
UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Database Security
Overview

Murat Kantarcioglu

FEARLESS engineering

Topics

• The access control model of System R

• Extensions to the System R model
• Views and content-based access control

• Multi-level relational data model

FEARLESS engineering

Access Control in Commercial DBMSs

• All commercial systems adopt DAC

• Current discretionary authorization models for
relational DBMS are based on the System R
authorization model [Griffiths and Wade76]

• It is based on ownership administration with
administration delegation

FEARLESS engineering

The System R Authorization Model

• Objects to be protected are tables and views

• Privileges include: select, update, insert,
delete, drop, index (only for tables), alter
(only for tables)

• Groups are supported, whereas roles are not
• Privileges can be granted with the GRANT

OPTION

FEARLESS engineering

The System R - Delegation

• Privilege delegation is supported through the grant
option: if a privilege is granted with the grant option,
the user receiving it can not only exercise the
privilege, but can also grant it to other users

• a user can only grant a privilege on a given relation if
he/she is the table owner or if he/she has received
the privilege with grant option

FEARLESS engineering

Grant operation

GRANT PrivilegeList| ALL[PRIVILEGES]

ON Relation | View

TO UserList | PUBLIC

[WITH GRANT OPTION]

• it is possible to grant privileges on both relations and
views

• privileges apply to entire relations (or views)
• for the update privilege, one needs to specify the

columns to which it applies

FEARLESS engineering

Grant operation - example

Bob: GRANT select, insert ON Employee TO Ann

WITH GRANT OPTION;

Bob: GRANT select ON Employee TO Jim

WITH GRANT OPTION;

Ann: GRANT select, insert ON Employee TO Jim;

• Jim has the select privilege (received from both Bob and Ann)
and the insert privilege (received from Ann)

• Jim can grant to other users the select privilege (because it has
received it with grant option); however, he cannot grant the insert
privilege

FEARLESS engineering

Grant operation

• The authorization catalogs keep track for each users
of the privileges the user possesses and of the ones
that the user can delegate

• whenever a user u executes a Grant operation, the
system intersects the delegable privileges of u with
the set of privileges specified in the command

• if the intersection is empty, the command is not
executed

FEARLESS engineering

Grant operation - example

Bob: GRANT select, insert ON Employee TO Jim WITH
GRANT OPTION;

Bob: GRANT select ON Employee TO Ann WITH GRANT
OPTION;

Bob: GRANT insert ON Employee TO Ann;

Jim: GRANT update ON Employee TO Tim

WITH GRANT OPTION;

Ann: GRANT select, insert ON Employee TO Tim;

FEARLESS engineering

Grant operation - example

• The first three GRANT commands are fully executed
(Bob is the owner of the table)

• The fourth command is not executed, because Jim
does not have the update privilege on the table

• The fifth command is partially executed; Ann has the
select and insert but she does not have the grant
option for the insert --> Tim only receives the select
privilege

FEARLESS engineering

Revoke operation

REVOKE PrivilegeList| ALL[PRIVILEGES]

ON Relation | View

FROM UserList | PUBLIC
• a user can only revoke the privileges he/she has granted; it is not

possible to only revoke the grant option
• upon execution of a revoke operation, the user from whom the

privileges have been revoked looses these privileges, unless has
them from some source independent from that that has executed
the revoke

FEARLESS engineering

Revoke operation - example

Bob: GRANT select ON Employee TO Jim WITH GRANT
OPTION;

Bob: GRANT select ON Employee TO Ann WITH GRANT
OPTION;

Jim: GRANT select ON Employee TO Tim;

Ann: GRANT select ON Employee TO Tim;

Jim: REVOKE select ON Employee FROM Tim;

• Tim continues to hold the select privilege on table Employee
after the revoke operation, since he has independently obtained
such privilege from Ann.

