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Hadoop - Why ?

• Need to process huge datasets on large 
clusters of computers

• Very expensive to build reliability into each 
application

• Nodes fail every day
– Failure is expected, rather than exceptional
– The number of nodes in a cluster is not constant

• Need a common infrastructure
– Efficient, reliable, easy to use
– Open Source, Apache Licence
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Who uses Hadoop?

• Amazon/A9
• Facebook
• Google
• New York Times
• Veoh
• Yahoo!
• …. many more
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Commodity Hardware

• Typically in 2 level architecture
– Nodes are commodity PCs
– 30-40 nodes/rack
– Uplink from rack is 3-4 gigabit
– Rack-internal is 1 gigabit

Aggregation switch

Rack switch
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Goals of HDFS

• Very Large Distributed File System
– 10K nodes, 100 million files, 10PB

• Assumes Commodity Hardware
– Files are replicated to handle hardware failure
– Detect failures and recover from them

• Optimized for Batch Processing
– Data locations exposed so that computations can 

move to where data resides
– Provides very high aggregate bandwidth
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Distributed File System

• Single Namespace for entire cluster
• Data Coherency

– Write-once-read-many access model
– Client can only append to existing files

• Files are broken up into blocks
– Typically 64MB block size
– Each block replicated on multiple DataNodes

• Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode
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HDFS Architecture
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Functions of a NameNode

• Manages File System Namespace
– Maps a file name to a set of blocks
– Maps a block to the DataNodes where it resides

• Cluster Configuration Management
• Replication Engine for Blocks
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NameNode Metadata

• Metadata in Memory
– The entire metadata is in main memory
– No demand paging of metadata

• Types of metadata
– List of files
– List of Blocks for each file
– List of DataNodes for each block
– File attributes, e.g. creation time, replication factor

• A Transaction Log
– Records file creations, file deletions etc
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DataNode

• A Block Server
– Stores data in the local file system (e.g. ext3)
– Stores metadata of a block (e.g. CRC)
– Serves data and metadata to Clients

• Block Report
– Periodically sends a report of all existing blocks to 

the NameNode
• Facilitates Pipelining of Data

– Forwards data to other specified DataNodes
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Block Placement

• Current Strategy
– One replica on local node
– Second replica on a remote rack
– Third replica on same remote rack
– Additional replicas are randomly placed

• Clients read from nearest replicas
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Heartbeats

• DataNodes send hearbeat to the NameNode
– Once every 3 seconds

• NameNode uses heartbeats to detect 
DataNode failure
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Replication Engine

• NameNode detects DataNode failures
– Chooses new DataNodes for new replicas
– Balances disk usage
– Balances communication traffic to DataNodes
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Data Correctness

• Use Checksums to validate data
– Use CRC32

• File Creation
– Client computes checksum per 512 bytes
– DataNode stores the checksum

• File access
– Client retrieves the data and checksum from 

DataNode
– If Validation fails, Client tries other replicas
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NameNode Failure

• A single point of failure
• Transaction Log stored in multiple directories

– A directory on the local file system
– A directory on a remote file system (NFS/CIFS)

• Need to develop a real HA solution
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Data Pipelining

• Client retrieves a list of DataNodes on which 
to place replicas of a block

• Client writes block to the first DataNode
• The first DataNode forwards the data to the 

next node in the Pipeline
• When all replicas are written, the Client 

moves on to write the next block in file
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Rebalancer

• Goal: % disk full on DataNodes should be 
similar
– Usually run when new DataNodes are added
– Cluster is online when Rebalancer is active
– Rebalancer is throttled to avoid network 

congestion
– Command line tool
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Secondary NameNode

• Copies FsImage and Transaction Log from 
Namenode to a temporary directory

• Merges FSImage and Transaction Log into a 
new FSImage in temporary directory

• Uploads new FSImage to the NameNode
– Transaction Log on NameNode is purged
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User Interface

• Commands for HDFS User:
– hadoop dfs -mkdir /foodir
– hadoop dfs -cat /foodir/myfile.txt
– hadoop dfs -rm /foodir/myfile.txt

• Commands for HDFS Administrator
– hadoop dfsadmin -report
– hadoop dfsadmin -decommision datanodename

• Web Interface
– http://host:port/dfshealth.jsp
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MapReduce - What?

