
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

Transaction Management Overview

Chapter 16

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Transactions

 Concurrent execution of user programs is essential for
good DBMS performance.
 Because disk accesses are frequent, and relatively slow, it is

important to keep the cpu humming by working on several
user programs concurrently.

 A user’s program may carry out many operations on
the data retrieved from the database, but the DBMS is
only concerned about what data is read/written
from/to the database.

 A transaction is the DBMS’s abstract view of a user
program: a sequence of reads and writes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Concurrency in a DBMS

 Users submit transactions, and can think of each
transaction as executing by itself.
 Concurrency is achieved by the DBMS, which interleaves

actions (reads/writes of DB objects) of various transactions.
 Each transaction must leave the database in a consistent

state if the DB is consistent when the transaction begins.
• DBMS will enforce some ICs, depending on the ICs

declared in CREATE TABLE statements.
• Beyond this, the DBMS does not really understand the

semantics of the data. (e.g., it does not understand how
the interest on a bank account is computed).

 Issues: Effect of interleaving transactions, and crashes.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Atomicity of Transactions

 A transaction might commit after completing all its
actions, or it could abort (or be aborted by the DBMS)
after executing some actions.

 A very important property guaranteed by the DBMS
for all transactions is that they are atomic. That is, a
user can think of a Xact as always executing all its
actions in one step, or not executing any actions at all.
 DBMS logs all actions so that it can undo the actions of

aborted transactions.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Example

 Consider two transactions (Xacts):
T1: BEGIN A=A+100, B=B-100 END
T2: BEGIN A=1.06*A, B=1.06*B END

 Intuitively, the first transaction is transferring $100
from B’s account to A’s account. The second is
crediting both accounts with a 6% interest payment.

 There is no guarantee that T1 will execute before T2 or
vice-versa, if both are submitted together. However,
the net effect must be equivalent to these two
transactions running serially in some order.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

Example (Contd.)

 Consider a possible interleaving (schedule):
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

 This is OK. But what about:
T1: A=A+100, B=B-100
T2: A=1.06*A, B=1.06*B

 The DBMS’s view of the second schedule:
T1: R(A), W(A), R(B), W(B)
T2: R(A), W(A), R(B), W(B)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

Scheduling Transactions

 Serial schedule: Schedule that does not interleave the
actions of different transactions.

 Equivalent schedules: For any database state, the effect
(on the set of objects in the database) of executing the
first schedule is identical to the effect of executing the
second schedule.

 Serializable schedule: A schedule that is equivalent to
some serial execution of the transactions.

(Note: If each transaction preserves consistency, every
serializable schedule preserves consistency.)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Anomalies with Interleaved Execution

 Reading Uncommitted Data (WR Conflicts,
“dirty reads”):

 Unrepeatable Reads (RW Conflicts):

T1: R(A), W(A), R(B), W(B), Abort
T2: R(A), W(A), C

T1: R(A), R(A), W(A), C
T2: R(A), W(A), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Anomalies (Continued)

 Overwriting Uncommitted Data (WW
Conflicts):

T1: W(A), W(B), C
T2: W(A), W(B), C

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Lock-Based Concurrency Control
 Strict Two-phase Locking (Strict 2PL) Protocol:

 Each Xact must obtain a S (shared) lock on object before
reading, and an X (exclusive) lock on object before writing.

 All locks held by a transaction are released when the
transaction completes

• (Non-strict) 2PL Variant: Release locks anytime, but
cannot acquire locks after releasing any lock.

 If an Xact holds an X lock on an object, no other Xact can
get a lock (S or X) on that object.

 Strict 2PL allows only serializable schedules.
 Additionally, it simplifies transaction aborts
 (Non-strict) 2PL also allows only serializable schedules,

but involves more complex abort processing

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Aborting a Transaction

 If a transaction Ti is aborted, all its actions have to be
undone. Not only that, if Tj reads an object last
written by Ti, Tj must be aborted as well!

 Most systems avoid such cascading aborts by releasing
a transaction’s locks only at commit time.
 If Ti writes an object, Tj can read this only after Ti commits.

 In order to undo the actions of an aborted transaction,
the DBMS maintains a log in which every write is
recorded. This mechanism is also used to recover
from system crashes: all active Xacts at the time of the
crash are aborted when the system comes back up.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

The Log

 The following actions are recorded in the log:
 Ti writes an object: the old value and the new value.

• Log record must go to disk before the changed page!
 Ti commits/aborts: a log record indicating this action.

 Log records are chained together by Xact id, so it’s
easy to undo a specific Xact.

 Log is often duplexed and archived on stable storage.
 All log related activities (and in fact, all CC related

activities such as lock/unlock, dealing with deadlocks
etc.) are handled transparently by the DBMS.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Recovering From a Crash

 There are 3 phases in the Aries recovery algorithm:
 Analysis: Scan the log forward (from the most recent

checkpoint) to identify all Xacts that were active, and all dirty
pages in the buffer pool at the time of the crash.

 Redo: Redoes all updates to dirty pages in the buffer pool,
as needed, to ensure that all logged updates are in fact
carried out and written to disk.

 Undo: The writes of all Xacts that were active at the crash
are undone (by restoring the before value of the update,
which is in the log record for the update), working
backwards in the log. (Some care must be taken to handle
the case of a crash occurring during the recovery process!)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Summary

 Concurrency control and recovery are among the
most important functions provided by a DBMS.

 Users need not worry about concurrency.
 System automatically inserts lock/unlock requests and

schedules actions of different Xacts in such a way as to
ensure that the resulting execution is equivalent to
executing the Xacts one after the other in some order.

 Write-ahead logging (WAL) is used to undo the
actions of aborted transactions and to restore the
system to a consistent state after a crash.
 Consistent state: Only the effects of commited Xacts seen.

