# Achieving k-Anonmity\* Privacy Protection Using Generalization and Suppression

Murat Kantarcioglu

**Based on Sweeney 2002 paper** 



#### **Releasing Private Data**

- Problem: Publishing private data while, at the same time, protecting individual privacy
- Challenges:
  - How to quantify privacy protection
  - How to maximize the usefulness of published data
  - How to minimize the risk of disclosure

— ...



#### **Sanitization**

- Automated de-identification of private data with certain privacy guarantees
  - Opposed to "formal determination by statisticians" requirement of HIPAA
- Two major research directions
  - 1. Perturbation (e.g. random noise addition)
  - 2. Anonymization (e.g. k-anonymization)



#### Anonymization

- HIPAA revisited
  - Limited data set: no unique identifiers
- Safe enough?
  - Was not for the Governor of Massachusetts<sup>#</sup>
  - %87 of US citizens can possibly be uniquely identified using ZIP, sex and birth date #

# L. Sweeney, "k-Anonymity: A Model for Protecting Privacy", International Journal on Uncertainty,



#### Anonymization

- Removing unique identifiers is not sufficient
- Quasi-identifier (QI)
  - Maximal set of attributes that could help identify individuals
  - Assumed to be publicly available (e.g., voter registration lists)



#### Anonymization

- As a process
  - 1. Remove all unique identifiers
  - 2. Identify QI-attributes, model adversary's background knowledge
  - 3. Enforce some privacy definition (e.g. k-anonymity)



# k-Anonymity

- Each released record should be indistinguishable from at least (k-1) others on its QI attributes
- Alternatively: cardinality of any query result on released data should be at least k
- k-anonymity is (the first) one of many privacy definitions in this line of work
  - I-diversity, t-closeness, m-invariance, delta-presence...





- Given some data set *R* and a QI *Q*, does *R* satisfy kanonymity over *Q*?
  - Easy to tell in polynomial time, NP!
- Finding an *optimal* anonymization is not easy
  - NP-hard: reduction from k-dimensional perfect matching\*
  - A polynomial solution implies P = NP
- Heuristic solutions
  - DataFly, Incognito, Mondrian, TDS, ...

\*A. Meyerson and R. Williams. On the complexity of optimal k-anonymity. In PODS'04.



#### Tools

- Generalization
  - "Replacing (recoding) a value with a less specific but semantically consistent one"
- Suppression
  - "Not releasing any value at all"
- Advantages
  - 1. Reveals what was done to the data
  - 2. Truthful (no incorrect implications)
  - 3. Trade-off between anonymity and distortion
  - 4. Adjustable to the recipient's needs (only one's)





### DGH / VGH

• ZIP attribute







- QI = {Race, ZIP}
- k = 2
- k-anonymous relation should have at least 2 tuples with the same values on Dom(Race<sub>i</sub>) x Dom(ZIP<sub>j</sub>)