FEARLESS engineering

Revoke operations

• Recursive revocation: whenever a user
revokes an authorization on a table from
another user, all the authorizations that the
revokee had granted because of the revoked
authorization are removed

• The revocation is iteratively applied to all the
subjects that received the access
authorization from the revokee

FEARLESS engineering

Recursive revoke

Let G1, …., Gn be a sequence of grant operations with a single
privilege on the same relations, such that i,k = 1,…., n, if i<k,
then Gi is executed before Gk. Let Ri be the revoke operation for
the privilege granted with operation Gi.
The semantics of the recursive revoke requires that the state of
the authorization system after the execution of the sequence

G1, …., Gn , Ri

be identical to the state that one would have after the execution
of the sequence

G1, …., Gi-1, G i+1 , …., Gn

FEARLESS engineering

Recursive Revocation

Bob

Ann

Chris

Jim

Sue

Pat

Dave
10

20

30

50

40

60

70

Bob

Ann

Chris

Jim Pat

10

20 50

60

FEARLESS engineering

Recursive revocation

• Recursive revocation in the System R takes into account the
timestamps denoting when each authorization has been granted

• Variations to this approach have been proposed that do not take
into account the timestamps; the reason is to avoid cascades of
revoke

• In such variations, the authorizations granted by the revokee are
kept as long as the revokee has other authorizations for the
same privilege (even if these authorizations have a larger
timestamps with respect to the timestamps of the grant
operations performed by the revokee)

FEARLESS engineering

Recursive revocation without timestamp

Bob

Ann

Chris

Jim

Pat

10

20

30

50

Sue Dave
40

60

70

Bob

Ann

Chris

Jim Pat

10

20 50

60

Sue Dave
40

70

FEARLESS engineering

Noncascading Revoke

• Recursive revoke can be a very disruptive
operation

• A recursive revoke entails:
– revoking all authorizations the revokee granted,

for which no other supporting authorizations exist
and, recursively, revoking all authorizations
granted through them

– Invalidating application programs and views

FEARLESS engineering

Noncascading Revoke

• The noncascading revoke allows a user to revoke a
privilege on a table from another user without
entailing automatic revocation of the authorizations
for the privilege on the table the latter may have
granted

• Instead of deleting the authorizations the revokee
may have granted by using the privilege received by
the revoker, all these authorizations are restated as if
they had been granted by the revoker

FEARLESS engineering

Noncascading Revoke

• The semantics of the revocation without
cascade of privilege p on table t from user y
by user x is:
– To restate with x as grantor all authorizations that

y granted by using the authorization being revoked

FEARLESS engineering

Noncascading Revoke

• Note that, since y may have received the grant option
for the privilege on the table from some other users
different from x, not all authorizations he/she granted
will be given by x

• Specifically, x will be considered as grantor only of
the authorizations y granted after recieving the
privilege with the grant option from x; y will still be
considered as grantor of all authorizations he/she
granted that are supported by other authorizations
not granted by x

FEARLESS engineering

Noncascading Revoke

80

Ann

Bob

Cathy

Dave

Emily

Fred

Gio

20

30

40

60

50

70

Ann

Bob

Cathy

Dave

Emily

Fred

Gio

20

30 60

50

70

70

80

FEARLESS engineering

Noncascading Revoke

Gio

Ann

Bob

Cathy

Dave

Emily

Fred

20

30

40

60

50

70

Gio

Ann

Bob

Cathy

Dave

Emily

Fred

20

30

40 50

70

80

80

70

FEARLESS engineering

Noncascading Revoke

• Note in the previous example that the
authorization granted by Dave to Emily has
not been specified with Cathy as grantor
because it was granted before Dave received
the privilege from Cathy

FEARLESS engineering

Views and content-based authorization

• Views are a mechanism commonly used to
support content-based access control in
RDBMS

• Content-based access authorizations should
be specified in terms of predicates

• Only the tuples of a relation verifying a given
predicate are considered as the protected
objects of the authorization

FEARLESS engineering

Views and content-based authorization

• The approach to support content-based
access control in RDBMS can be summarized
as follows:
– Define a view containing the predicates to select

the tuples to be returned to a given subject S
– Grant S the select privilge on the view, and not on

the underlying table

FEARLESS engineering

Views and content-based authorization

• Example: suppose we want authorize user
Ann to access only the employees whose
salary is lower than 20000 – steps:

– CREATE VIEW Vemp AS

SELECT * FROM Employee

WHERE Salary < 20000;

- GRANT Select ON Vemp TO Ann;

FEARLESS engineering

Views and content-based authorization

• Queries against views are transformed
through the view composition in queries
against base tables

• The view composition operation combines in
AND the predicates specified in the query on
the view with the predicates which are part of
the view definition

FEARLESS engineering

Views and content-based authorization

Ann: SELECT * FROM Vemp

WHERE Job = ‘Programmer’;

Query after view composition:

SELECT * FROM Employee

WHERE Salary < 20000 AND

Job = ‘Programmer’;

FEARLESS engineering

Steps in Query Processing

• Parsing
• Catalog lookup
• Authorization checking
• View Composition
• Query optimization

Note that authorization is performed before view
composition; therefore, authorization checking is
against the views used in the query and not against
the base tables used in these views

FEARLESS engineering

Views and content-based authorization

• Views can also be useful to grant select
privileges on specific columns: we only need
to define a view as projection on the columns
on which we want to give privileges

• Views can also be used to grant privileges on
simple statistics calculated on data (such as
AVG, SUMM,..)

