
UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Access Control Models
Part I

Murat Kantarcioglu
UT Dallas

FEARLESS engineering

Introduction

Two main categories:
– Discretionary Access Control Models (DAC)

• Definition: If an individual user can set an access control
mechanism to allow or deny access to an object, that
mechanism is a discretionary access control (DAC), also
called an identity-based access control (IBAC).

– Mandatory Access Control Models (MAC)
• Definition: When a system mechanism controls access to an

object and an individual user cannot alter that access, the
control is a mandatory access control (MAC) [, occasionally
called a rule-based access control.]

FEARLESS engineering

Introduction

• Other models:
– The Chinese Wall Model – it combines elements of

DAC and MAC
– RBAC Model – it is a DAC model; however, it is

sometimes considered a policy-neutral model
– The Biba Model – relevant for integrity
– The Information-Flow model – generalizes the

ideas underlying MAC

FEARLESS engineering

DAC

• DAC policies govern the access of subjects to objects on
the basis of subjects' identity, objects’ identity and
permissions

• When an access request is submitted to the system, the
access control mechanism verifies whether there is a
permission authorizing the access

• Such mechanisms are discretionary in that they allow
subjects to grant other subjects authorization to access
their objects at their discretion

FEARLESS engineering

DAC

• Advantages:
– Flexibility in terms of policy specification
– Supported by all OS and DBMS

• Drawbacks:
– No information flow control (Trojan Horses

attacks)

FEARLESS engineering

DAC – The HRU Model

• The Harrison-Ruzzo-Ullman (HRU) has introduced
some important concepts:
– The notion of authorization systems

• This is way we include it among the DAC models, even though the
distinction between DAC and MAC was introduced much later

– The notion of safety

[HRU76] M.Harrison, W. Ruzzo, J. Ullman. Protection in Operating

Systems. Comm. of ACM 19(8), August 1976.

FEARLESS engineering

The HRU Model

To describe the HRU model we need:
– S be a set of subjects
– O be a set of objects
– R be a set of access rights
– an access matrix M = (Mso) s∊ S, o∊O

– the entry Mso is the subset R specifying the rights
subject s has on object o

FEARLESS engineering

The HRU Model – Primitive Operations

The model includes six primitive operations for
manipulating the set of subjects, the set of
objects, and the access matrix:
– enter r into Mso

– delete r from Mso

– create subject s
– delete subject s
– create object o
– delete object o

FEARLESS engineering

The HRU Model - Commands

Commands in the HRU model have the format
command c(x1,.....,xk)

if r1 in Ms1,o1 and
if r2 in Ms2,o2 and

...
if rm in Msm,om
then op1,.....,opn

end

FEARLESS engineering

The HRU Model - Commands

• The indices s1,.....,sm and o1,.....,om are subjects and
objects that appear in the parameter list c(x1,.....,xk)

• The condition part of the command checks whether
particular access rights are present; the list of conditions
can be empty

• If all conditions hold, then the sequence of basic
operations is executed

• Each command contains at least one operation
• Commands containing exactly one operation are said

mono-operational commands

FEARLESS engineering

The HRU Model – Command examples

command create_file (s,f)
create f
enter o into Ms,f
enter r into Ms,f
enter w into Ms,f

end

command grant_read (s,p,f)
if o in Ms,f
then enter r into Mp,f

end

FEARLESS engineering

The HRU Model – Protection Systems

• A protection system is defined as
– A finite set of rights
– A finite set of commands

• A protection system is a state-transition
system

FEARLESS engineering

The HRU Model - States

• The effects of a command are recorded as a change to the
access matrix (usually the modified access control matrix is
denoted by M’)

• Hence the access matrix describes the state of the
protection system

• What do we mean by the state of the protection system?
– The state of a system is the collection of the current values of all

memory locations, all secondary storage, and all registers and other
components of the system

– The state of the protection system is the subset of such a collection
that deals with allocation of access permissions; it is thus presented
by the access control matrix

FEARLESS engineering

The HRU Model – States

Definition . A state, i.e. an access matrix M, is said to leak
the right r if there exists a command c that adds the right
r into an entry in the access matrix that previously did not
contain r. More formally, there exist s and o such that

r Mso and, after the execution of c, r ∊ M’so.

