
Functional Dependency

Murat Kantarcioglu

Slides are taken from Silberschatz et
al.

Functional Dependencies

• Let R be a relation schema
 R and R

• The functional dependency

holds on R if and only if for any legal relations
r(R), whenever any two tuples t1 and t2 of r agree
on the attributes , they also agree on the
attributes . That is,

t1[] = t2 [] t1[] = t2 []

Example

• Example: Consider r(A,B) with the following
instance of r.

• On this instance, A B does NOT hold, but B
 A does hold.

A B

1 3

1 6

2 7

Example

A B C D

a1 b1 c1 d1

a1 b1 c1 d2

a1 b2 c2 d1

a2 b1 c3 d1

• Does AB C hold?
• Does ABC D hold ?
• Does BC D hold?

Example

SSN LastName FirstName City

111111111 Smith John Richardson

222222222 Li Peng Richardson

333333333 Kant John Plano

444444444 Smith Mark Plano

• Does {ssn} {LastName} hold?
• Does {ssn} {LastName,FirstName} hold ?
• Does {LastName, FirstName} {City} hold?
• Does {City} {FirstName} hold?

Procedure for Computing F+

F + = F

repeat

for each functional dependency f in F+

apply reflexivity and augmentation rules on f
add the resulting functional dependencies to F +

for each pair of functional dependencies f1and f2 in F +

if f1 and f2 can be combined using transitivity then

add the resulting functional dependency to F +

until F + does not change any further

Example

• R = (A, B, C, G, H, I)
F = { A B, A C, CG H, CG I, B H}

• some members of F+

– A H

• by transitivity from A B and B H

– AG I

• by augmenting A C with G, to get AG CG
and then transitivity with CG I

– CG HI

• by augmenting CG I to infer CG CGI, and
augmenting of CG H to infer CGI HI,

and then transitivity

Closure of Attribute Sets

• Given a set of attributes , define the closure of under
F (denoted by +) as the set of attributes that are
functionally determined by under F

• Algorithm to compute +, the closure of under F
result := ;
while (changes to result) do

for each in F do
begin

if result then result := result
end

Example of Attribute Set
Closure

• R = (A, B, C, G, H, I)
• F = {A B,A C ,CG H,CG I,B H}
• (AG)+

1. result = AG
2. result = ABCG (A C and A B)
3. result = ABCGH (CG H and CG AGBC)
4. result = ABCGHI (CG I and CG AGBCH)

• Is AG a candidate key?
1. Is AG a super key?

1. Does AG R? == Is (AG)+ R
2. Is any subset of AG a superkey?

1. Does A R? == Is (A)+ R
2. Does G R? == Is (G)+ R

Canonical Cover

• Sets of functional dependencies may have redundant dependencies
that can be inferred from the others

– For example: A C is redundant in: {A B, B C, A C}

– Parts of a functional dependency may be redundant

• E.g.: on RHS: {A B, B C, A CD} can be
simplified to

{A B, B C, A D}

• E.g.: on LHS: {A B, B C, AC D} can be
simplified to

{A B, B C, A D}

• Intuitively, a canonical cover of F is a “minimal” set of functional
dependencies equivalent to F, having no redundant dependencies
or redundant parts of dependencies

Extraneous Attributes

• Consider a set F of functional dependencies and the functional dependency
 in F.

– Attribute A is extraneous in if A
and F logically implies (F – { }) {(– A) }.

– Attribute A is extraneous in if A
and the set of functional dependencies
(F – { }) { (– A)} logically implies F.

• Note: implication in the opposite direction is trivial in each of the cases above,
since a “stronger” functional dependency always implies a weaker one

• Example: Given F = {A C, AB C }

– B is extraneous in AB C because {A C, AB C} logically implies A
 C (I.e. the result of dropping B from AB C).

• Example: Given F = {A C, AB CD}

– C is extraneous in AB CD since AB C can be inferred even after
deleting C

Testing if an Attribute is Extraneous

• Consider a set F of functional dependencies and the
functional dependency in F.

• To test if attribute A is extraneous in
1. compute ({} – A)+ using the dependencies in F

2. check that ({} – A)+ contains ; if it does, A is
extraneous in

• To test if attribute A is extraneous in
1. compute + using only the dependencies in

F’ = (F – { }) { (– A)},

2. check that + contains A; if it does, A is extraneous
in

Canonical (Minimal) Cover
• A canonical or minimal cover for F is a set of dependencies Fc such that

– F logically implies all dependencies in Fc, and
– Fc logically implies all dependencies in F, and
– No functional dependency in Fc contains an extraneous attribute, and
– Each left side of functional dependency in Fc is unique.

• To compute a canonical cover for F:
repeat

Use the union rule to replace any dependencies in F
1 1 and 1 2 with 1 1 2

Find a functional dependency with an
extraneous attribute either in or in
/* Note: test for extraneous attributes done using Fc, not F*/

If an extraneous attribute is found, delete it from
until F does not change

• Note: Union rule may become applicable after some extraneous attributes
have been deleted, so it has to be re-applied

Computing a Canonical Cover

• R = (A, B, C)
F = {A BC

B C
A B

AB C}

• Combine A BC and A B into A BC

– Set is now {A BC, B C, AB C}

• A is extraneous in AB C

– Check if the result of deleting A from AB C is implied by the other
dependencies

• Yes: in fact, B C is already present!

– Set is now {A BC, B C}

• C is extraneous in A BC

– Check if A C is logically implied by A B and the other dependencies

• Yes: using transitivity on A B and B C.

– Can use attribute closure of A in more complex cases

• The canonical cover is: A B
B C

Dependency Preservation

• Let Fi be the set of dependencies F +

that include only attributes in Ri.
• A decomposition is dependency

preserving, if

(F1 F2 … Fn)+ = F +

• If it is not, then checking updates for violation
of functional dependencies may require
computing joins, which is expensive.

Testing for Dependency Preservation

• To check if a dependency is preserved in a
decomposition of R into R1, R2, …, Rn we apply the following
test (with attribute closure done with respect to F)

– result =
while (changes to result) do

for each Ri in the decomposition
t = (result Ri)+ Ri

result = result t

– If result contains all attributes in , then the functional
dependency
 is preserved.

• We apply the test on all dependencies in F to check if a
decomposition is dependency preserving

• This procedure takes polynomial time, instead of the
exponential time required to compute F+ and (F1 F2 …
Fn)+

Example

• R = (A, B, C)
F = {A B

B C}
Key = {A}

• R is not in BCNF

• Decomposition R1 = (A, B), R2 = (B, C)
– R1 and R2 in BCNF

– Lossless-join decomposition

– Dependency preserving

