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PREFACE

This dissertation was produced in accordance with guidelines which permit the inclusion as

part of the dissertation the text of an original paper or papers submitted for publication.

The dissertation must still conform to all other requirements explained in the “Guide for

the Preparation of Master’s Theses and Doctoral Dissertations at The University of Texas at

Dallas.” It must include a comprehensive abstract, a full introduction and literature review,

and a final overall conclusion. Additional material (procedural and design data as well as

descriptions of equipment) must be provided in sufficient detail to allow a clear and precise

judgment to be made of the importance and originality of the research reported.

It is acceptable for this dissertation to include as chapters authentic copies of papers already

published, provided these meet type size, margin, and legibility requirements. In such cases,

connecting texts which provide logical bridges between different manuscripts are mandatory.

Where the student is not the sole author of a manuscript, the student is required to make an

explicit statement in the introductory material to that manuscript describing the student’s

contribution to the work and acknowledging the contribution of the other author(s). The

signature of the Supervising Committee which precedes all other material in the dissertation

attest to the accuracy of this statement.
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As time goes on, humans collect more and more data. This data is used to create useful

information which allows us to make decisions. Not all data is in one database, however.

Humanity’s data is split among millions of different owners: companies, individuals, and

governments. In order to create better information for better decisions, data sharing can

be employed. However, the different motivations of the owners can cause problems in the

data sharing process. This dissertation examines the different motivations involved in data

sharing, and proposes methods to both expedite and assure the data sharing process’s com-

pletion. In particular, it considers approximations in secure data mining, enforcing honesty

in data sharing through game theory, and improvements on the verification of outsourced

data queries.
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CHAPTER 1

INTRODUCTION

The human race produces huge amounts of data per day. A small fraction of this data is

processed by computers every day. This small fraction, however, is a large amount of data.

For example, Google, Inc., as of 2008, processed 20 petabytes (20000 terabytes) of data per

day (Dean and Ghemawat 2008). According the the McKinsey Institute’s report on big data

(Manyika, Chui, Brown, Bughin, Dobbs, Roxburgh, and Byers 2011), there is approximately

$900 billion in untapped value in medical and location data alone. A large chunk of raw

data, however, does not have this value. In order to create this value, we have to extract

useful information from the raw data, such as models, graphs, or theorems. For example, a

large collection of webpages is not particularly useful to the average user, but a search result

listing the most relevant pages is. Thus, the ability to efficiently and correctly extract useful

information from data is paramount.

At times, companies or other entities may wish to expand their information generation

potential by combining data with the data of other companies or entities. In fact, the 9/11

commission (National 2004) concluded that combining data to “connect the dots” is necessary

to prevent acts of terror. This leads us to the concept of data sharing. Data sharing is

the process by which multiple entities come together to create new information from their

raw data. In a perfect world, this could be as simple as combining the raw data into one

large database, and extracting the information. However, in the real world, entities are

self-interested, and have different motivations in play.

1
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Figure 1.1. Dot Product Approximation Concept

1.1 A Motivating Example

In order to outline some of these motivations, we first discuss an example. A diagram of

the forces at play in this example can be found in figure 1.1. Suppose there are two large

companies, which we will call Boogle and BookFace, each of which has large amounts of data

and the capability to process large amounts of data. These two companies have different

types of data, however. Boogle, for the most part, has search query data, while BookFace has

social networking data. It is entirely possible that, in order to better serve their customers

or increase their revenue, that they might want to combine this data into a larger model.

Neither company particularly wants to divulge their own data to another company, however,

since it is proprietary data and is quite valuable. For this, they would want a way to compute

this model while keeping their data secret.

Now, suppose this combined model could be updated unilaterally. This means that either

Boogle or BookFace could remove data from the model, then apply a new set of data to get
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an entirely new model. This would allow a selfishly motivated BookFace to provide fake data

to the model-making process, and then, after the computation, construct the true result from

the false one. Thus, we would need some method to keep the players honest, no matter what

their motivations.

Finally, let’s consider the case of the tiny AdStartUp company. This company has gen-

erated large amounts of data, but does not have the infrastructure necessary to process it.

