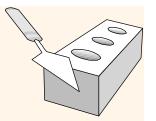


Relational Algebra

Chapter 4, Part A



Relational Query Languages

- *Query languages*: Allow manipulation and retrieval of data from a database.
- Relational model supports simple, powerful QLs:
 - Strong formal foundation based on logic.
 - Allows for much optimization.
- Query Languages != programming languages!
 - QLs not expected to be "Turing complete".
 - QLs not intended to be used for complex calculations.
 - QLs support easy, efficient access to large data sets.

Formal Relational Query Languages

- Two mathematical Query Languages form the basis for "real" languages (e.g. SQL), and for implementation:
 - <u>Relational Algebra</u>: More operational, very useful for representing execution plans.
 - <u>Relational Calculus</u>: Lets users describe what they want, rather than how to compute it. (Non-operational, <u>declarative</u>.)

Preliminaries

- A query is applied to *relation instances*, and the result of a query is also a relation instance.
 - Schemas of input relations for a query are fixed (but query will run regardless of instance!)
 - The schema for the *result* of a given query is also fixed! Determined by definition of query language constructs.
- Positional vs. named-field notation:
 - Positional notation easier for formal definitions, named-field notation more readable.
 - Both used in SQL

Example Instances

- "Sailors" and "Reserves" relations for our examples.
- We'll use positional or named field notation, assume that names of fields in query results are `inherited' from names of fields in query input relations.

S1	sid	sname	rating	age	
	22	dustin	7	45.0	
	31	lubber	8	55.5	
	58	rusty	10	35.0	

bid

101

103

day

10/10/96

11/12/96

sid

22

58

R1

S2	sid	sname	rating	age
	28	yuppy	9	35.0
	31	lubber	8	55.5
	44	guppy	5	35.0
	58	rusty	10	35.0

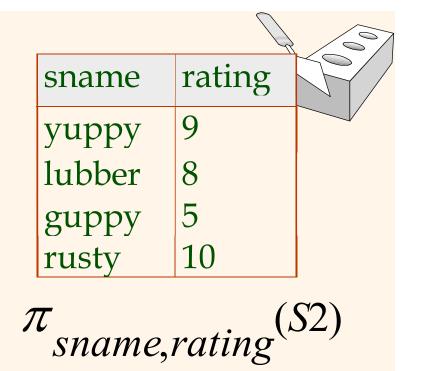
Relational Algebra

Basic operations:

- <u>Selection</u> (σ) Selects a subset of rows from relation.
- <u>Projection</u> (π) Deletes unwanted columns from relation.
- <u>*Cross-product*</u> (X) Allows us to combine two relations.
- <u>Set-difference</u> (—) Tuples in reln. 1, but not in reln. 2.
- <u>Union</u> (\cup) Tuples in reln. 1 and in reln. 2.
- Additional operations:
 - Intersection, <u>join</u>, division, renaming: Not essential, but (very!) useful.
- Since each operation returns a relation, operations can be composed! (Algebra is "closed".)

Projection

- Deletes attributes that are not in projection list.
- Schema of result contains exactly the fields in the projection list, with the same names that they had in the (only) input relation.
- Projection operator has to eliminate *duplicates*! (Why??)
 - Note: real systems typically don't do duplicate elimination unless the user explicitly asks for it. (Why not?)



age 35.0 55.5

 $\pi_{age}(S2)$

Selection

- Selects rows that satisfy selection condition.
- No duplicates in result! (Why?)
- Schema of result identical to schema of (only) input relation.
- *Result* relation can be the *input* for another relational algebra operation! (*Operator composition*.)

sid	sname	rating	age	
28	yuppy	9	35.0	
58	rusty	10	35.0	

 $\sigma_{rating>8}^{(S2)}$

sname	rating
yuppy	9
rusty	10

 $\pi_{sname, rating}(\sigma_{rating>8}(S2))$

Union, Intersection, Set-Difference

- All of these operations take two input relations, which must be <u>union-compatible</u>:
 - Same number of fields.
 - `Corresponding' fields have the same type.
- What is the *schema* of result?

