
Intrusion Detection

• Principles
• Basics
• Models of Intrusion Detection
• Architecture of an IDS

FEARLESS engineering Slide #22-1

• Architecture of an IDS
• Organization
• Incident Response

Principles of Intrusion Detection

• Characteristics of systems not under attack
– User, process actions conform to statistically

predictable pattern
– User, process actions do not include sequences of

actions that subvert the security policy

FEARLESS engineering Slide #22-2

actions that subvert the security policy
– Process actions correspond to a set of

specifications describing what the processes are
allowed to do

• Systems under attack do not meet at least
one of these

Example

• Goal: insert a back door into a system
– Intruder will modify system configuration file or

program
– Requires privilege; attacker enters system as an

unprivileged user and must acquire privilege

FEARLESS engineering Slide #22-3

unprivileged user and must acquire privilege
• Nonprivileged user may not normally acquire privilege

(violates #1)
• Attacker may break in using sequence of commands that

violate security policy (violates #2)
• Attacker may cause program to act in ways that violate

program’s specification

Basic Intrusion Detection

• Attack tool is automated script designed to
violate a security policy

• Example: rootkit
– Includes password sniffer
– Designed to hide itself using Trojaned versions of

FEARLESS engineering Slide #22-4

– Designed to hide itself using Trojaned versions of
various programs (ps, ls, find, netstat, etc.)

– Adds back doors (login, telnetd, etc.)
– Has tools to clean up log entries (zapper, etc.)

Detection

• Rootkit configuration files cause ls, du, etc. to
hide information
– ls lists all files in a directory

• Except those hidden by configuration file

– dirdump (local program to list directory entries)

FEARLESS engineering Slide #22-5

– dirdump (local program to list directory entries)
lists them too

• Run both and compare counts
• If they differ, ls is doctored

• Other approaches possible

Key Point

• Rootkit does not alter kernel or file structures
to conceal files, processes, and network
connections
– It alters the programs or system calls that interpret

those structures

FEARLESS engineering Slide #22-6

those structures
– Find some entry point for interpretation that rootkit

did not alter
– The inconsistency is an anomaly (violates #1)

Denning’s Model

• Hypothesis: exploiting vulnerabilities requires
abnormal use of normal commands or
instructions
– Includes deviation from usual actions

FEARLESS engineering Slide #22-7

– Includes execution of actions leading to break-ins
– Includes actions inconsistent with specifications of

privileged programs

Goals of IDS

• Detect wide variety of intrusions
– Previously known and unknown attacks
– Suggests need to learn/adapt to new attacks or

changes in behavior

• Detect intrusions in timely fashion

FEARLESS engineering Slide #22-8

• Detect intrusions in timely fashion
– May need to be be real-time, especially when

system responds to intrusion
• Problem: analyzing commands may impact response

time of system

– May suffice to report intrusion occurred a few
minutes or hours ago

Goals of IDS

• Present analysis in simple, easy-to-
understand format
– Ideally a binary indicator
– Usually more complex, allowing analyst to

examine suspected attack

FEARLESS engineering Slide #22-9

examine suspected attack
– User interface critical, especially when monitoring

many systems

• Be accurate
– Minimize false positives, false negatives
– Minimize time spent verifying attacks, looking for

them

Models of Intrusion Detection

• Anomaly detection
– What is usual, is known
– What is unusual, is bad

• Misuse detection
– What is bad, is known

FEARLESS engineering Slide #22-10

– What is bad, is known
– What is not bad, is good

• Specification-based detection
– What is good, is known
– What is not good, is bad

Anomaly Detection

• Analyzes a set of characteristics of system,
and compares their values with expected
values; report when computed statistics do
not match expected statistics

FEARLESS engineering Slide #22-11

– Threshold metrics
– Statistical moments
– Markov model

Threshold Metrics

• Counts number of events that occur
– Between m and n events (inclusive) expected to

occur
– If number falls outside this range, anomalous

FEARLESS engineering Slide #22-12

• Example
– Windows: lock user out after k failed sequential

login attempts. Range is (0, k–1).
• k or more failed logins deemed anomalous

Difficulties

• Appropriate threshold may depend on non-
obvious factors
– Typing skill of users
– If keyboards are US keyboards, and most users

are French, typing errors very common

FEARLESS engineering Slide #22-13

are French, typing errors very common
• Dvorak vs. non-Dvorak within the US

Statistical Moments

• Analyzer computes standard deviation (first
two moments), other measures of correlation
(higher moments)
– If measured values fall outside expected interval

for particular moments, anomalous

FEARLESS engineering Slide #22-14

for particular moments, anomalous

• Potential problem
– Profile may evolve over time; solution is to weigh

data appropriately or alter rules to take changes
into account

Example: IDES

• Developed at SRI International to test
Denning’s model
– Represent users, login session, other entities as

ordered sequence of statistics <q0,j, …, qn,j>
– q (statistic i for day j) is count or time interval

FEARLESS engineering Slide #22-15

– qi,j (statistic i for day j) is count or time interval
– Weighting favors recent behavior over past

behavior
• Ak,j sum of counts making up metric of kth statistic on jth

day
• qk,l+1 = Ak,l+1 – Ak,l + 2–rtqk,l where t is number of log

entries/total time since start, r factor determined through
experience

Potential Problems

• Assumes behavior of processes and users
can be modeled statistically
– Ideal: matches a known distribution such as

Gaussian or normal
– Otherwise, must use techniques like clustering to

FEARLESS engineering Slide #22-16

– Otherwise, must use techniques like clustering to
determine moments, characteristics that show
anomalies, etc.