Boogle and BookFace, however, do have this infrastructure, and AdStartUp would like to ask

one of them to help process this data. The two companies would be willing to do this for a

price. Boogle and BookFace, to an outside observer, both seem to be good companies with

no ulterior motives. This is because Boogle and BookFace have both spent a good deal of

money advertising themselves as such. AdStartUp, then does not know whether the company

it chooses will faithfully process the data, or attempt to cut corners and do as little work as

possible while still getting away with it. Thus, we would need some way for AdStartUp to

know whether its data is processed correctly.

In this dissertation, we develop tools to deal with all of these issues. We examine privacy-

preserving data mining techniques, and find ways to improve their efficiency. We construct

economic mechanisms to enforce honesty, both in the data sharing and outsourcing cases.

1.2 Motivations in Data Sharing

In our example above, Boogle and BookFace were depicted as “good” and “bad,” respectively.

However, for our purposes, we do not assume that there are good and bad companies (as the

example diagram depicts), but merely rational (self-interested) companies. This is realistic,

since all for-profit companies exist to make a profit. These interests, however, can be informed

by several different motiviations. We now proceed with a more formal discussion of the

motivations at play in data sharing.

Information Utility. The utility of the information is the intrinsic value of the infor-

mation itself. It could be a measurement of accuracy, or a measure of general usefulness.
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For example, a web search result for “IBM” whose first result was not International Business

Machines would likely have a low information utility. Note that the information utility for

one entity might not be the same as the information utility for another. This could be due

to two reasons. First, if the two entities extract different information, the utility would likely

be different. Otherwise, the entities might have different valuations of the same information.

A medical doctor would have a greater use for diagnostic information than an advertiser. If

the advertiser were a pharmaceutical representative, however, they might have great interest

in diagnostic information. In our example, the intrinsic utility would be the accuracy of

the model created, or the usefulness of the query result requested by AdStartUp. In short,

different information is worth different amounts to different entities.

Correctness. An entity motivated by correctness wishes to receive the correct result

of the data sharing process. Most of the time, the utility of correct information is higher.

Thus, correctness and utility are highly linked. It is possible for an incorrect result to provide

higher utility, however. For example, when creating a model from observed data, sometimes

the model becomes so tuned to the previously observed data that it suffers in its ability

to predict future data. This phenomenon, known as overfitting, can be combatted through

altering the model or removing outliers from the data. Thus, we denote correctness as separate

from the utility of the information.

Privacy. Privacy is the prevention of the disclosure of an entity’s sensitive data. There

are various reasons why an entity might wish to keep its data private. First, a company

more than likely does not wish to disclose its data to its competition, because this would

be a loss of competitive advantage. This is the case in our motivating example, as the large

companies do not wish to reveal their proprietary data. Also, certain data might be sensitive,

causing massive losses if leaked, such as customers’ credit card information or Social Security

numbers. Finally, there are laws in place that prevent some data from being disclosed, such

as HIPAA (Annas 2003). Nevertheless, there are ways of extracting information from shared

data without disclosing data to the other parties. These methods are collectively known as

privacy-preserving data mining, and will be discussed shortly.
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Voyeurism. Voyeurism is the motivation to violate the privacy of others. The prospect

of learning proprietary data can be quite appealing to companies, and the existence of the

practice of “corporate espionage” is a testament to this. While Boogle and BookFace above

might wish to keep their proprietary data private, each of them would love to have a peek

at the other’s data. Naturally, in any privacy-preserving process, voyeurism by the different

parties is minimized. Thus, voyeurism could be considered the inverse of privacy.

Obfuscation. Obfuscation is the motivation to keep other players from learning correct

information from the data sharing process. One way an entity can achieve obfuscation is

by providing false data as input to the process, thus rendering the result worthless. We

usually assume that entities are more interested in learning the correct result than they are

in obfuscating the result from others.

