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Introduction

Two main categories:
– Discretionary Access Control Models (DAC)

• Definition: If an individual user can set an access control 
mechanism to allow or deny access to an object, that 
mechanism is a discretionary access control (DAC), also 
called an identity-based access control (IBAC).

– Mandatory Access Control Models (MAC)
• Definition: When a system mechanism controls access to an 

object and an individual user cannot alter that access, the 
control is a mandatory access control  (MAC) [, occasionally 
called a rule-based access control.]
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Introduction

• Other models:
– The Chinese Wall Model – it combines elements of 

DAC and MAC
– RBAC Model – it is a DAC model; however, it is 

sometimes considered a policy-neutral model
– The Biba Model – relevant for integrity
– The Information-Flow model – generalizes the 

ideas underlying MAC
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DAC

• DAC policies govern the access of subjects to objects on 
the basis of subjects' identity, objects’ identity and 
permissions

• When an access request is submitted to the system, the 
access control mechanism verifies whether there is a 
permission authorizing the access

• Such mechanisms are discretionary in that they allow 
subjects to grant other subjects authorization to access 
their objects at their discretion
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DAC

• Advantages:
– Flexibility in terms of policy specification
– Supported by all OS and DBMS

• Drawbacks:
– No information flow control (Trojan Horses 

attacks)
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DAC – The HRU Model

• The Harrison-Ruzzo-Ullman (HRU) has introduced 
some important concepts:
– The notion of authorization systems

• This is way we include it among the DAC models, even though the 
distinction between DAC and MAC was introduced much later

– The notion of safety

-------------------
[HRU76] M.Harrison, W. Ruzzo, J. Ullman. Protection in Operating 

Systems. Comm. of ACM 19(8), August 1976.
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The HRU Model

To describe the HRU model we need:
– S be a set of subjects
– O be a set of objects
– R be a set of access rights 
– an access matrix M = (Mso) s∊ S, o∊O

– the entry Mso is the subset R specifying the rights
subject s has on object o
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The HRU Model – Primitive Operations

The model includes six primitive operations for 
manipulating the set of subjects, the set of 
objects, and the access matrix:
– enter r into Mso

– delete r from Mso

– create subject  s
– delete subject s
– create object  o
– delete object o
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The HRU Model - Commands

Commands in the HRU model have the format
command c(x1,.....,xk)

if r1 in Ms1,o1 and
if r2 in Ms2,o2 and

...
if rm in Msm,om
then op1,.....,opn

end
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The HRU Model - Commands

• The indices s1,.....,sm and o1,.....,om are subjects and 
objects that appear in the parameter list c(x1,.....,xk)

• The condition part of the command checks whether 
particular access rights are present; the list of conditions 
can be empty

• If all conditions hold, then the sequence of basic 
operations is executed

• Each command contains at least one operation
• Commands containing exactly one operation are said 

mono-operational commands 
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The HRU Model – Command examples

command create_file (s,f)
create f
enter o into Ms,f
enter r into Ms,f
enter w into Ms,f

end

command grant_read (s,p,f)
if o in Ms,f
then enter r into Mp,f

end
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The HRU Model – Protection Systems

• A protection system is defined as 
– A finite set of rights
– A finite set of commands

• A protection system is a state-transition 
system
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The HRU Model - States

• The effects of a command are recorded as a change to the 
access matrix (usually the modified access control matrix is 
denoted by M’)

• Hence the access matrix describes the state of the 
protection system 

• What do we mean by the state of the protection system?
– The state of a system is the collection of the current values of all 

memory locations, all secondary storage, and all registers and other 
components of the system

– The state of the protection system is the subset of such a collection 
that deals with allocation of access permissions; it is thus presented 
by the access control matrix
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The HRU Model – States

Definition . A state, i.e. an access matrix M, is said to leak 
the right r if there exists a command c that adds the right 
r into an entry in the access matrix that previously did not 
contain r. More formally, there exist s and o such that 

r Mso and, after the execution of c, r ∊ M’so.

