achieving good
performance.

For this reason, Oracle’s query optimization extends beyond just access path
selection. Oracle has a very robust set of capabilities which allow for adjustments
to the execution strategies for each query based not only on the SQL statement
and the database objects, but also the current state of the entire system at the
point in time when the query is executing.

The key consideration for dynamic optimization is the appropriate management
of the hardware resources, such as CPU and memory. The hallmark of dynamic
optimization is the dynamic adjustments of execution strategies for each query so
that the hardware resources are utilized to maximize the throughput of all
queries. While most other aspects of query optimization focus on optimizing only
a single SQL statement, dynamic optimization focuses on optimizing each SQL
statement in the context of all of the other SQL statements that are currently
executing.

Dynamic degree of parallelism

Parallelism is a great way to improve the response time of a query on a
multiprocessor hardware. However, the parallel execution of the query will likely
use slightly more resources in total than serial execution. Hence, on a heavily
loaded system with resource contention, parallelizing a query or using too high a
degree of parallelism can be counterproductive. On other hand, on a lightly
loaded system, queries should have a high degree parallelism to leverage the
available resources. Therefore, relying on a fixed degree of parallelism is a bad
idea since the workload on the system varies over time. Oracle automatically
adjusts the degree of parallelism for query, throttling it back as the workload
increases in order to avoid resource contention. As the workload decreases, the
degree of parallelism is again increased.

Dynamic memory allocation

Some operations (primarily, sorts and hash joins) are faster if they have access to
more memory. These operations typically process the data multiple times; the
more data that can fit into memory, the less data will need to be stored on disk in
temporary tablespaces between each pass. In the best case, sorts and hash joins
can occur entirely in memory so that temporary disk space is not used at all.

Unfortunately, there is only a finite amount of physical memory available on the
system and it has to be shared by all the operations that are executing

Query Optimization in Oracle Database 10g Release 2 Page 27

concurrently. If memory is overallocated, then swapping will occur and
performance will deteriorate dramatically. On the other hand, if there is memory
available that could be used to speed up the execution of a sort or a hash join, it
should be allocated or the performance of the operation will be suboptimal. The
challenge is to provide the optimal amount of memory for each query: enough
memory to process the query efficiently, but not too much memory so that other
queries can receive their share of memory as well.

Assigning a fixed amount of memory to each SQL statement (an approach used
by other database vendors) is not an effective solution. As the database workload
increases, more and more memory will be required to handle the increasing
number of queries. Eventually, the physical memory on the system would be
exhausted, and the performance of the system would degrade dramatically.

A slightly more clever, but nevertheless inefficient, approach is to give each
query an equal-sized portion of memory, so that if there are 100 concurrent
queries, then each query gets 1% of the available memory and if there are 1000
concurrent queries, then each query gets .1% of the available memory. This
solution is insufficient, because each query operates on different-sized data sets,
and each query may have a different number of sort and hash-join operations. If
each query was given a fixed amount of memory, then some queries would have
far too much memory while other queries would have insufficient memory.

Oracle's dynamic memory management resolves these issues. The DBA
specifies the total amount of system memory available to Oracle for SQL
operations. Oracle manages the memory so that each query receives an
appropriate amount of memory within the boundary that the total amount of
memory for all queries does not exceed the DBA-specified limit.

For each query, the optimizer generates a profile with the memory requirements
for each operation in the execution plan. These profiles not only contain the ideal
memory levels (that is, the amount of memory needed to complete an operation
entirely in memory) but also the memory requirements for multiple disk passes.
At runtime, Oracle examines the amount of available memory on the system and
the query’s profile, and allocates memory to the query to provide optimal
performance in light of the current system workload.

Even while queries are running, Oracle will continue to dynamically adjust the
memory for each query. If a given query is using less memory than anticipated,
that memory will be re-assigned to other queries. If a given query can be
accelerated with the addition of more memory, then that query will be given
additional memory when it is available. The decision about how each individual
operation is affected by altering the memory allocations is based upon its
memory profile. When dynamically adjusting memory allocations, Oracle will
pick the individual operations that are best suited for the change with respect to
the impact on overall performance.

Query Optimization in Oracle Database 10g Release 2 Page 28

This unique feature greatly improves both the performance and manageability of
the database, and relieves the DBA from managing memory allocations -- a
problem that is impossible to manually resolve to perfection.

Database resource manager

Oracle’s database resource manager provides a framework that allows the DBA
to carefully control how resources are allocated among different users. The
database resource manager controls many aspects of query execution, including
the amount of CPU allocated to each group of users, the number of active
sessions for each group of users, and the extent to which each group of users can
use parallelism.

The database resource manager provides two main benefits:

Maximize throughput of the entire system. The database resource manager
ensures that the hardware resources are being fully utilized, while at the
same time managing the workload so that the system is not over-utilized.

Provide resources to the right users. Some users of the data warehouse should
have higher priority than other users. The database resource manager
allows the DBA to dedicate more resources to important users.

The database resource manager is important for query optimization for a couple
of reasons. First, the resource manager provides dynamic adjustments during
SQL execution. A complex query may require a large, CPU-intensive sort, for
example. During runtime, the database resource manager may limit the CPU
utilized by this query. In this way, the database resource manager can
dynamically adjust the SQL execution so that large queries do not overwhelm the
system and deteriorate the response time for other users.

The second way in which the database resource manager is closely tied to the
query optimization is that the database resource manager provides a capability
for pro-active query governing. For each group of end-users, the database
administrator can specify the longest-running SQL statement that those users are
allowed to execute. For example, the database administrator could specify that a
given group of users is not allowed to submit any queries which will take longer
than 20 minutes to execute. If a user tries to submit a long-running SQL
statement, that SQL statement will return an error before it even begins to
execute. The purpose of query governing is to pro-actively prevent users for
issuing unacceptably long-running queries. Behind the scenes, the query
governing is implemented in conjunction with the query optimizer. The query
optimizer’s cost estimates are used to estimate the execution times for each
query, so that the database resource manager can determine which queries may
need to be pro-actively aborted.

Query Optimization in Oracle Database 10g Release 2 Page 29

CONCLUSION

Query optimization is a key ingredient for achieving good performance and
simplifying administration. Oracle’s query optimizer provides a tremendous
breadth of capabilities. Not only does it incorporate perhaps the broadest set of
access paths of any database vendor, but Oracle’s optimizer also provides
particularly innovative techniques for dynamic and adaptive adjustments during
query execution. By continually enhancing its optimizer, Oracle will continue to
provides its customers with leading performance and manageability.

Query Optimization in Oracle Database 10g Release 2 Page 30

Query Optimization in Oracle Database 10g Release 2

June 2005

Author: George Lumpkin Hakan Jakobsson

Contributing Authors: Maria Colgan

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

U.S.A.

Worldwide Inquiries:

Phone: +1.650.506.7000

Fax: +1.650.506.7200

oracle.com

Copyright © 2005, Oracle. All rights reserved.

This document is provided for information purposes only and the

contents hereof are subject to change without notice.

This document is not warranted to be error-free, nor subject to any

other warranties or conditions, whether expressed orally or implied

in law, including implied warranties and conditions of merchantability

or fitness for a particular purpose. We specifically disclaim any

liability with respect to this document and no contractual obligations

are formed either directly or indirectly by this document. This document

may not be reproduced or transmitted in any form or by any means,

electronic or mechanical, for any purpose, without our prior written permission.

Oracle, JD Edwards, and PeopleSoft are registered trademarks of

Oracle Corporation and/or its affiliates. Other names may be trademarks

of their respective owners.