• MapReduce is a programming model for 
efficient distributed computing

• It works like a Unix pipeline
– cat input | grep |         sort        |   uniq -c  |  cat > output
– Input   | Map | Shuffle & Sort | Reduce  | Output

• Efficiency from
– Streaming through data, reducing seeks
– Pipelining

• A good fit for a lot of applications
– Log processing
– Web index building
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MapReduce - Dataflow
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MapReduce - Features

• Fine grained Map and Reduce tasks
– Improved load balancing
– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky
– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem
– Map-Reduce + HDFS is a very effective solution
– Map-Reduce queries HDFS for locations of input data
– Map tasks are scheduled close to the inputs when 

possible
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Word Count Example

• Mapper
– Input: value: lines of text of input
– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts
– Output: key: word, value: sum

• Launching program
– Defines this job
– Submits job to cluster
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Word Count Dataflow
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Word Count Mapper

public static class Map extends MapReduceBase implements 
Mapper<LongWritable,Text,Text,IntWritable> {

private static final IntWritable one = new IntWritable(1);
private Text word  = new Text();

public static void map(LongWritable key, Text value, 
OutputCollector<Text,IntWritable> output, Reporter reporter) throws 
IOException {
String line = value.toString();
StringTokenizer = new StringTokenizer(line);
while(tokenizer.hasNext()) {

word.set(tokenizer.nextToken());
output.collect(word,one);
}

}
}



FEARLESS engineering

Word Count Reducer

public static class Reduce extends MapReduceBase implements 
Reducer<Text,IntWritable,Text,IntWritable> {

public static void map(Text key, Iterator<IntWritable> values, 
OutputCollector<Text,IntWritable> output, Reporter reporter) throws 
IOException {

int sum = 0;
while(values.hasNext()) {

sum += values.next().get();
}         
output.collect(key, new IntWritable(sum));

}
}
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Word Count Example

• Jobs are controlled by configuring JobConfs
• JobConfs are maps from attribute names to string values
• The framework defines attributes to control how the job is 

executed
– conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf
– conf.set(“my.string”, “foo”);
– conf.set(“my.integer”, 12);

• JobConf is available to all tasks
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Putting it all together

• Create a launching program for your application
• The launching program configures:

– The Mapper and Reducer to use
– The output key and value types (input types are 

inferred from the InputFormat)
– The locations for your input and output

• The launching program then submits the job and 
typically waits for it to complete
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Putting it all together
JobConf conf = new JobConf(WordCount.class);
conf.setJobName(“wordcount”);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducer(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
Conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);
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Input and Output Formats

• A Map/Reduce may specify how it’s input is to be read 
by specifying an InputFormat to be used

• A Map/Reduce may specify how it’s output is to be 
written by specifying an OutputFormat to be used

• These default to TextInputFormat and 
TextOutputFormat, which process line-based text data

• Another common choice is SequenceFileInputFormat 
and SequenceFileOutputFormat for binary data

• These are file-based, but they are not required to be



FEARLESS engineering

How many Maps and Reduces

• Maps
– Usually as many as the number of HDFS blocks being 

processed, this is the default
– Else the number of maps can be specified as a hint
– The number of maps can also be controlled by specifying the 

minimum split size
– The actual sizes of the map inputs are computed by:

• max(min(block_size,data/#maps), min_split_size)

• Reduces
– Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum
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Some handy tools

• Partitioners
• Combiners
• Compression
• Counters
• Zero Reduces
• Distributed File Cache
• Tool
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Partitioners

• Partitioners are application code that define how keys 
are assigned to reduces

• Default partitioning spreads keys evenly, but randomly
– Uses key.hashCode() % num_reduces

• Custom partitioning is often required, for example, to 
produce a total order in the output
– Should implement Partitioner interface
– Set by calling 
conf.setPartitionerClass(MyPart.class)

– To get a total order, sample the map output keys and pick 
values to divide the keys into roughly equal buckets and use 
that in your partitioner
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Combiners

• When maps produce many repeated keys
– It is often useful to do a local aggregation following the map
– Done by specifying a Combiner
– Goal is to decrease size of the transient data
– Combiners have the same interface as Reduces, and often are the 

same class
– Combiners must not side effects, because they run an intermdiate 

number of times
– In WordCount, conf.setCombinerClass(Reduce.class);
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Compression

• Compressing the outputs and intermediate data will often yield 
huge performance gains
– Can be specified via a configuration file or set programmatically
– Set mapred.output.compress to true to compress job output
– Set mapred.compress.map.output to true to compress map outputs