• Real-time computation a problem too

Misuse Modeling

• Determines whether a sequence of
instructions being executed is known to
violate the site security policy
– Descriptions of known or potential exploits

grouped into rule sets

FEARLESS engineering Slide #22-17

grouped into rule sets
– IDS matches data against rule sets; on success,

potential attack found

• Cannot detect attacks unknown to developers
of rule sets
– No rules to cover them

Example: NFR

• Built to make adding new rules easily
• Architecture:

– Packet sucker: read packets from network
– Decision engine: uses filters to extract information
– Backend: write data generated by filters to disk

FEARLESS engineering Slide #22-18

– Backend: write data generated by filters to disk
• Query backend allows administrators to extract raw,

postprocessed data from this file
• Query backend is separate from NFR process

Comparison and Contrast

• Misuse detection: if all policy rules known,
easy to construct rulesets to detect violations
– Usual case is that much of policy is unspecified,

so rulesets describe attacks, and are not complete

• Anomaly detection: detects unusual events,
but these are not necessarily security

FEARLESS engineering Slide #22-19

but these are not necessarily security
problems

• Specification-based vs. misuse: spec
assumes if specifications followed, policy not
violated; misuse assumes if policy as
embodied in rulesets followed, policy not
violated

IDS Architecture

• Basically, a sophisticated audit system
– Agent like logger; it gathers data for analysis
– Director like analyzer; it analyzes data obtained

from the agents according to its internal rules
– Notifier obtains results from director, and takes

FEARLESS engineering Slide #22-20

– Notifier obtains results from director, and takes
some action

• May simply notify security officer
• May reconfigure agents, director to alter collection,

analysis methods
• May activate response mechanism

Agents

• Obtains information and sends to director
• May put information into another form

– Preprocessing of records to extract relevant parts

• May delete unneeded information

FEARLESS engineering Slide #22-21

• May delete unneeded information
• Director may request agent send other

information

Example

• IDS uses failed login attempts in its analysis
• Agent scans login log every 5 minutes, sends

director for each new login attempt:
– Time of failed login
– Account name and entered password

FEARLESS engineering Slide #22-22

– Account name and entered password

• Director requests all records of login (failed or
not) for particular user
– Suspecting a brute-force cracking attempt

Host-Based Agent

• Obtain information from logs
– May use many logs as sources
– May be security-related or not
– May be virtual logs if agent is part of the kernel

FEARLESS engineering Slide #22-23

• Very non-portable

• Agent generates its information
– Scans information needed by IDS, turns it into

equivalent of log record
– Typically, check policy; may be very complex

Network-Based Agents

• Detects network-oriented attacks
– Denial of service attack introduced by flooding a

network

• Monitor traffic for a large number of hosts
• Examine the contents of the traffic itself

FEARLESS engineering Slide #22-24

• Examine the contents of the traffic itself
• Agent must have same view of traffic as

destination
– TTL tricks, fragmentation may obscure this

• End-to-end encryption defeats content
monitoring
– Not traffic analysis, though

Network Issues

• Network architecture dictates agent
placement
– Ethernet or broadcast medium: one agent per

subnet
– Point-to-point medium: one agent per connection,

or agent at distribution/routing point

FEARLESS engineering Slide #22-25

or agent at distribution/routing point

• Focus is usually on intruders entering
network
– If few entry points, place network agents behind

them
– Does not help if inside attacks to be monitored

Aggregation of Information

• Agents produce information at multiple layers
of abstraction
– Application-monitoring agents provide one view

(usually one line) of an event
– System-monitoring agents provide a different

FEARLESS engineering Slide #22-26

– System-monitoring agents provide a different
view (usually many lines) of an event

– Network-monitoring agents provide yet another
view (involving many network packets) of an event

Director

• Reduces information from agents
– Eliminates unnecessary, redundant records

• Analyzes remaining information to determine
if attack under way

FEARLESS engineering Slide #22-27

if attack under way
– Analysis engine can use a number of techniques,

discussed before, to do this

• Usually run on separate system
– Does not impact performance of monitored

systems
– Rules, profiles not available to ordinary users

Example

• Jane logs in to perform system maintenance
during the day

• She logs in at night to write reports
• One night she begins recompiling the kernel
• Agent #1 reports logins and logouts