Note: The fact that an right is leaked is not necessarily bad; many
systems allow subjects to give other subjects access rights

∉

FEARLESS engineering

The HRU Model – Safety of States

What do we mean by saying that a state is “safe”?
Definition 1: “access to resources without the

concurrence of the owner is impossible” [HRU76]

Definition 2: “the user should be able to tell whether
what he is about to do (give away a right,
presumably) can lead to the further leakage of that
right to truly unauthorized subjects” [HRU76]

FEARLESS engineering

The HRU Model – Safety

The problem motivating the introduction of safety can be
described as follows:

“Suppose a subject s plans to give subjects s’ right r to
object o. The natural question is whether the current
access matrix, with r entered into (s’,o), is such that right
r could subsequently be entered somewhere new.”

FEARLESS engineering

The HRU Model – An example of “unsafe”
protection system

Assume to have a protection system with the
following two commands:
command grant_execute (s,p,f)

if o in Ms,f
then enter x into Mp,f

end

command modify_own_right (s,f)
if x in Ms,f
then enter w into Ms,f

end

FEARLESS engineering

The HRU Model – An example of “unsafe”
protection system

• Suppose user Bob has developed an application
program; he wants this program to be run by other
users but not modified by them

• The previous protection system is not safe with
respect to this policy; consider the following sequence
of commands:

- Bob: grant_execute (Bob, Tom, P1)
- Tom: modify_own_right (Tom, P1)

it results in access matrix where the entry MTom,P1
contains the w access right

FEARLESS engineering

The HRU Model - Safety

Definition . Given a protection system and a right r, we say that the
initial configuration Q0 is unsafe for r (or leaks r) if there is a
configuration Q and a command α such that
- Q is reachable from Q0

-α leaks r from Q
We say Q0 is safe for r if Q0 is not unsafe for r.

Alternative (more intuitive) definition . A state of a protection
system, that is, its matrix M, is said to be safe with respect to the
right r if no sequence of commands can transform M into a state
that leaks r.

Theorem . Given an access matrix M and a right r, verifying the safety
of M with respect to r is an undecidable problem.

FEARLESS engineering

The HRU Model – Safety
Other relevant results

The safety question is
• decidable for mono-operational protection systems
• undecidable for biconditional monotonic protection

systems
– Monotonic protections system means deletion of access rights

are not allowed once it is entered in the protection system.
– Biconditional means there is exactly two conditions in the

precondition part of the commands.

• decidable for monoconditional monotonic protection
systems
– Monoconditional means there is exactly one condition in the

precondition part of the commands.

FEARLESS engineering

The HRU Model
Concluding Remarks

The results on the decidability of the safety problem
illustrate an important security principle, the principle
of economy of mechanisms
– if one designs complex systems that can only be described

by complex models, it becomes difficult to find proofs of
security

– in the worst case (undecidability), there does not exist a
universal algorithm that verifies security for all problem
instances

FEARLESS engineering

Other Theoretical Models

• The take-grant model
(by A. Jones, R. Lipton, and L. Snyder)

• The schematic protection model
(by R. Sandhu)

• The typed access matrix model
(by R. Sandhu)

FEARLESS engineering

Other Models

• DAC models have been widely investigated in
the area of DBMS

• The first DAC model for relational databases
has been developed by Griffiths and Wide

• Several extensions to such model have been
developed

FEARLESS engineering

DAC – additional features and
recent trends

• Flexibility is enhanced by supporting different
kinds of permissions
– Positive vs. negative
– Strong vs. weak
– Implicit vs. explicit
– Content-based

FEARLESS engineering

Positive and Negative Permissions

• Positive permissions � Give access
• Negative permissions � Deny access
• Useful to specify exceptions to a given policy

and to enforce stricter control on particular
crucial data items

FEARLESS engineering

Positive and Negative Permissions

-

+

Main Issue: Conflicts

FEARLESS engineering

Authorization Conflicts

• Main solutions:
– No conflicts
– Negative permissions take precedence
– Positive permissions take precedence
– Nothing take precedence
– Most specific permissions take precedence