• Compression Types (mapred(.map)?.output.compression.type)
– “block” - Group of keys and values are compressed together
– “record” - Each value is compressed individually
– Block compression is almost always best

• Compression Codecs 
(mapred(.map)?.output.compression.codec)
– Default (zlib) - slower, but more compression
– LZO - faster, but less compression
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Counters

• Often Map/Reduce applications have countable events
• For example, framework counts records in to and out 

of Mapper and Reducer
• To define user counters:

static enum Counter {EVENT1, EVENT2};
reporter.incrCounter(Counter.EVENT1, 1);

• Define nice names in a MyClass_Counter.properties 
file
CounterGroupName=MyCounters
EVENT1.name=Event 1
EVENT2.name=Event 2
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Zero Reduces

• Frequently, we only need to run a filter on the input 
data
– No sorting or shuffling required by the job
– Set the number of reduces to 0
– Output from maps will go directly to OutputFormat and disk
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Distributed File Cache

• Sometimes need read-only copies of data on the local 
computer
– Downloading 1GB of data for each Mapper is expensive

• Define list of files you need to download in JobConf
• Files are downloaded once per computer
• Add to launching program:

DistributedCache.addCacheFile(new 
URI(“hdfs://nn:8020/foo”), conf);

• Add to task:
Path[] files = 
DistributedCache.getLocalCacheFiles(conf);
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Tool

• Handle “standard” Hadoop command line options
– -conf file - load a configuration file named file
– -D prop=value - define a single configuration property 

prop
• Class looks like:

public class MyApp extends Configured implements Tool 
{

public static void main(String[] args) throws 
Exception {
System.exit(ToolRunner.run(new Configuration(),          

new MyApp(), args));
}
public int run(String[] args) throws Exception {
…. getConf() ….
}

}
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Example: Finding the Shortest Path

• A common graph search 
application is finding the 
shortest path from a start 
node to one or more 
target nodes

• Commonly done on a 
single machine with 
Dijkstra’s Algorithm

• Can we use BFS to find 
the shortest path via 
MapReduce?
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Finding the Shortest Path: Intuition

• We can define the solution to this problem 
inductively
– DistanceTo(startNode) = 0
– For all nodes n directly reachable from startNode, 

DistanceTo(n) = 1
– For all nodes n reachable from some other set of nodes 

S,
DistanceTo(n) = 1 + min(DistanceTo(m), m 

 

S)
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From Intuition to Algorithm

• A map task receives a node n as a key, and 
(D, points-to) as its value
– D is the distance to the node from the start
– points-to is a list of nodes reachable from n
p  points-to, emit (p, D+1)

• Reduces task gathers possible distances to a 
given p and selects the minimum one
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What This Gives Us

• This MapReduce task can advance the known 
frontier by one hop

• To perform the whole BFS, a non-MapReduce 
component then feeds the output of this step 
back into the MapReduce task for another 
iteration
– Problem: Where’d the points-to list go?
– Solution: Mapper emits (n, points-to) as well
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Blow-up and Termination

• This algorithm starts from one node
• Subsequent iterations include many more 

nodes of the graph as the frontier advances
• Does this ever terminate?

– Yes! Eventually, routes between nodes will stop 
being discovered and no better distances will be 
found. When distance is the same, we stop

– Mapper should emit (n,D) to ensure that “current 
distance” is carried into the reducer
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Hadoop Related Subprojects

• Pig
– High-level language for data analysis

• Hbase
– Table storage for semi-structured data

• Zookeeper
– Coordinating distributed applications

• Hive
– SQL-like Query language and Metastore

• Mahout
– Machine learning
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Pig

• Started at Yahoo! Research
• Now runs about 30% of Yahoo!’s jobs
• Features

– Expresses sequences of MapReduce jobs
– Data model: nested “bags” of items
– Provides relational (SQL) operators

(JOIN, GROUP BY, etc.)
– Easy to plug in Java functions



FEARLESS engineering

An Example Problem

• Suppose you have 
user data in a file, 
website data in 
another, and you 
need to find the top 
5 most visited pages 
by users aged 18-25

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5
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In MapReduce
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In Pig Latin

Users = load

 
‘users’

 
as

 
(name, age);

Filtered = filter

 
Users by age >= 18 and

 
age <= 

 25; 
Pages = load

 
‘pages’

 
as

 
(user, url);

