

Functional Dependency

Murat Kantarcioglu

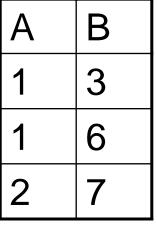
UTD Functional Dependencies

- Let *R* be a relation schema $\alpha \subseteq R$ and $\beta \subseteq R$
- The functional dependency

 $\alpha \rightarrow \beta$ holds on *R* if and only if for any legal relations *r*(R), whenever any two tuples t_1 and t_2 of *r* agree on the attributes α , they also agree on the attributes β . That is,

$$t_1[\alpha] = t_2[\alpha] \implies t_1[\beta] = t_2[\beta]$$

• Example: Consider r(A,B) with the following instance of r.



• On this instance, $A \rightarrow B$ does **NOT** hold, but $B \rightarrow A$ does hold.

Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	с3	d1

- Does AB \rightarrow C hold?
- Does ABC \rightarrow D hold ?
- Does BC \rightarrow D hold?

SSN	LastName	FirstName	City
111111111	Smith	John	Richardson
222222222	Li	Peng	Richardson
333333333	Kant	John	Plano
44444444	Smith	Mark	Plano

- Does {ssn} \rightarrow {LastName} hold?
- Does {ssn} → {LastName,FirstName} hold ?
- Does {LastName, FirstName}→ {City} hold?
- Does $\{City\} \rightarrow \{FirstName\} \text{ hold} \}$

UTD Procedure for Computing F⁺

- $F^+ = F$
- repeat

for each functional dependency f in F⁺
 apply reflexivity and augmentation rules on f
 add the resulting functional dependencies to F⁺

- for each pair of functional dependencies f_1 and f_2 in F^+ if f_1 and f_2 can be combined using transitivity then add the resulting functional dependency to F^+
- until F⁺ does not change any further

- R = (A, B, C, G, H, I) $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- some members of F+
 - $-A \rightarrow H$
 - by transitivity from $A \rightarrow B$ and $B \rightarrow H$
 - $-AG \rightarrow I$
 - by augmenting $A \rightarrow C$ with G, to get $AG \rightarrow CG$ and then transitivity with $CG \rightarrow I$
 - $-CG \rightarrow HI$
 - by augmenting CG → I to infer CG → CGI, and augmenting of CG → H to infer CGI → HI, and then transitivity

- Given a set of attributes α, define the *closure* of α under *F* (denoted by α⁺) as the set of attributes that are functionally determined by α under *F*
- Algorithm to compute α⁺, the closure of α under F result := α;
 while (changes to result) do for each β → γ in F do begin
 if β ⊆ result then result := result ∪ γ
 end

Example of Attribute Set Closure

- R = (A, B, C, G, H, I)
- $F = \{A \rightarrow B, A \rightarrow C, CG \rightarrow H, CG \rightarrow I, B \rightarrow H\}$
- (*AG*)+

1. result = AG 2. result = ABCG $(A \rightarrow C \text{ and } A \rightarrow B)$ 3. result = ABCGH $(CG \rightarrow H \text{ and } CG \subseteq AGBC)$ 4. result = ABCGHI $(CG \rightarrow I \text{ and } CG \subseteq AGBCH)$

• Is AG a candidate key?

1. Is AG a super key?

1. Does $AG \rightarrow R? == Is (AG)^+ \supseteq R$

2. Is any subset of AG a superkey?

1. Does $A \rightarrow R? ==$ Is $(A)^+ \supseteq R$

2. Does $G \rightarrow R$? == Is (G)⁺ \supseteq R