FEARLESS engineering

Weak and Strong Permissions

• Strong permissions cannot be overwritten
• Weak permissions can be overwritten by

strong and weak permissions

FEARLESS engineering

Implicit and Explicit Permissions

• Some models support implicit permissions
• Implicit permissions can be derived:

– by a set of propagation rules exploiting the
subject, object, and privilege hierarchies

– by a set of user-defined derivation rules

FEARLESS engineering

Derivation Rules: Example

• Ann can read file F1 from a table if Bob has an
explicit denial for this access

• Tom has on file F2 all the permissions that
Bob has

• Derivation rules are a way to concisely
express a set of security requirements

FEARLESS engineering

Derivation Rules

• Derivation rules are often expressed
according to logic programming

• Several research efforts have been carried
out to compare the expressive power of such
languages

• We need languages based on SQL and/or
XML

FEARLESS engineering

Content-based Permissions

• Content-based access control conditions the
access to a given object based on its content

• This type of permissions are mainly relevant for
database systems

• As an example, in a RDBMS supporting content-
based access control it is possible to authorize a
subject to access information only of those
employees whose salary is not greater than 30K

FEARLESS engineering

Content-based Permissions

• Two are the most common approaches to
enforce content-based access control in a
DBMS:
– by associating a predicate (or a Boolean

combination of predicates) with the permission
– by defining a view which selects the objects whose

content satisfies a given condition, and then
granting the permission on the view instead of on
the basic objects

FEARLESS engineering

DAC models - DBMS vs OS

• Increased number of objects to be protected
• Different granularity levels (relations, tuples, single

attributes)
• Protection of logical structures (relations, views)

instead of real resources (files)
• Different architectural levels with different protection

requirements
• Relevance not only of data physical representation,

but also of their semantics

FEARLESS engineering

The Trojan Horse

Process P

……………
read O1
……………
……………
write O2

O1

(ada,r,O1)
(ada,r,O2), (ada,w,O2),
(bob,r,O2)

O2

FEARLESS engineering

The Trojan Horse

• DAC models are unable to protect data
against Trojan Horses embedded in
application programs

• MAC models were developed to prevent this
type of illegal access

FEARLESS engineering

MAC

• MAC specifies the access that subjects have to
objects based on subjects and objects
classification

• This type of security has also been referred to as
multilevel security

• Database systems that satisfy multilevel security
properties are called multilevel secure database
management systems (MLS/DBMSs)

• Many of the MLS/DBMSs have been designed
based on the Bell and LaPadula (BLP) model

FEARLESS engineering

Bell and LaPadula Model

Elements of the model:
– objects - passive entities containing information to

be protected
– subjects: active entities requiring accesses to

objects (users, processes)
– access modes: types of operations performed by

subjects on objects
• read: reading operation
• append: modification operation

• write: both reading and modification

FEARLESS engineering

Bell and LaPadula Model

• Subjects are assigned clearance levels and they
can operate at a level up to and including their
clearance levels

• Objects are assigned sensitivity levels

• The clearance levels as well as the sensitivity levels
are called access classes

FEARLESS engineering

BLP Model - access classes

• An access class consists of two components
a security level a category set

• The security level is an element from a totally ordered
set - example
{Top Secret (TS), Secret (S), Confidential (C), Unclassified (U)} where

TS > S > C >U

• The category set is a set of elements, dependent from
the application area in which data are to be used -
example

{Army, Navy, Air Force, Nuclear}

FEARLESS engineering

BLP Model - Access classes

Access class ci = (Li, SCi) dominates access
class ck = (Lk, SCk), denoted as ci > ck, if both
the following conditions hold:

– Li > Lk The security level of ci is greater or
equal to the security level of ck

– SCi ⊇ SCk The category set of ci includes the
category set of ck

FEARLESS engineering

BLP Model - Access classes

• If Li > Lk and SCi SCk, we say that
ci strictly dominates ck

• ci and ck are said to be incomparable
(denoted as ci < > ck) if
neither ci > ck nor ck > ci holds

⊂

FEARLESS engineering

BLP Model - Examples

Access classes
c1 = (TS, {Nuclear, Army})

c2 = (TS, {Nuclear})

c3 = (C, {Army})