Joined = join

 
Filtered by

 
name, Pages by

 
user;

Grouped = group

 
Joined by

 
url;

Summed = foreach

 
Grouped generate

 
group,

 count(Joined) as

 
clicks;

Sorted = order

 
Summed by

 
clicks desc;

Top5 = limit

 
Sorted 5;

store

 
Top5 into

 
‘top5sites’;
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Ease of Translation

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load

 
…

 Fltrd

 
= filter

 
…

 Pages = load

 
…

 Joined = join

 
…

 Grouped = group

 
…

 Summed = …

 
count()…

 Sorted = order

 
…

 Top5 = limit

 
…
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Ease of Translation

Load Users Load Pages

Filter by age

Join on name

Group on url

Count clicks

Order by clicks

Take top 5

Users = load

 
…

 Fltrd

 
= filter

 
…

 Pages = load

 
…

 Joined = join

 
…

 Grouped = group

 
…

 Summed = …

 
count()…

 Sorted = order

 
…

 Top5 = limit

 
…

Job 1

Job 2

Job 3
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HBase - What?

• Modeled on Google’s Bigtable
• Row/column store
• Billions of rows/millions on columns
• Column-oriented - nulls are free
• Untyped - stores byte[]
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HBase - Data Model

Row Timestamp Column family:
animal:

Column 
family

repairs:
animal:type animal:size repairs:cost

enclosure1
t2 zebra 1000 EUR
t1 lion big

enclosure2 … … … …
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HBase - Data Storage

Column family animal:

(enclosure1, t2, animal:type) zebra
(enclosure1, t1, animal:size) big
(enclosure1, t1, animal:type) lion

Column family repairs:

(enclosure1, t1, repairs:cost) 1000 EUR
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HBase - Code

Htable table = …
Text row = new Text(“enclosure1”);
Text col1 = new Text(“animal:type”);
Text col2 = new Text(“animal:size”);
BatchUpdate update = new BatchUpdate(row);
update.put(col1, “lion”.getBytes(“UTF-8”));
update.put(col2, “big”.getBytes(“UTF-8));
table.commit(update);

update = new BatchUpdate(row);
update.put(col1, “zebra”.getBytes(“UTF-8”));
table.commit(update);
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HBase - Querying

• Retrieve a cell
Cell = table.getRow(“enclosure1”).getColumn(“animal:type”).getValue();

• Retrieve a row
RowResult = table.getRow( “enclosure1” );

• Scan through a range of rows
Scanner s = table.getScanner( new String[] { “animal:type” } );
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Hive

• Developed at Facebook
• Used for majority of Facebook jobs
• “Relational database” built on Hadoop

– Maintains list of table schemas
– SQL-like query language (HiveQL)
– Can call Hadoop Streaming scripts from HiveQL
– Supports table partitioning, clustering, complex 

data types, some optimizations
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Creating a Hive Table

• Partitioning breaks table into separate files for 
each (dt, country) pair
Ex: /hive/page_view/dt=2008-06-08,country=USA

/hive/page_view/dt=2008-06-08,country=CA

CREATE TABLE page_views(viewTime

 

INT, userid

 

BIGINT,
page_url

 

STRING, referrer_url

 

STRING, 
ip

 

STRING COMMENT 'User IP address') 
COMMENT 'This is the page view table' 
PARTITIONED BY(dt

 

STRING, country STRING)
STORED AS SEQUENCEFILE; 
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A Simple Query

SELECT page_views.* 
FROM page_views
WHERE page_views.date

 

>= '2008‐03‐01'
AND page_views.date

 

<= '2008‐03‐31'
AND page_views.referrer_url

 

like '%xyz.com';

• Hive only reads partition 2008‐03‐01,*
 instead of scanning entire table

• Find all page views coming from xyz.com 
on March 31st:
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Aggregation and Joins

• Count users who visited each page by gender:

• Sample output:

SELECT pv.page_url, u.gender, COUNT(DISTINCT u.id)
FROM page_views

 

pv

 

JOIN user u ON (pv.userid

 

= u.id)
GROUP BY pv.page_url, u.gender
WHERE pv.date

 

= '2008‐03‐03'; 
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Using a Hadoop Streaming Mapper Script

SELECT TRANSFORM(page_views.userid,             
 page_views.date)

USING 'map_script.py'
AS dt, uid

 
CLUSTER BY dt

FROM page_views;
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