Note: The fact that an right is leaked is not necessarily bad; many 
systems allow subjects to give other subjects access rights

∉
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The HRU Model – Safety of States

What do we mean by saying that a state is “safe”?
Definition 1: “access to resources without the 

concurrence of the owner is impossible” [HRU76]

Definition 2: “the user should be able to tell whether 
what he is about to do (give away a right, 
presumably) can lead to the further leakage of that 
right to truly unauthorized subjects” [HRU76]
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The HRU Model – Safety

The problem motivating the introduction of safety can be 
described as follows:

“Suppose a subject s plans to give subjects s’ right r to 
object o. The natural question is whether the current 
access matrix, with r entered into (s’,o), is such that right 
r could subsequently be entered somewhere new.”
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The HRU Model – An example of “unsafe”
protection system

Assume to have a protection system with the 
following two commands:
command grant_execute (s,p,f)

if o in Ms,f
then enter x into Mp,f

end

command modify_own_right (s,f)
if x in Ms,f
then enter w into Ms,f

end
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The HRU Model – An example of “unsafe”
protection system

• Suppose user Bob has developed an application 
program; he wants this program to be run by other 
users but not modified by them

• The previous protection system is not safe with 
respect to this policy; consider the following sequence 
of commands:

- Bob: grant_execute (Bob, Tom, P1)
- Tom: modify_own_right (Tom, P1)

it results in access matrix where the entry MTom,P1 
contains the w access right
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The HRU Model - Safety

Definition . Given a protection system and a right r, we say that the 
initial configuration Q0 is unsafe for r (or leaks r) if there is a 
configuration Q and a command α such that
- Q is reachable from Q0

-α leaks r from Q
We say Q0 is safe for r if Q0 is not unsafe for r.

Alternative (more intuitive) definition . A state of a protection 
system, that is, its matrix M, is said to be safe with respect to the 
right r if no sequence of commands can transform M into a state 
that leaks r.

Theorem . Given an access matrix M and a right r, verifying the safety 
of M with respect to r is an undecidable problem.
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The HRU Model – Safety
Other relevant results

The safety question is
• decidable for mono-operational protection systems
• undecidable for biconditional monotonic protection 

systems
– Monotonic protections system means deletion of access rights 

are not allowed once it is entered in the protection system.
– Biconditional means there is exactly two conditions in the 

precondition part of the commands.

• decidable for monoconditional monotonic protection 
systems
– Monoconditional means there is exactly one condition in the 

precondition part of the commands.
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The HRU Model 
Concluding Remarks

The results on the decidability of the safety problem 
illustrate an important security principle,  the principle 
of economy of mechanisms
– if one designs complex systems that can only be described 

by complex models, it becomes difficult to find proofs of 
security

– in the worst case (undecidability), there does not exist a 
universal algorithm that verifies security for all problem 
instances
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Other Theoretical Models

• The take-grant model
(by A. Jones, R. Lipton, and L. Snyder)

• The schematic protection model
(by R. Sandhu)

• The typed access matrix model
(by R. Sandhu)
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Other Models

• DAC models have been widely investigated in 
the area of DBMS

• The first DAC model for relational databases 
has been developed by Griffiths and Wide

• Several extensions to such model have been 
developed 
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DAC – additional features and 
recent trends

• Flexibility is enhanced by supporting different 
kinds of permissions
– Positive vs. negative
– Strong vs. weak
– Implicit vs. explicit
– Content-based
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Positive and Negative Permissions

• Positive permissions � Give access
• Negative permissions � Deny access
• Useful to specify exceptions to a given policy 

and to enforce stricter control on particular 
crucial data items
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Positive and Negative Permissions

-

+

Main Issue: Conflicts
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Authorization Conflicts

• Main solutions:
– No conflicts
– Negative permissions take precedence
– Positive permissions take precedence
– Nothing take precedence
– Most specific permissions take precedence
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Weak and Strong Permissions