22 dustin 7 45	.0

Sl	-S2

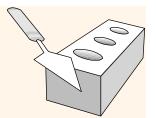
sid	sname	rating	age
22	dustin	7	45.0
31	lubber	8	55.5
58	rusty	10	35.0
44	guppy	5	35.0
28	yuppy	9	35.0

 $S1 \cup S2$

sid	sname	rating	age
31	lubber	8	55.5
58	rusty	10	35.0

 $S1 \cap S2$

Cross-Product



- ◆ Each row of S1 is paired with each row of R1.
- * Result schema has one field per field of S1 and R1, with field names `inherited' if possible.
 - *Conflict*: Both S1 and R1 have a field called *sid*.

-						
(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	22	101	10/10/96
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	22	101	10/10/96
31	lubber	8	55.5	58	103	11/12/96
58	rusty	10	35.0	22	101	10/10/96
58	rusty	10	35.0	58	103	11/12/96

• <u>Renaming operator</u>: $\rho(C(1 \rightarrow sid1, 5 \rightarrow sid2), S1 \times R1)$

Joins

* <u>Condition Join</u>: $R \bowtie_{c} S = \sigma_{c} (R \times S)$

(sid)	sname	rating	age	(sid)	bid	day
22	dustin	7	45.0	58	103	11/12/96
31	lubber	8	55.5	58	103	11/12/96

 $S1 \bowtie_{S1.sid < R1.sid} R1$

* *Result schema* same as that of cross-product.

- Fewer tuples than cross-product, might be able to compute more efficiently
- * Sometimes called a *theta-join*.

Joins

Equi-Join: A special case of condition join where
the condition *c* contains only *equalities*.

sid	sname	rating	age	bid	day
22	dustin	7	45.0	101	10/10/96
58	rusty	10	35.0	103	11/12/96
		~	D1		

 $S1 \bowtie_{sid} R1$

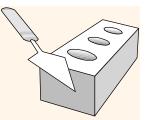
Result schema similar to cross-product, but only one copy of fields for which equality is specified.
Natural Join: Equijoin on *all* common fields.

Division

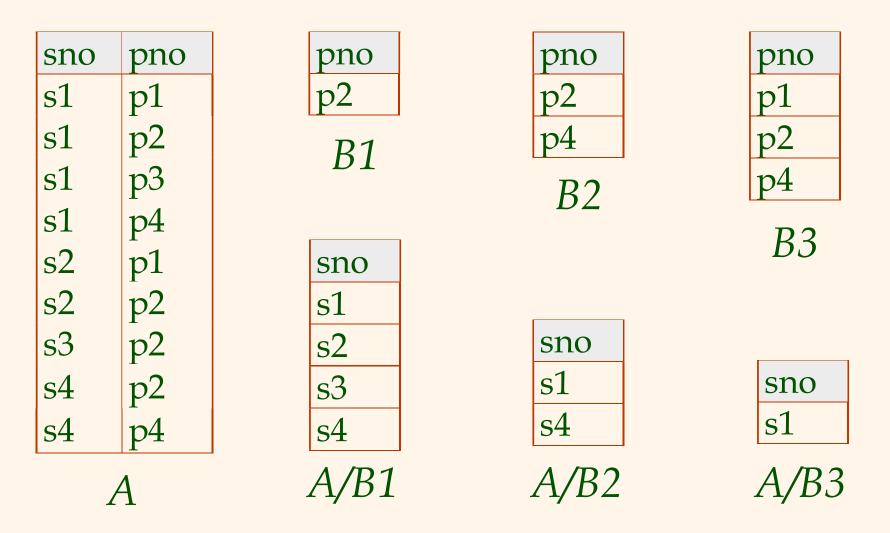
Not supported as a primitive operator, but useful for expressing queries like:

Find sailors who have reserved <u>all</u> boats.

