Functional Dependency

Murat Kantarcioglu

Slides are taken from Silberschatz et
al.

Functional Dependencies

. Let R be a relation schema
acR and fc R

* The functional dependency

oa—> f
holds on R if and only if for any legal relations
rnR), whenever any two tuples ¢, and ¢, of r agree
on the attributes a, they also agree on the
attributes . That is,

Llal =6L[a] = L8] = L8]

Example

. Example ConS|der r(AB)Wlth the following
iInstance of r. N

1 13
1 |6
2 |7

* On this instance, A - B does NOT hold, but B
— A does hold.

Example

B

C

D

o)

o

d1

o)

o

d2

A
9’
9’
9’

2

c2

d1

a2

o)

c3

d1

 Does AB — C hold?
e Does ABC — D hold ?
* Does BC — D hold?

Example

SSN

LastName

FirstName

City

111111111

Smith

John

Richardson

222222222

Li

Peng

Richardson

333333333

Kant

John

Plano

444444444

Smith

Mark

Plano

* Does {ssn} — {LastName} hold?
* Does {ssn} — {LastName,FirstName} hold ?
* Does {LastName, FirstName}— {City} hold?
* Does {City} — {FirstName} hold”?

Procedure for Computing F*

Fr=F
repeat

for each functional dependency fin F*
apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F *

for each pair of functional dependencies f,and f, in F~*
if f, and £, can be combined using transitivity then

add the resulting functional dependency to F *
until F * does not change any further

F = {A—)B A—)C CG->H CG—-I B—Hj
* some members of F*
—-A—>H
* by transitivity from A —- Band B > H
- AG > |

* by augmenting A —» C with G, toget AG —» CG
and then transitivity with CG — |/

— CG —> HIi

* by augmenting CG — [/ to infer CG —» CG/, and
augmenting of CG — H to infer CG/ — HI,

and then transitivity

Closure of Attribute Sets

. leen a set of attrlbutes L, defme the closure of o under
F (denoted by a*) as the set of attributes that are
functionally determined by o under F

« Algorithm to compute o, the closure of o under F
result .= a,;
while (changes to result) do
foreach > yin Fdo
begin
if B < result then result .= result U vy
end

Example of Attribute Set

Closure

R=(A B C, G, H,I
F={A—->BA—->C,CG—->HCG—I|B—->H}
(AG)*

1.result = AG
2.result=ABCG (A—> Cand A—- B)
3.result=ABCGH (CG —»> Hand CG c AGBC)
4.result = ABCGHI (CG — land CG c AGBCH)
Is AG a candidate key?
1.1s AG a super key?
1.Does AG > R?==1s (AG)*o R
2.1s any subset of AG a superkey?
1.Does A > R?==Is(A)' o R
2.DoesG—>R?==1s (G)" o R

Canonical Cover

« Sets of functional dependencies may have redundant dependencies
that can be inferred from the others

— Forexample: A — Cisredundantin: {A—>B, B—> C,A->C}
— Parts of a functional dependency may be redundant

« Eg.onRHS: {A->B, B> C, A— CD} canbe
simplified to

{A>B, B—>C, A->D}
« Eg.onLHS: {A—>B, B— C, AC— D} canbe
simplified to
{A—>B, B—>C, A->D}
 Intuitively, a canonical cover of F is a “minimal” set of functional

dependencies equivalent to F, having no redundant dependencies
or redundant parts of dependencies

Extraneous Attributes

Consider a set F of functional dependencies and the functional dependency o
— Bin F.
— Attribute A is extraneous in o if A € a
and F logically implies (F — {o. = B}) U {(a0. —A) — B}.
— Attribute A is extraneous in B if A € 3
and the set of functional dependencies
(F —{a — B}) U {ao. >(B — A)} logically implies F.
Note: implication in the opposite direction is trivial in each of the cases above,
since a “stronger” functional dependency always implies a weaker one

Example: Given F={A —> C,AB—> C}

— B is extraneous in AB — C because {A — C, AB — C} logically implies A
— C (l.e. the result of dropping B from AB — C).

Example: Given F={A > C, AB — CD}

— Cis extraneous in AB — CD since AB — C can be inferred even after
deleting C

Testing if an Attribute is Extraneous

« Consider a set F of functional dependencies and the
functional dependency o — B in F.

« To test if attribute A € o is extraneous in o
1. compute ({a} — A)* using the dependencies in F

2. check that ({a} — A)* contains [3; if it does, A is
extraneous in o

« To testif attribute A € B is extraneous in 3
1. compute a* using only the dependencies in
F'=(F —{a—pB}) wi{a—>B-A)
2. check that a* contains A; if it does, A is extraneous

In (3

Canonical (Minimal) Cover

~+ A canonical or minimal cover for F is a set of dependencies F, such that
— Flogically implies all dependencies in F, and
— F_logically implies all dependencies in F, and
— No functional dependency in F, contains an extraneous attribute, and
— Each left side of functional dependency in F, is unique.

 To compute a canonical cover for F:
repeat
Use the union rule to replace any dependencies in F
o4 — B4 and oy — B, with ooy = B4 B,
Find a functional dependency o — [3 with an
extraneous attribute either in o or in (3
/* Note: test for extraneous attributes done using F, not F*/
If an extraneous attribute is found, delete it from o — 3
until F does not change

* Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

Computing a Canonical Cover

- R=(A B, C)
F={A—> BC
B—->C
A—>B
AB — C}

e CombineA —->BCand A > Binto A - BC
— Setisnow {A - BC, B— C, AB— C}
e Aisextraneous in AB—> C

— Check if the result of deleting A from AB — C is implied by the other
dependencies

* Yes: infact, B — C s already present!
— Setisnow {A —» BC, B — C}
« Cisextraneous in A —» BC
— Check if A— Cis logically implied by A — B and the other dependencies
* Yes: using transitivity on A - B and B — C.
— Can use attribute closure of A in more complex cases

« The canonical cover is: A—>B
B->C

Dependency Preservation

« Let F, be the set of dependencies F -

that include only attributes in R.
A decomposition is dependency
preserving, if
(FilOoF,u ...OF) =F*+
« If it is not, then checking updates for violation

of functional dependencies may require
computing joins, which is expensive.

Testing for Dependency Preservation

 To check if a dependency a — [is preserved in a
decomposition of Rinto R,, R,, ..., R, we apply the following
test (with attribute closure done with respect to F)

— result = a
while (changes to result) do
for each R, in the decomposition
t=(result " R)" N R,
result = result Ut
— If result contains all attributes in 3, then the functional
dependency
o — [is preserved.

 We apply the test on all dependencies in F to check if a
decomposition is dependency preserving

» This procedure takes polynomial time, instead of the
exponential time required to compute Frand (F, U F, U ... U
F)'

Example

- R=(A, B, C)
F={A—>B
B — C}
Key = {A}
* Ris notin BCNF
» Decomposition R, = (A, B), R, = (B, C)
— R,and R, in BCNF
— Lossless-join decomposition
— Dependency preserving