• Strong permissions cannot be overwritten
• Weak permissions can be overwritten by 

strong and weak permissions



FEARLESS engineering

Implicit and Explicit Permissions

• Some models support implicit permissions
• Implicit permissions can be derived:

– by a set of propagation rules exploiting the 
subject, object, and privilege hierarchies

– by a set of user-defined derivation rules
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Derivation Rules: Example

• Ann can read file F1 from a table if Bob has an 
explicit denial for this access

• Tom has on file F2 all the permissions that 
Bob has

• Derivation rules are a way to concisely 
express a set of security requirements



FEARLESS engineering

Derivation Rules

• Derivation rules are often expressed 
according to logic programming

• Several research efforts have been carried 
out to compare the expressive power of such 
languages

• We need languages based on SQL and/or 
XML
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Content-based Permissions

• Content-based access control conditions the 
access to a given object based on its content

• This type of permissions are mainly relevant for 
database systems

• As an example, in a RDBMS supporting content-
based access control it is possible to authorize a 
subject to access information only of those 
employees whose salary is not greater than 30K
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Content-based Permissions

• Two are the most common approaches to 
enforce content-based access control in a 
DBMS:
– by associating a predicate (or a Boolean 

combination of predicates) with the permission
– by defining a view which selects the objects whose 

content satisfies a given condition, and then 
granting the permission on the view instead of on 
the basic objects
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DAC models - DBMS vs OS

• Increased number of objects to be protected
• Different granularity levels (relations, tuples, single 

attributes)
• Protection of logical structures (relations, views) 

instead of real resources (files)
• Different architectural levels with different protection 

requirements
• Relevance not only of data physical representation, 

but also of their semantics 
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The Trojan Horse

Process P

……………
read O1
……………
……………
write O2

O1

(ada,r,O1)
(ada,r,O2), (ada,w,O2),
(bob,r,O2)

O2
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The Trojan Horse

• DAC models are unable to protect data 
against Trojan Horses embedded in 
application programs

• MAC models were developed to prevent this 
type of illegal access
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MAC

• MAC specifies the access that subjects have to 
objects based on subjects and objects 
classification

• This type of security has also been referred to as 
multilevel security

• Database systems that satisfy multilevel security 
properties are called multilevel secure database 
management systems (MLS/DBMSs) 

• Many of the MLS/DBMSs have been designed 
based on the Bell and LaPadula (BLP) model 
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Bell and LaPadula Model

Elements of the model:
– objects - passive entities containing information to 

be protected
– subjects: active entities requiring accesses to 

objects (users, processes)
– access modes: types of operations performed by 

subjects on objects
• read: reading operation
• append: modification operation

• write: both reading and modification
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Bell and LaPadula Model

• Subjects are assigned clearance levels and they 
can operate at a level up to and including their 
clearance levels

• Objects are assigned sensitivity levels

• The clearance levels as well as the sensitivity levels 
are called access classes
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BLP Model - access classes

• An access class consists of two components
a security level a category set

• The security level is an element from a totally ordered 
set - example
{Top Secret (TS), Secret (S), Confidential (C), Unclassified (U)} where  

TS > S > C >U

• The category set is a set of elements, dependent from 
the application area in which data are to be used -
example

{Army, Navy, Air Force, Nuclear}
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BLP Model - Access classes

Access class ci = (Li, SCi) dominates access
class ck = (Lk, SCk), denoted as ci > ck, if both 
the following conditions hold:

– Li > Lk The security level of ci is greater or 
equal to the security level of ck

– SCi ⊇ SCk The category set of ci includes the 
category set of ck
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BLP Model - Access classes

• If Li > Lk and SCi SCk, we say that 
ci strictly dominates ck

• ci and ck are said to be incomparable
(denoted as ci < > ck)  if 
neither ci > ck nor ck > ci holds

⊂
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BLP Model - Examples

Access classes
c1 = (TS, {Nuclear, Army})

c2 = (TS, {Nuclear})

c3 = (C, {Army})