where  $Race_i$  and  $ZIP_j$  are chosen from corresponding DGHs



#### Example

| Race<br>E <sub>0</sub> | ZIP<br>Z <sub>0</sub>                                                                          | Race<br>E1                                                                                    | ZIP<br>Z <sub>0</sub>                                                                          |  | Race<br>E1                                                                                             | ZIP<br>Z1 |  |
|------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--|--------------------------------------------------------------------------------------------------------|-----------|--|
| Black                  | 02138                                                                                          | Person                                                                                        | 02138                                                                                          |  | Person                                                                                                 | 0213*     |  |
| Black                  | 02139                                                                                          | Person                                                                                        | 02139                                                                                          |  | Person                                                                                                 | 0213*     |  |
| Black                  | 02141                                                                                          | Person                                                                                        | 02141                                                                                          |  | Person                                                                                                 | 0214*     |  |
| Black                  | 02142                                                                                          | Person                                                                                        | 02142                                                                                          |  | Person                                                                                                 | 0214*     |  |
| White                  | 02138                                                                                          | Person                                                                                        | 02138                                                                                          |  | Person                                                                                                 | 0213*     |  |
| White                  | 02139                                                                                          | Person                                                                                        | 02139                                                                                          |  | Person                                                                                                 | 0213*     |  |
| White                  | 02141                                                                                          | Person                                                                                        | 02141                                                                                          |  | Person                                                                                                 | 0214*     |  |
| White                  | 02142                                                                                          | Person                                                                                        | 02142                                                                                          |  | Person                                                                                                 | 0214*     |  |
| PT                     |                                                                                                | GT <sub>[1,0]</sub>                                                                           |                                                                                                |  | GT <sub>[1,1]</sub>                                                                                    |           |  |
|                        |                                                                                                |                                                                                               |                                                                                                |  |                                                                                                        |           |  |
|                        | Race                                                                                           | ZIP                                                                                           | Race                                                                                           |  | ZIP                                                                                                    |           |  |
|                        | Race<br>E <sub>0</sub>                                                                         | ZIP<br>Z <sub>2</sub>                                                                         | Race<br>E <sub>0</sub>                                                                         |  | ZIP<br>Z <sub>1</sub>                                                                                  |           |  |
|                        | Race<br>E <sub>0</sub><br>Black                                                                | ZIP<br>Z <sub>2</sub><br>021**                                                                | Race<br>E <sub>0</sub><br>Black                                                                |  | ZIP<br>Z <sub>1</sub><br>0213*                                                                         |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black                                                       | ZIP<br>Z <sub>2</sub><br>021**<br>021**                                                       | Race<br>E <sub>0</sub><br>Black<br>Black                                                       |  | ZIP<br>Z <sub>1</sub><br>0213*<br>0213*                                                                |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black                                              | ZIP<br>Z <sub>2</sub><br>021**<br>021**<br>021**                                              | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black                                              |  | ZIP<br>Z <sub>1</sub><br>0213*<br>0213*<br>0213*                                                       |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black                                     | ZIP<br>Z <sub>2</sub><br>021**<br>021**<br>021**<br>021**                                     | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black                                     |  | ZIP<br>Z <sub>1</sub><br>0213*<br>0213*<br>0214*<br>0214*                                              |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White                            | ZIP<br>Z <sub>2</sub><br>021**<br>021**<br>021**<br>021**<br>021**                            | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White                            |  | ZIP<br>Z <sub>1</sub><br>0213*<br>0213*<br>0214*<br>0214*<br>0214*<br>0213*                            |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White<br>White                   | ZIP<br>Z <sub>2</sub><br>021**<br>021**<br>021**<br>021**<br>021**<br>021**                   | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White<br>White                   |  | ZIP<br>Z <sub>1</sub><br>0213*<br>0213*<br>0214*<br>0214*<br>0214*<br>0213*                            |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White<br>White<br>White          | ZIP<br>Z <sub>2</sub><br>021**<br>021**<br>021**<br>021**<br>021**<br>021**<br>021**          | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White<br>White<br>White          |  | ZIP<br>Z1<br>0213*<br>0213*<br>0214*<br>0214*<br>0213*<br>0213*<br>0213*<br>0214*                      |           |  |
|                        | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White<br>White<br>White<br>White | ZIP<br>Z <sub>2</sub><br>021**<br>021**<br>021**<br>021**<br>021**<br>021**<br>021**<br>021** | Race<br>E <sub>0</sub><br>Black<br>Black<br>Black<br>Black<br>White<br>White<br>White<br>White |  | ZIP<br>Z <sub>1</sub><br>0213*<br>0213*<br>0214*<br>0214*<br>0213*<br>0213*<br>0213*<br>0214*<br>0214* |           |  |



