Functional Dependency

Murat Kantarcioglu

Functional Dependencies

- Let R be a relation schema

$$
\alpha \subseteq R \text { and } \beta \subseteq R
$$

- The functional dependency

$$
\alpha \rightarrow \beta
$$

holds on R if and only if for any legal relations $r(\mathrm{R})$, whenever any two tuples t_{1} and t_{2} of r agree on the attributes α, they also agree on the attributes β. That is,

$$
t_{1}[\alpha]=t_{2}[\alpha] \Rightarrow t_{1}[\beta]=t_{2}[\beta]
$$

Example

- Example: Consider $r(\mathrm{~A}, \mathrm{~B})$ with the following instance of r.

A	B
1	3
1	6
2	7

- On this instance, $A \rightarrow B$ does NOT hold, but B $\rightarrow A$ does hold.

Example

A	B	C	D
a1	b1	c1	d1
a1	b1	c1	d2
a1	b2	c2	d1
a2	b1	c3	d1

- Does $\mathrm{AB} \rightarrow \mathrm{C}$ hold?
- Does $\mathrm{ABC} \rightarrow \mathrm{D}$ hold?
- Does BC \rightarrow D hold?

Example

SSN	LastName	FirstName	City
111111111	Smith	John	Richardson
222222222	Li	Peng	Richardson
333333333	Kant	John	Plano
444444444	Smith	Mark	Plano

- Does \{ssn\} \rightarrow \{LastName $\}$ hold?
- Does $\{s s n\} \rightarrow$ \{LastName,FirstName $\}$ hold ?
- Does $\{$ LastName, FirstName $\} \rightarrow\{$ City\} hold?
- Does $\{$ City $\} \rightarrow\{$ FirstName $\}$ hold?

Procedure for Computing F^{+}

$F^{+}=F$

repeat

for each functional dependency f in F^{+} apply reflexivity and augmentation rules on f add the resulting functional dependencies to F^{+}
for each pair of functional dependencies f_{1} and f_{2} in F^{+} if f_{1} and f_{2} can be combined using transitivity then add the resulting functional dependency to F^{+}
until F^{+}does not change any further

Example

- $R=(A, B, C, G, H, I)$

$$
F=\{A \rightarrow B, A \rightarrow C, C G \rightarrow H, C G \rightarrow I, B \rightarrow H\}
$$

- some members of F^{+}
$-A \rightarrow H$
- by transitivity from $A \rightarrow B$ and $B \rightarrow H$
$-A G \rightarrow I$
- by augmenting $A \rightarrow C$ with G, to get $A G \rightarrow C G$ and then transitivity with $C G \rightarrow I$
$-\mathrm{CG} \rightarrow \mathrm{HI}$
- by augmenting $C G \rightarrow I$ to infer $C G \rightarrow C G I$, and augmenting of $C G \rightarrow H$ to infer $C G I \rightarrow H I$, and then transitivity

Closure of Attribute Sets

- Given a set of attributes α, define the closure of α under F (denoted by α^{+}) as the set of attributes that are functionally determined by α under F
- Algorithm to compute α^{+}, the closure of α under F result := α;
while (changes to result) do for each $\beta \rightarrow \gamma$ in F do begin

$$
\begin{aligned}
& \text { if } \beta \subseteq \text { result then result }:=\text { result } \cup \gamma \\
& \text { end }
\end{aligned}
$$

Example of Attribute Set Closure

- $R=(A, B, C, G, H, I)$
- $F=\{A \rightarrow B, A \rightarrow C, C G \rightarrow H, C G \rightarrow I, B \rightarrow H\}$
- (AG) ${ }^{+}$

1. result = AG
2. result $=A B C G \quad(A \rightarrow C$ and $A \rightarrow B)$
3. result $=A B C G H \quad(C G \rightarrow H$ and $C G \subseteq A G B C)$
4. result $=A B C G H I(C G \rightarrow I$ and $C G \subseteq A G B C H)$

- Is $A G$ a candidate key?

1. Is AG a super key?
2. Does $A G \rightarrow R$? $==$ Is $(A G)^{+} \supseteq R$
3. Is any subset of AG a superkey?
4. Does $A \rightarrow R$? $==$ Is $(A)^{+} \supseteq R$
5. Does $G \rightarrow R$? $==$ Is $(G)^{+} \supseteq R$