• c1 > c2

• c1 > c3 (TS > C and {Army} ⊂{Nuclear, Army})
• c2 < > c3 
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BLP Model - Axioms

• The state of the system is described by the pair (A, 
L), where:
– A is the set of current accesses: triples of the form (s,o,m) 

denoting that subject s is exercising access m on object o -
example  (Bob, o1, read)

– L is the level function: it associates with each element in the 
system its access class

Let O be the set of objects, S the set of subjects, and C the 
set of access classes
L : O ∪S  →→→→ C
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BLP Model - Axioms

• Simple security property (no-read-up)
a given state (A, L) satisfies the simple security 
property if for each element a= (s,o,m) ∈ A one of the 
following condition holds
1. m = write
2. m = read or m = read&write and L(s) > L(o) 

• Example: a subject with access class (C, {Army}) is not 
allowed to read objects with access classes 
(C, {Navy, Air Force}) or (U, {Air Force})
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BLP Model - Axioms

• The simple security property prevents 
subjects from reading data with access 
classes dominating or incomparable with 
respect with the subject access class

• It therefore ensures that subjects have 
access only to information for which they 
have the necessary access class
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BLP Model - Axioms

• Star (*) property (no-write-down)
a given state (A, L) satisfies the  *-property if for each 
element a= (s,o,m) ∈ A one of the following condition 
holds
1. m = read
2. m = write and L(o) > L(s)
3. m = read&write and L(o) = L(s)

• Example: a subject with access class (C,{Army,Nuclear}) is 
not allowed to write data into objects with access class 
(U, {Army,Nuclear})
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BLP Model - Axioms

• The *-property has been defined to prevent 
information flow into objects with lower-level 
access classes or incomparable classes

• For a system to be secure both properties 
must be verified by any system state
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Bell and LaPadula Model

• Summary of access rules:
– Simple security property : A subject has read 

access to an object if its access class dominates 
the access class of the object;

– *-Property : A subject has append access to an 
object if the subject's access class is dominated 
by that of the object 
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Problem

• Colonel has (Secret, {Nuclear, Army}) clearance
• Major has (Secret, {Army}) clearance
• The Colonel needs to send a message to the Major. The 

Colonel cannot write a document that has access class 
(Secret, {Army}) because such a document would violate 
the *-property

• To address this problem the model provides a 
mechanism; each subject has a maximum access class 
and a current access class

• A subject may change its access class; the current 
access class must however be dominated by the 
maximum access class
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An Example of Application 
The DG/Unix B2 System

• B2 is an evaluation class for secure systems defined as 
part of the Trusted Computer System Evaluation Criteria 
(TCSEC), known also as the Orange Book

• DG/Unix Provides mandatory access controls
– MAC label identifies security level
– Default labels, but can define others

• Initially
– Processes (users) assigned MAC label of parent

• Initial label assigned to user, kept in Authorization and Authentication 
database

– Object assigned label at creation
• Explicit labels stored as part of attributes
• Implicit labels determined from parent directory
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Directory Problem

• Process p at access class MAC_A tries to create file 
/tmp/x

• /tmp/x exists but has access class MAC_B
– Assume MAC_B > MAC_A (MAC_B dominates MAC_A)

• Create fails
– Now p knows a file named x with a higher label exists

• Fix: only programs with same MAC label as directory can 
create files in the directory
– This solution is too restrictive
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Multilevel Directory

• Directory with a set of subdirectories, one per label
– Not normally visible to user
– p creating /tmp/x actually creates /tmp/d/x where d is 

directory corresponding to MAC_A
– All p’s references to /tmp go to /tmp/d

• The directory problem illustrates an important 
point:

Sometimes it is not sufficient to hide the contents of 
objects. Also their existence must be hidden.
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Bell and LaPadula Model

• It is a significant model and it has been used 
in both OS and DBMS

• Some criticisms:
– Only dealing with confidentiality, not with integrity
– Containing covert channels (see the textbook for 

more discussions on this)