FEARLESS engineering

Authorizations on views

• The user creating a view is called the view
definer

• The privileges that the view definer gets on
the view depend from:
– The view semantics, that is, its definition in terms

of the base relation(s)
– The authorizations that the definers has on the

base table

FEARLESS engineering

Authorizations on views

• The view definer does not receive privileges
corresponding to operations that cannot be
executed on the view

• For example, alter and index do not apply to
views

FEARLESS engineering

Authorizations on views

• Consider the following view
Bob: CREATE VIEW V1 (Emp#,

Total_Sal)

AS SELECT Emp#, Salary + Bonus

FROM Employee WHERE

Job =‘Programmer’;

The update operation is not defined on column Total_Sal of
the view; therefore, Bob will not receive the update
authorization on such column

FEARLESS engineering

Authorizations on views

• Basically, to determine the privileges that the
view definer has on the view, the system
needs to intersect the set of privileges that
the view definer has on the base tables with
the set of privileges corresponding to the
operations that can be performed on the view

FEARLESS engineering

Authorizations on views - example

• Consider relation Employee and assume Bob is the
creator of Employee

• Consider the following sequence of commands:
– Bob: GRANT Select, Insert, Update ON Employee to Tim;

– Tim: CREATE VIEW V1 AS SELECT Emp#, Salary FROM
Employee;

– Tim: CREATE VIEW V2 (Emp#, Annual_Salary) AS SELECT
Emp#, Salary*12 FROM Employee;

FEARLESS engineering

Authorizations on views - example

• Tim can exercise on V1 all privileges he has
on relation Employee, that is, Select, Insert,
Update

• By contrast, Tim can exercise on V2 only the
privileges of Select and Update on column
Emp#;

FEARLESS engineering

Authorizations on views

• It is possible to grant authorizations on a view: the
privileges that a user can grant are those that he/she
owns with grant option on the base tables

• Example: user Tim cannot grant any authorization on
views V1 and V2 he has defined, because he does
not have the authorizations with grant option on the
base table

FEARLESS engineering

Authorizations on views - example

• Consider the following sequence of commands:
– Bob: GRANT Select ON Employee TO Tim WITH GRANT
OPTION;

– Bob: GRANT Update, Insert ON Employee TO Tim;

– Tim: CREATE VIEW V4 AS SELECT Emp#, Salary FROM
Employee;

Authorizations of Tim on V4:

- Select with Grant Option;

- Update, Insert without Grant Option;

FEARLESS engineering

GRANT Command in SQL 99 Standard

• The following privileges can be specified:
– SELECT: Can read all columns (including those added

later via ALTER TABLE command).
– INSERT(col-name): Can insert tuples with non-null or non-

default values in this column.
INSERT means same right with respect to all columns. .

– REFERENCES (col-name): Can define foreign keys (in
other tables) that refer to this column.

– DELETE: Can delete tuples
– Many vendors support some other priviliges.

• If a user has a privilege with the GRANT OPTION, can pass
privilege on to other users (with or without passing on the
GRANT OPTION).

• Only owner can execute CREATE, ALTER, and DROP.

GRANT privileges ON object TO users [WITH GRANT OPTION]

FEARLESS engineering

GRANT and REVOKE of Privileges in SQL 99

• GRANT INSERT, SELECT ON Emp TO Ann
– Ann can query Emp or insert tuples into it.

• GRANT DELETE ON Emp TO Jim WITH GRANT OPTION
– Jim can delete tuples, and also authorize others to do so.

• GRANT UPDATE (salary) ON Emp TO Dustin
– Dustin can update (only) the salary field of Emp tuples.

• REVOKE: When a user executes a REVOKE command with CASCADE
key word, the effect is to withdraw the named privileges from all users who
currently hold these privileges solely through a GRANT command that was
previously executed by the same user who is now executing the REVOKE
command. If these users received the privileges with the grant option and
passed it along, those recipients in turn lose their privileges as a
consequence of the revoke command, unless they received through an
additional grant command. This is basically the recursive revocation without
timestamp.