• c1 > c2

• c1 > c3 (TS > C and {Army} ⊂{Nuclear, Army})
• c2 < > c3

FEARLESS engineering

BLP Model - Axioms

• The state of the system is described by the pair (A,
L), where:
– A is the set of current accesses: triples of the form (s,o,m)

denoting that subject s is exercising access m on object o -
example (Bob, o1, read)

– L is the level function: it associates with each element in the
system its access class

Let O be the set of objects, S the set of subjects, and C the
set of access classes
L : O ∪S →→→→ C

FEARLESS engineering

BLP Model - Axioms

• Simple security property (no-read-up)
a given state (A, L) satisfies the simple security
property if for each element a= (s,o,m) ∈ A one of the
following condition holds
1. m = write
2. m = read or m = read&write and L(s) > L(o)

• Example: a subject with access class (C, {Army}) is not
allowed to read objects with access classes
(C, {Navy, Air Force}) or (U, {Air Force})

FEARLESS engineering

BLP Model - Axioms

• The simple security property prevents
subjects from reading data with access
classes dominating or incomparable with
respect with the subject access class

• It therefore ensures that subjects have
access only to information for which they
have the necessary access class

FEARLESS engineering

BLP Model - Axioms

• Star (*) property (no-write-down)
a given state (A, L) satisfies the *-property if for each
element a= (s,o,m) ∈ A one of the following condition
holds
1. m = read
2. m = write and L(o) > L(s)
3. m = read&write and L(o) = L(s)

• Example: a subject with access class (C,{Army,Nuclear}) is
not allowed to write data into objects with access class
(U, {Army,Nuclear})

FEARLESS engineering

BLP Model - Axioms

• The *-property has been defined to prevent
information flow into objects with lower-level
access classes or incomparable classes

• For a system to be secure both properties
must be verified by any system state

FEARLESS engineering

Bell and LaPadula Model

• Summary of access rules:
– Simple security property : A subject has read

access to an object if its access class dominates
the access class of the object;

– *-Property : A subject has append access to an
object if the subject's access class is dominated
by that of the object

FEARLESS engineering

Problem

• Colonel has (Secret, {Nuclear, Army}) clearance
• Major has (Secret, {Army}) clearance
• The Colonel needs to send a message to the Major. The

Colonel cannot write a document that has access class
(Secret, {Army}) because such a document would violate
the *-property

• To address this problem the model provides a
mechanism; each subject has a maximum access class
and a current access class

• A subject may change its access class; the current
access class must however be dominated by the
maximum access class

FEARLESS engineering

An Example of Application
The DG/Unix B2 System

• B2 is an evaluation class for secure systems defined as
part of the Trusted Computer System Evaluation Criteria
(TCSEC), known also as the Orange Book

• DG/Unix Provides mandatory access controls
– MAC label identifies security level
– Default labels, but can define others

• Initially
– Processes (users) assigned MAC label of parent

• Initial label assigned to user, kept in Authorization and Authentication
database

– Object assigned label at creation
• Explicit labels stored as part of attributes
• Implicit labels determined from parent directory

FEARLESS engineering

Directory Problem

• Process p at access class MAC_A tries to create file
/tmp/x

• /tmp/x exists but has access class MAC_B
– Assume MAC_B > MAC_A (MAC_B dominates MAC_A)

• Create fails
– Now p knows a file named x with a higher label exists

• Fix: only programs with same MAC label as directory can
create files in the directory
– This solution is too restrictive

FEARLESS engineering

Multilevel Directory

• Directory with a set of subdirectories, one per label
– Not normally visible to user
– p creating /tmp/x actually creates /tmp/d/x where d is

directory corresponding to MAC_A
– All p’s references to /tmp go to /tmp/d

• The directory problem illustrates an important
point:

Sometimes it is not sufficient to hide the contents of
objects. Also their existence must be hidden.

FEARLESS engineering

Bell and LaPadula Model

• It is a significant model and it has been used
in both OS and DBMS

• Some criticisms:
– Only dealing with confidentiality, not with integrity
– Containing covert channels (see the textbook for

more discussions on this)