FEARLESS engineering Slide #22-28

• Agent #1 reports logins and logouts
• Agent #2 reports commands executed

– Neither agent spots discrepancy
– Director correlates log, spots it at once

Incident Prevention

• Identify attack before it completes
• Prevent it from completing
• Jails useful for this

– Attacker placed in a confined environment that

FEARLESS engineering Slide #22-29

– Attacker placed in a confined environment that
looks like a full, unrestricted environment

– Attacker may download files, but gets bogus ones
– Can imitate a slow system, or an unreliable one
– Useful to figure out what attacker wants
– MLS systems provide natural jails

Intrusion Handling

• Restoring system to satisfy site security policy
• Six phases

– Preparation for attack (before attack detected)
– Identification of attack
� Containment of attack (confinement)

FEARLESS engineering Slide #22-30

� Containment of attack (confinement)
� Eradication of attack (stop attack)
– Recovery from attack (restore system to secure

state)
� Follow-up to attack (analysis and other actions)

� Discussed in what follows

Containment Phase

• Goal: limit access of attacker to system
resources

• Two methods
– Passive monitoring

FEARLESS engineering Slide #22-31

– Passive monitoring
– Constraining access

Passive Monitoring

• Records attacker’s actions; does not interfere
with attack
– Idea is to find out what the attacker is after and/or

methods the attacker is using

• Problem: attacked system is vulnerable

FEARLESS engineering Slide #22-32

• Problem: attacked system is vulnerable
throughout
– Attacker can also attack other systems

• Example: type of operating system can be
derived from settings of TCP and IP packets
of incoming connections
– Analyst draws conclusions about source of attack

Constraining Actions

• Reduce protection domain of attacker
• Problem: if defenders do not know what

attacker is after, reduced protection domain
may contain what the attacker is after

FEARLESS engineering Slide #22-33

may contain what the attacker is after
– Stoll created document that attacker downloaded
– Download took several hours, during which the

phone call was traced to Germany

Deception

• Deception Tool Kit
– Creates false network interface
– Can present any network configuration to

attackers
– When probed, can return wide range of

FEARLESS engineering Slide #22-34

– When probed, can return wide range of
vulnerabilities

– Attacker wastes time attacking non-existent
systems while analyst collects and analyzes
attacks to determine goals and abilities of attacker

– Experiments show deception is effective response
to keep attackers from targeting real systems

Eradication Phase

• Usual approach: deny or remove access to
system, or terminate processes involved in
attack

• Use wrappers to implement access control
– Example: wrap system calls

FEARLESS engineering Slide #22-35

– Example: wrap system calls
• On invocation, wrapper takes control of process
• Wrapper can log call, deny access, do intrusion detection
• Experiments focusing on intrusion detection used

multiple wrappers to terminate suspicious processes

– Example: network connections
• Wrapper around servers log, do access control on,

incoming connections and control access to Web-based
databases

Firewalls

• Mediate access to organization’s network
– Also mediate access out to the Internet

• Example: Java applets filtered at firewall
– Use proxy server to rewrite them

• Change “<applet>” to something else

FEARLESS engineering Slide #22-36

• Change “<applet>” to something else

– Discard incoming web files with hex sequence CA
FE BA BE

• All Java class files begin with this

– Block all files with name ending in “.class” or “.zip”
• Lots of false positives

Counterattacking

• Use legal procedures
– Collect chain of evidence so legal authorities can

establish attack was real
– Check with lawyers for this

• Rules of evidence very specific and detailed

FEARLESS engineering Slide #22-37

• Rules of evidence very specific and detailed
• If you don’t follow them, expect case to be dropped

• Technical attack
– Goal is to damage attacker seriously enough to

stop current attack and deter future attacks

Consequences

1.May harm innocent party
• Attacker may have broken into source of attack or

may be impersonating innocent party

2.May have side effects
• If counterattack is flooding, may block legitimate

FEARLESS engineering Slide #22-38

• If counterattack is flooding, may block legitimate
use of network

3.Antithetical to shared use of network
• Counterattack absorbs network resources and

makes threats more immediate

4.May be legally actionable

Example: Counterworm

• Counterworm given signature of real worm
– Counterworm spreads rapidly, deleting all

occurrences of original worm

• Some issues
– How can counterworm be set up to delete only

FEARLESS engineering Slide #22-39

– How can counterworm be set up to delete only
targeted worm?

– What if infected system is gathering worms for
research?

– How do originators of counterworm know it will not
cause problems for any system?

• And are they legally liable if it does?

Key Points

• Intrusion detection is a form of auditing
• Anomaly detection looks for unexpected

events
• Misuse detection looks for what is known to

FEARLESS engineering Slide #22-40

• Misuse detection looks for what is known to
be bad

• Specification-based detection looks for what
is known not to be good

• Intrusion response requires careful thought
and planning

