
Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 1

The Relational Model

Chapter 3

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 2

Why Study the Relational Model?

 Most widely used model.
 Vendors: IBM, Informix, Microsoft, Oracle,

Sybase, etc.

 “Legacy systems” in older models
 E.G., IBM’s IMS

 A synthesis emerged: object-relational model
• Informix Universal Server, UniSQL, O2, Oracle, DB2

 Recent developments in NoSQL systems

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 3

Relational Database: Definitions

 Relational database: a set of relations
 Relation: made up of 2 parts:

 Instance : a table, with rows and columns.
#Rows = cardinality, #fields = degree / arity.

 Schema : specifies name of relation, plus name and
type of each column.

• E.G. Students(sid: string, name: string, login: string,
age: integer, gpa: real).

 Can think of a relation as a set of rows or
tuples (i.e., all rows are distinct).

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 4

Example Instance of Students Relation

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

 Cardinality = 3, degree = 5, all rows distinct

 Do all columns in a relation instance have to
be distinct?

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 5

Relational Query Languages

 A major strength of the relational model:
supports simple, powerful querying of data.

 Queries can be written intuitively, and the
DBMS is responsible for efficient evaluation.
 The key: precise semantics for relational queries.
 Allows the optimizer to extensively re-order

operations, and still ensure that the answer does
not change.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 6

The SQL Query Language
 Developed by IBM (system R) in the 1970s
 Need for a standard since it is used by many

vendors
 Standards:

 SQL-86
 SQL-89 (minor revision)
 SQL-92 (major revision)
 SQL-99 (major extensions)
 SQL-2003, SQL-2006, SQL-2008, SQL-2009
 SQL-2011 (Latest)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 7

The SQL Query Language

 To find all 18 year old students, we can write:

SELECT *
FROM Students S
WHERE S.age=18

•To find just names and logins, replace the first line:

SELECT S.name, S.login

sid name login age gpa

53666 Jones jones@cs 18 3.4

53688 Smith smith@ee 18 3.2

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 8

Querying Multiple Relations
 What does the

following query
compute?

SELECT S.name, E.cid
FROM Students S, Enrolled E
WHERE S.sid=E.sid AND E.grade=“A”

S.name E.cid

Smith Topology112

sid cid grade
53831 Carnatic101 C
53831 Reggae203 B
53650 Topology112 A
53666 History105 B

Given the following instances
of Enrolled and Students:

we get:

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 9

Creating Relations in SQL

 Creates the Students
relation. Observe that the
type (domain) of each field
is specified, and enforced by
the DBMS whenever tuples
are added or modified.

 As another example, the
Enrolled table holds
information about courses
that students take.

CREATE TABLE Students
(sid: CHAR(20),
name: CHAR(20),
login: CHAR(10),
age: INTEGER,
gpa: REAL)

CREATE TABLE Enrolled
(sid: CHAR(20),
cid: CHAR(20),
grade: CHAR(2))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 10

Destroying and Altering Relations

 Destroys the relation Students. The schema
information and the tuples are deleted.

DROP TABLE Students

 The schema of Students is altered by adding a
new field; every tuple in the current instance
is extended with a null value in the new field.

ALTER TABLE Students
ADD COLUMN firstYear: integer

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 11

Adding and Deleting Tuples

 Can insert a single tuple using:

INSERT INTO Students (sid, name, login, age, gpa)
VALUES (53688, ‘Smith’, ‘smith@ee’, 18, 3.2)

 Can delete all tuples satisfying some
condition (e.g., name = Smith):

DELETE
FROM Students S
WHERE S.name = ‘Smith’

* Powerful variants of these commands are available; more later!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 12

Integrity Constraints (ICs)

 IC: condition that must be true for any instance
of the database; e.g., domain constraints.
 ICs are specified when schema is defined.
 ICs are checked when relations are modified.

 A legal instance of a relation is one that satisfies
all specified ICs.
 DBMS should not allow illegal instances.

 If the DBMS checks ICs, stored data is more
faithful to real-world meaning.
 Avoids data entry errors, too!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 13

Primary Key Constraints

 A set of fields is a key for a relation if :
1. No two distinct tuples can have same values in all

key fields, and
2. This is not true for any subset of the key.
 Part 2 false? A superkey.
 If there’s >1 key for a relation, one of the keys is

chosen (by DBA) to be the primary key.

 E.g., sid is a key for Students. (What about
name?) The set {sid, gpa} is a superkey.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 14

Primary and Candidate Keys in SQL
 Possibly many candidate keys (specified using

UNIQUE), one of which is chosen as the primary key.
CREATE TABLE Enrolled

(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid))

 “For a given student and course,
there is a single grade.” vs.
“Students can take only one
course, and receive a single grade
for that course; further, no two
students in a course receive the
same grade.”