- ✤ Let A have 2 fields, x and y; B have only field y:
 - $A/B = \{ \langle x \rangle \mid \exists \langle x, y \rangle \in A \ \forall \langle y \rangle \in B \}$
 - i.e., *A*/*B* contains all *x* tuples (sailors) such that for *every y* tuple (boat) in *B*, there is an *xy* tuple in *A*.
 - *Or*: If the set of *y* values (boats) associated with an *x* value (sailor) in *A* contains all *y* values in *B*, the *x* value is in *A*/*B*.
- ♦ In general, *x* and *y* can be any lists of fields; *y* is the list of fields in *B*, and $x \cup y$ is the list of fields of *A*.



Examples of Division A/B



Expressing A/B Using Basic Operators

- Division is not essential op; just a useful shorthand.
 - (Also true of joins, but joins are so common that systems implement joins specially.)
- ✤ *Idea*: For *A*/*B*, compute all *x* values that are not `disqualified' by some *y* value in *B*.
 - *x* value is *disqualified* if by attaching *y* value from *B*, we obtain an *xy* tuple that is not in *A*.

Disqualified *x* values: $\pi_{\chi}((\pi_{\chi}(A) \times B) - A)$

A/B: $\pi_{\chi}(A)$ – all disqualified tuples

Find names of sailors who've reserved boat #103

* Solution 1:
$$\pi_{sname}((\sigma_{bid=103} \text{Reserves}) \bowtie \text{ Sailors})$$

* Solution 2: ρ (Templ, $\sigma_{bid=103}$ Reserves)

 ρ (Temp2, Temp1 \bowtie Sailors)

 π_{sname} (Temp2)

* Solution 3: $\pi_{sname}(\sigma_{bid=103}(\text{Reserves} \bowtie Sailors))$

Find names of sailors who've reserved a red boat

 Information about boat color only available in Boats; so need an extra join:

 $\pi_{sname}((\sigma_{color='red'}^{}Boats) \bowtie \text{Reserves} \bowtie Sailors)$

A more efficient solution:

 $\pi_{sname}(\pi_{sid}((\pi_{bid}\sigma_{color='red'}Boats) \bowtie \operatorname{Res}) \bowtie \operatorname{Sailors})$

A query optimizer can find this, given the first solution!

Find sailors who've reserved a red or a green boat

Can identify all red or green boats, then find sailors who've reserved one of these boats:

 ρ (Tempboats, ($\sigma_{color ='red' \lor color ='green'}$ Boats))

 π_{sname} (Tempboats \bowtie Reserves \bowtie Sailors)

◆ Can also define Tempboats using union! (How?)◆ What happens if ∨ is replaced by ∧ in this query?

Find sailors who've reserved a red <u>and</u> a green boat

Previous approach won't work! Must identify sailors who've reserved red boats, sailors who've reserved green boats, then find the intersection (note that *sid* is a key for Sailors):

 ρ (Tempred, $\pi_{sid}((\sigma_{color='red'} Boats) \bowtie \text{Reserves}))$

 ρ (Tempgreen, $\pi_{sid}((\sigma_{color = green'} Boats) \bowtie \text{Reserves}))$

$$\pi_{sname}((Tempred \cap Tempgreen) \bowtie Sailors)$$

Find the names of sailors who've reserved all boats

Uses division; schemas of the input relations to / must be carefully chosen:

 $\rho (Tempsids, (\pi_{sid, bid} \text{Reserves}) / (\pi_{bid} Boats))$ $\pi_{sname} (Tempsids \bowtie Sailors)$

* To find sailors who've reserved all 'Interlake' boats: / $\pi_{bid}(\sigma_{bname='Interlake'}^{Boats})$

Summary

- The relational model has rigorously defined query languages that are simple and powerful.
- Relational algebra is more operational; useful as internal representation for query evaluation plans.
- Several ways of expressing a given query; a query optimizer should choose the most efficient version.