#### **k-Minimal Generalization**

- Given  $|R| \ge k$ , there is always a trivial solution
  - Generalize all attributes to VGH root
  - Not very useful if there exists another k-anonymization with higher granularity (more specific) values
- k-minimal generalization
  - Satisfies k-anonymity
  - None of its specializations satisfies k-anonymity
  - E.g., [0,2] is not minimal, since [0,1] is k-anonymous
  - E.g., [1,0] is minimal, since [0,0] is not k-anonymous



#### Precision Metric, Prec(.)

- Multiple k-minimal generalizations may exist
  - E.g., [1,0] and [0,1] from the example
- Precision metric indicates the generalization with minimal information loss, maximal usefulness
  - Informally, since *Prec* is not based on entropy
- Problem: how to define usefulness



#### Precision Metric, Prec(.)

- Precision: average height of generalized values, normalized by VGH depth per attribute per record
- N<sub>A</sub>: number of attributes
- |PT| : data set size
- |DGH<sub>Ai</sub>| : depth of the VGH for attribute A<sub>i</sub>

$$Prec(\mathsf{RT}) = 1 - \frac{\sum_{i=1}^{N_A} \sum_{j=1}^{N} \frac{h}{|\mathsf{DGH}_{Ai}|}}{|\mathsf{PT}| \bullet |N_A|}$$



#### Precision Metric, Prec(.)

- Notice that precision depends on DGH/VGH
- Different DGHs result in different precision measurements for the same table
- Structure of DGHs might determine the generalization of choice
- DGHs should be semantically meaningful
  - I.e., created by domain experts



## **k-Minimal Distortion**

- Most precise release that adheres to k-anonymity
- Precision measured by *Prec(.)*
- Any k-minimal distortion is a k-minimal generalization
- In the example, only [0,1] is a k-minimal distortion
  - [0,0] is not k-anonymous
  - [1,0] and others are less precise



## MinGen Algorithm

- Steps:
  - Generate all generalizations of the private table
  - Discard those that violate k-anonymity
  - Find all generalizations with the highest precision
  - Return one based on some preference criteria
- Unrealistic
  - Even with attribute level generalization/suppression, there are too many candidates



### **MinGen Algorithm**

• Attribute level – global recoding

$$\prod_{i=1}^{n} \left( \left| \mathsf{DGH}_{i} \right| + 1 \right)$$

• Cell (tuple) level - local recoding

$$\prod_{i=1}^{n} \left( \left| \mathsf{DGH}_{Ai} \right| + 1 \right)^{|\mathsf{PT}|}$$



# **MinGen Algorithm**

- Input: Private Table **PT**; quasi-identifier QI =  $(A_1, ..., A_n)$ , k constraint; domain generalization hierarchies DGH<sub>Ai</sub>, where i=1,...,n, and *preferred()* specifications. Output: MGT, a minimal distortion of PT[QI] with respect to kchosen according to the preference specifications Assumes:  $|PT| \ge k$
- Method:
  - if PT[QI] satisfies k-anonymity requirement with respect to k then do
    1.1. MGT ← { PT } // PT is the solution
  - 2. else do
    - 2.1. *allgen*  $\leftarrow$  {T<sub>i</sub> : T<sub>i</sub> is a generalization of **PT** over QI}
    - 2.2. *protected*  $\leftarrow$  {T<sub>i</sub> : T<sub>i</sub>  $\in$  *allgen*  $\land$  T<sub>i</sub> satisfies *k*-anonymity of *k*}
    - 2.3.  $MGT \leftarrow \{T_i : T_i \in protected \land there does not exist T_z \in protected such that <math>Prec(T_z) > Prec(T_i) \}$
    - 2.4.  $MGT \leftarrow preferred(MGT)$  // select the preferred solution
  - 3. return MGT



# **DataFly Algorithm**

- Steps:
  - Create equivalences over the Cartesian product of QI attributes
  - Heuristically select an attribute to generalize
  - Continue until < k records remain (suppression)</li>
- Too much distortion due to attribute level generalization and greedy choices
- k-anonymity is guaranteed