 Used carelessly, an IC can prevent
the storage of database instances
that arise in practice!

CREATE TABLE Enrolled
(sid CHAR(20)
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid),
UNIQUE (cid, grade))

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 15

Foreign Keys, Referential Integrity

 Foreign key : Set of fields in one relation that is used
to `refer’ to a tuple in another relation. (Must
correspond to primary key of the second relation.)
Like a `logical pointer’.

 E.g. sid is a foreign key referring to Students:
 Enrolled(sid: string, cid: string, grade: string)
 If all foreign key constraints are enforced, referential

integrity is achieved, i.e., no dangling references.
 Can you name a data model w/o referential integrity?

• Links in HTML!

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 16

Foreign Keys in SQL

 Only students listed in the Students relation should
be allowed to enroll for courses.

CREATE TABLE Enrolled
(sid CHAR(20), cid CHAR(20), grade CHAR(2),

PRIMARY KEY (sid,cid),
FOREIGN KEY (sid) REFERENCES Students)

sid name login age gpa
53666 Jones jones@cs 18 3.4
53688 Smith smith@eecs 18 3.2
53650 Smith smith@math 19 3.8

sid cid grade
53666 Carnatic101 C
53666 Reggae203 B
53650 Topology112 A
53666 History105 B

Enrolled
Students

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 17

Enforcing Referential Integrity

 Consider Students and Enrolled; sid in Enrolled is a
foreign key that references Students.

 What should be done if an Enrolled tuple with a
non-existent student id is inserted? (Reject it!)

 What should be done if a Students tuple is deleted?
 Also delete all Enrolled tuples that refer to it.
 Disallow deletion of a Students tuple that is referred to.
 Set sid in Enrolled tuples that refer to it to a default sid.
 (In SQL, also: Set sid in Enrolled tuples that refer to it to a

special value null, denoting `unknown’ or `inapplicable’.)
 Similar if primary key of Students tuple is updated.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 18

Referential Integrity in SQL

 SQL/92 and SQL:1999
support all 4 options on
deletes and updates.
 Default is NO ACTION

(delete/update is rejected)
 CASCADE (also delete

all tuples that refer to
deleted tuple)

 SET NULL / SET DEFAULT
(sets foreign key value
of referencing tuple)

CREATE TABLE Enrolled
(sid CHAR(20),
cid CHAR(20),
grade CHAR(2),
PRIMARY KEY (sid,cid),
FOREIGN KEY (sid)

REFERENCES Students
ON DELETE CASCADE
ON UPDATE SET DEFAULT)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 19

Where do ICs Come From?

 ICs are based upon the semantics of the real-
world enterprise that is being described in the
database relations.

 We can check a database instance to see if an
IC is violated, but we can NEVER infer that
an IC is true by looking at an instance.
 An IC is a statement about all possible instances!
 From example, we know name is not a key, but the

assertion that sid is a key is given to us.

 Key and foreign key ICs are the most
common; more general ICs supported too.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 20

Logical DB Design: ER to Relational

 Entity sets to tables:

CREATE TABLE Employees
(ssn CHAR(11),
name CHAR(20),
lot INTEGER,
PRIMARY KEY (ssn))Employees

ssn
name

lot

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 21

Example: Works_in relationship set

lot

dname

budgetdid

since
name

Works_In DepartmentsEmployees

ssn

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 22

Relationship Sets to Tables

 In translating a relationship
set to a relation, attributes of
the relation must include:
 Keys for each

participating entity set
(as foreign keys).

• This set of attributes
forms a superkey for
the relation.

 All descriptive attributes.

CREATE TABLE Works_In(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (ssn, did),
FOREIGN KEY (ssn)

REFERENCES Employees,
FOREIGN KEY (did)

REFERENCES Departments)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 23

Review: Key Constraints

 Each dept has at
most one manager,
according to the
key constraint on
Manages.

Translation to
relational model?

Many-to-Many1-to-1 1-to Many Many-to-1

dname

budgetdid

since

lot

name

ssn

ManagesEmployees Departments

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 24

Translating ER Diagrams with Key Constraints

 Map relationship to a
table:
 Note that did is

the key now!
 Separate tables for

Employees and
Departments.

 Since each
department has a
unique manager, we
could instead
combine Manages
and Departments.