FEARLESS engineering

GRANT/REVOKE on Views (SQL 99)

• If the creator of a view loses the SELECT
privilege on an underlying table, the view is
dropped!

• If the creator of a view loses a privilege held
with the grant option on an underlying table,
(s)he loses the privilege on the view as well;
so do users who were granted that privilege
on the view!

FEARLESS engineering

Role-Based Authorization (SQL-99)

• In SQL-92, privileges are actually assigned to
authorization ids, which can denote a single
user or a group of users.

• In SQL:1999 (and in many current systems),
privileges are assigned to roles.
– Roles can then be granted to users and to other

roles.
– Reflects how real organizations work.
– Illustrates how standards often catch up with “de

facto” standards embodied in popular systems.

• It looks like many commercial systems have
slightly different implementations.

FEARLESS engineering

• Most of the commercial DBMSs also support
RBAC features (Informix, Sybase, Oracle)

• However, in most cases they only supports
flat RBAC

Access Control in Commercial DBMSs

FEARLESS engineering

RBAC – SQL Commands

• CREATE ROLE role-name IDENTIFIED BY

passw |NOT IDENTIFIED;
example:

CREATE ROLE teller IDENTIFIED BY cashflow;

• DROP ROLE role-name;

FEARLESS engineering

RBAC – SQL Commands

• GRANT role TO user | role | PUBLIC [WITH ADMIN
OPTION];

to perform the grant of a role, a user must have the privilege for
the role with the ADMIN option, or the system privilege GRANT
ANY ROLE

The ADMIN option allows the receiver to modify or drop the role
• Example:

GRANT teller TO Bob;

FEARLESS engineering

RBAC – SQL Commands

• The grant command for authorization granting can
have roles as subjects

example:
GRANT select ON Employee TO teller;

FEARLESS engineering

RBAC – SQL Commands

• SET ROLE role-name IDENTIFIED BY passwd;

The set command is used enable and disable roles
during sessions
Example: SET ROLE teller IDENTIFIED by cashflow;

• SET ROLE ALL [EXCEPT role-name]

it can only be used for roles not requiring passwords
SET ROLE ALL; SET ROLE ALL EXCEPT banker;

• SET ROLE NONE;

It disables roles for the current session

FEARLESS engineering

Multilevel Relational Model

• The multilevel relational (MLR for short)
model results from the application of the BLP
model to relational databases

• Several issues
– Granularity: to which element do we apply the

classification?
– Integrity constraints

FEARLESS engineering

MLR Model - notation

Standard relational model – each relation is
characterized by two components

- A state-invariant relation scheme
- R(A1,…., An) where Ai is an attribute over some

domain Di

- A state-dependent relation over R composed of
distinct tuples of the form (a1,…, an), where
each ai is a value in domain Di

FEARLESS engineering

MLR Model – keys and FD

• Functional dependencies
– Let R be a relation and let X and Y be attribute sets, both

subsets of the attribute set of R
we say that X functionally determines Y if and only if not two
tuples may exist in the same relation over R with the same
value for X but different values for Y

• Primary Keys (entity integrity property)
– the primary key uniquely identifies each tuple in the relation
– A primary key cannot contain attributes with null values
– A relation cannot contain two tuples with the same value for

the primary key

FEARLESS engineering

MLR Model

• Given a relation, an access class can be
associated with:
– The entire relation
– Each tuple in the relation

• This is the common choice in commercial systems

– Each attribute value of each tuple in the relation
• In the remainder we consider this case

FEARLESS engineering

Multilevel (ML) relations

A ML relation is characterized by two components
- A state-invariant relation scheme

R(A1,C1,…., An,Cn, TC) where:
- Ai is an attribute over some domain Di
- Ci is a classification attribute for Ai; its domain is the set of access classes that

can be associated with values of Ai
- TC is the classification attribute of the tuple

- A set of state-dependent relation instances Rc over R for each access
class in the access class lattice. Each instance Rc is composed of
distinct tuples of the form (a1,c1,…, an,cn, tc), where:
- ai is a value in domain Di
- ci is the access class for ai
- tc is the access class of the tuple determined as the least upper bound of

all ci in the tuple
- Classification attributes cannot assume null values

FEARLESS engineering

ML relations - example

HighHigh150KLowDept1LowSam

HighHigh200KHighDept2HighAnn

LowLow100KLowDept1LowBob

TCCDept#SalaryCDept#Dept#CNameName

FEARLESS engineering

ML relations - instances

• A given relation may thus have instances at different access
classes

• The relation instance at class c contains all data that are visible
to subjects at level c