Input: Private Table **PT**; quasi-identifier  $QI = (A_1, ..., A_n)$ , k constraint; hierarchies DGH<sub>Ai</sub>, where i=1,...,n. Output: MGT, a generalization of PT[QI] with respect to kAssumes:  $|PT| \ge k$ Method:

- freq ← a frequency list contains distinct sequences of values of PT[QI], along with the number of occurrences of each sequence.
- 2. while there exists sequences in freq occurring less than k times that account for more than k tuples **do** 
  - 2.1. let  $A_j$  be attribute in freq having the most number of distinct values
  - 2.2. freq  $\leftarrow$  generalize the values of  $A_j$  in freq
- 3. freq  $\leftarrow$  suppress sequences in freq occurring less than k times.
- 4. freq  $\leftarrow$  enforce k requirement on suppressed tuples in freq.
- 5. **Return** MGT  $\leftarrow$  construct table from freq



# $\mu$ -Argus Algorithm

- Steps:
  - Generalize until each QI attribute appears k times
  - Check k-anonymity over 2/3-combinations
  - Keeps generalizing according to data holder's choices
  - Suppress any remaining outliers
- k-anonymity is not guaranteed
- Faster than DataFly



# $\mu$ -Argus Algorithm

Input: Private Table **PT**; quasi-identifier  $QI = (A_1, ..., A_n)$ , disjoint subsets of QI known as *Identifying*, *More*, and *Most* where  $QI = Identifying \cup More \cup Most$ , k constraint; domain generalization hierarchies DGH<sub>Ai</sub>, where i=1,...,n. Output: MT containing a generalization of PT[QI] Assumes:  $|PT| \ge k$ Mathed:

#### Method:

- freq ← a frequency list containing distinct sequences of values of PT[QI], along with the number of occurrences of each sequence.
- 2. Generalize each  $A_i \in QI$  in freq until its assigned values satisfy k.
- 3. Test 2- and 3- combinations of *Identifying*, *More* and *Most* and **let** *outliers* store those cell combinations not having *k* occurrences.
- Data holder decides whether to generalize an A<sub>j</sub>∈ QI based on *outliers* and if so, identifies the A<sub>j</sub> to generalize. freq contains the generalized result.
- 5. **Repeat** steps 3 and 4 until the data holder no longer elects to generalize.
- 6. Automatically suppress a value having a combination in *outliers*, where precedence is given to the value occurring in the most number of combinations of *outliers*.



#### What's Next?

• I-Diversity: homogenous distribution of sensitive attribute values within anonymized data

|    | N        | Jon-Sen   | Sensitive   |                 |
|----|----------|-----------|-------------|-----------------|
|    | Zip Code | Age       | Nationality | Condition       |
| 1  | 130**    | < 30      | *           | Heart Disease   |
| 2  | 130**    | < 30      | *           | Heart Disease   |
| 3  | 130**    | < 30      | *           | Viral Infection |
| 4  | 130**    | < 30      | *           | Viral Infection |
| 5  | 1485*    | $\geq 40$ | *           | Cancer          |
| 6  | 1485*    | $\geq 40$ | *           | Heart Disease   |
| 7  | 1485*    | $\geq 40$ | *           | Viral Infection |
| 8  | 1485*    | $\geq 40$ | *           | Viral Infection |
| 9  | 130**    | 3*        | *           | Cancer          |
| 10 | 130**    | 3*        | *           | Cancer          |
| 11 | 130**    | 3*        | *           | Cancer          |
| 12 | 130**    | 3*        | *           | Cancer          |

Japanese Umeko has viral infection

Neighbor Bob has cancer



#### **UTD Anonymization Library**

- Contains 5 different methods of anonymization
- Soon to come:
  - Support for 2 other anonymity definitions
  - Integration with Weka
  - Perturbation methods