CREATE TABLE Manages(
ssn CHAR(11),
did INTEGER,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,
FOREIGN KEY (did) REFERENCES Departments)

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11),
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 25

Review: Participation Constraints

 Does every department have a manager?
 If so, this is a participation constraint: the participation of

Departments in Manages is said to be total (vs. partial).
• Every did value in Departments table must appear in a

row of the Manages table (with a non-null ssn value!)

lot

name dname

budgetdid

since
name dname

budgetdid

since

Manages

since

DepartmentsEmployees

ssn

Works_In

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 26

Participation Constraints in SQL
 We can capture participation constraints involving

one entity set in a binary relationship, but little else
(without resorting to CHECK constraints).

CREATE TABLE Dept_Mgr(
did INTEGER,
dname CHAR(20),
budget REAL,
ssn CHAR(11) NOT NULL,
since DATE,
PRIMARY KEY (did),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE NO ACTION)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 27

Review: Weak Entities

 A weak entity can be identified uniquely only by
considering the primary key of another (owner) entity.
 Owner entity set and weak entity set must participate in a

one-to-many relationship set (1 owner, many weak entities).
 Weak entity set must have total participation in this

identifying relationship set.

lot

name

agepname

DependentsEmployees

ssn

Policy

cost

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 28

Translating Weak Entity Sets
 Weak entity set and identifying relationship

set are translated into a single table.
 When the owner entity is deleted, all owned weak

entities must also be deleted.
CREATE TABLE Dep_Policy (

pname CHAR(20),
age INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (pname, ssn),
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 29

Review: ISA Hierarchies

Contract_Emps

name
ssn

Employees

lot

hourly_wages

ISA

Hourly_Emps

contractid

hours_worked
 As in C++, or other PLs,
attributes are inherited.
 If we declare A ISA B, every A
entity is also considered to be a B
entity.

 Overlap constraints: Can Joe be an Hourly_Emps as well as
a Contract_Emps entity? (Allowed/disallowed)

 Covering constraints: Does every Employees entity also have
to be an Hourly_Emps or a Contract_Emps entity? (Yes/no)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 30

Translating ISA Hierarchies to Relations

 General approach:
 3 relations: Employees, Hourly_Emps and Contract_Emps.

• Hourly_Emps: Every employee is recorded in
Employees. For hourly emps, extra info recorded in
Hourly_Emps (hourly_wages, hours_worked, ssn); must
delete Hourly_Emps tuple if referenced Employees
tuple is deleted).

• Queries involving all employees easy, those involving
just Hourly_Emps require a join to get some attributes.

 Alternative: Just Hourly_Emps and Contract_Emps.
 Hourly_Emps: ssn, name, lot, hourly_wages, hours_worked.
 Each employee must be in one of these two subclasses.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 31

Review: Binary vs. Ternary
Relationships

 What are the
additional
constraints in
the 2nd
diagram?

agepname

DependentsCovers

name

Employees

ssn lot

Policies

policyid cost

Beneficiary

agepname

Dependents

policyid cost

Policies

Purchaser

name

Employees

ssn lot

Bad design

Better design

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 32

Binary vs. Ternary Relationships (Contd.)

 The key
constraints allow
us to combine
Purchaser with
Policies and
Beneficiary with
Dependents.

 Participation
constraints lead to
NOT NULL
constraints.

 What if Policies is
a weak entity set?

CREATE TABLE Policies (
policyid INTEGER,
cost REAL,
ssn CHAR(11) NOT NULL,
PRIMARY KEY (policyid).
FOREIGN KEY (ssn) REFERENCES Employees,

ON DELETE CASCADE)
CREATE TABLE Dependents (

pname CHAR(20),
age INTEGER,
policyid INTEGER,
PRIMARY KEY (pname, policyid).
FOREIGN KEY (policyid) REFERENCES Policies,

ON DELETE CASCADE)

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 33

Views

 A view is just a relation, but we store a
definition, rather than a set of tuples.

CREATE VIEW YoungActiveStudents (name, grade)
AS SELECT S.name, E.grade
FROM Students S, Enrolled E
WHERE S.sid = E.sid and S.age<21

 Views can be dropped using the DROP VIEW command.
 How to handle DROP TABLE if there’s a view on the table?

• DROP TABLE command has options to let the user specify
this.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 34

Views and Security

 Views can be used to present necessary
information (or a summary), while hiding
details in underlying relation(s).
 Given YoungStudents, but not Students or

Enrolled, we can find students s who have are
enrolled, but not the cid’s of the courses they are
enrolled in.

Database Management Systems 3ed, R. Ramakrishnan and J. Gehrke 35

Relational Model: Summary

 A tabular representation of data.
 Simple and intuitive, currently the most widely used.
 Integrity constraints can be specified by the DBA,

based on application semantics. DBMS checks for
violations.
 Two important ICs: primary and foreign keys
 In addition, we always have domain constraints.

 Powerful and natural query languages exist.
 Rules to translate ER to relational model