• That is, it contains all data whose access classes are dominated
by c

• All elements with access classes higher than c, or
incomparable, are masked by null values

• Sometimes, to avoid signaling channels, fictitious values (called
cover story values) can be used

FEARLESS engineering

ML relations - instances

LowLownullLowDept1LowSam

LowLow100KLowDept1LowBob

TCCDept#SalaryCDept#Dept#CNameName

Low instance

FEARLESS engineering

ML relations - instances

HighHigh150KLowDept1LowSam

HighHigh200KHighDept2HighAnn

LowLow100KLowDept1LowBob

TCCDept#SalaryCDept#Dept#CNameName

High instance

FEARLESS engineering

ML relations – correctness conditions

ML relations must satisfy the following
conditions:
o for each tuple in a ML relation, the attributes of the

primary key must have the same access class
o for each tuple in a ML relation, the access class

associated with the non-key attributes must
dominate the access class of the primary key

FEARLESS engineering

ML relations – keys and polyinstantiation

• In the standard relational model, each tuple is
uniquely identified, by the values of its key
attributes

• When access class are introduced, there may
be the need for the simultaneous presence of
multiple tuples with the same value for the key
attributes but with different classification,
which is phenomenon known as
polyinstantiation

FEARLESS engineering

ML relations – polyinstantiation

• Polyinstantiation occurs in the following two
situations:
– When a low user inserts data in a field which

already contains data at higher or incomparable
level – invisible polyinstantiation

– When a high user inserts data in a field which
already contains data at a lower level – visible
polyinstantiation

FEARLESS engineering

ML relations – invisible polyinstantiation

Suppose a low user asks to insert a tuple with the same primary
key as an existing tuple at a higher level; the DBMS has three
choices:

1) Notify the user that a tuple with the same primary key exists at higher
level and reject the insertion

2) Replace the existing tuple at higher level with the new tuple being
inserted at low level

3) Insert the new tuple at low level without modifying the existing tuple at
the higher level (i.e. polyinstantiate the entity)

Choice 1 introduces a signaling channel
Choice 2 allows the low user to overwrite data not visible to him and thus

compromising integrity
Choice 3 is a reasonable choice; as consequence it introduces a

polyinstantiated entity

FEARLESS engineering

ML relations – invisible polyinstantiation
Example

HighHigh150KLowDept1LowSam

HighHigh200KHighDept2HighAnn

LowLow100KLowDept1LowBob

TCCDept#SalaryCDept#Dept#CNameName

Assume a low user issue the following insert operation

INSERT INTO Employee
VALUES (Ann, Dept1, 100k)

FEARLESS engineering

ML relations – invisible polyinstantiation
Example

LowLow100KLowDept1LowAnn

HighHigh150KLowDept1LowSam

HighHigh200KHighDept2HighAnn

LowLow100KLowDept1LowBob

TCCDept#SalaryCDept#Dept#CNameName

The tuples with primary key “Ann” are polyinstantied

FEARLESS engineering

ML relations – visible polyinstantiation

Suppose a high user asks to insert a tuple with the same primary
key as an existing tuple at lower level; the DBMS has three choices:
1) Notify the user that a tuple with the same primary key exists and reject

the insertion
2) Replace the existing tuple at lower level with the new tuple being

inserted at the high level
3) Insert the new tuple at high level without modifying the existing tuple at

the lower level (i.e. polyinstantiate the entity)

Choice 1 does not introduce a signaling channel; however, rejecting the
insertion my result in a DoS problem

Choice 2 would result in removing a tuple at lower level and thus
introduce a signaling channel

Choice 3 is a reasonable choice; as consequence it introduces a
polyinstantiated entity

FEARLESS engineering

ML relations – polyinstantiation

• The introduction of data classification in relational DBMS
introduces polyinstantiation

• Several approaches have been developed to handle this
problem
– Approaches that allows polyinstantion

• Sandhu&Jajodia, SeaView Model by Denning et al.
– These approaches define the key of a multilevel relation to be a

combination of the original key attributes and their classifications
• Belief-based model by Smith and Winslett

– Approaches that prevent polyinstantion
• Require that all keys be classified at the lowest possible access class
• Partition the domain of the primary key among the various access

classes so that each value has a unique possible classification