Exclusivity. Exclusivity, as defined by (Shoham and Tennenholtz 2005), is the combina-

tion of correctness and obfuscation. In other words, an entity motivated by exclusivity wishes

to learn the correct result while ensuring that others do not receive the correct result. One

way exclusivity can be achieved is by providing a false input to the process, such that the final

result of the process, combined with the true data, can yield the correct result. As another

example, consider the process where at the end of the data sharing process, a given entity

receives the result, and is then expected to send the result to the remaining entities. This

is the scenario outlined in our example above. If this entity was motivated by exclusivity, it

would have incentive to send a false result to the remaining entities.

Efficiency. Efficiency is the motivation to get the data sharing process done with as

few resources (time and computation) as possible. As the old adage goes, time is money.

Companies and other entities are always interested in getting the result as quickly as possible.

Often the data sharing process must strike a delicate balance between efficiency and privacy

or efficiency and the utility of the information retrieved. It is possible that an approximation

of the correct result might be much faster to compute.

Malice. A malicious entity is motivated purely by the suffering of other parties involved.

The entity derives utility from the losses of others. A malicious party in a privacy-preserving
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scenario would be motivated by voyeurism. A malicious party when correctness is desired

would be motivated by obfuscation. In general, a malicious party is out to ruin the data

sharing process.

1.3 Varieties of Data Sharing

These different motivations give rise to several different types of data sharing. These methods

range from simple to complex, and we enumerate some of them now.

Distributed Data Mining. Distributed data mining is simply the act of using raw data

to produce meaningful information in a distributed setting. If the only goal is to produce

meaningful information, then the task of distributed data mining can be done in a manner

not dissimilar from local data mining. However, this is often not the case, and entities may

wish to keep their data private while still getting meaningful information, or they may wish

to keep communication and computation cost down.

Privacy-Preserving Data Mining. Several methods have been developed for doing

distributed data mining while maintaining privacy. These include anonymization techniques,

perturbation techniques, and cryptographic (secure multiparty computation) techniques.

Anonymization strips sensitive and identifying elements from the data before performing

the data mining. Perturbation adds noise to the data before the data mining process, re-

sulting in similar information learned, but without revealing the original data. Perturbation

sacrifices utility for privacy. Cryptographic techniques use homomorphic encryption, secret

sharing, virtual circuits, and other tools to exactly compute the correct result without reveal-

ing any of the data to other parties. These cryptographic protocols invariably take longer

to run than the original data mining process, however. Thus, the cryptographic protocols

provide a tradeoff between privacy and efficiency.

Secure Multiparty Computation. Data mining is a subset of multiparty computation,

which is the general computing of a function between multiple parties. Secure multiparty

computation is the process of computing such a function without revealing the inputs to the
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other parties. There are general methods for performing secure multiparty computation, but

these again require very expensive cryptographic protocols.

Data Outsourcing. Due to lack of infrastructure or resources, an entity may wish

to outsource its data to another entity, who we will call the provider, for the purposes of

processing. Thus, in order to make use of the provider’s increased computing resources, the

entity has the provider hold its data. Then, the owner of the data sends queries to the

provider, which the provider will use its considerable resources to run. The result is then

returned to the owner. In the above example, this is what AdStartUp wishes to do. This can

also be done in a privacy-preserving manner.

1.4 Our Contributions

This dissertation discusses several methods in which the processes of data sharing can be

improved. We first, in chapter 2, review the existing literature on secure data sharing. Then,

in chapter 3, we discuss some background knowledge in game theory and cryptography that

will be necessary to understand the results.

Game theory is a branch of economics which studies competitive behavior. The discipline

of game theory deals in incentives. Thus, we find it natural to make use of game theory

in order to deal with the various incentives involved in data sharing. In recent years, game

theory has been garnering more attention in the area of computer security, as outlined in

the survey paper by Katz (Katz 2008). Through the use of game-theoretic principles, we can

improve the efficiency, utility, or privacy of different data sharing methods.

In chapter 4, we look at the use of approximations in privacy-preserving data mining. We

propose a framework for implementing efficient privacy-preserving secure approximations of

data mining tasks in the vertically partitioned setting. In particular, we implement three

sketching protocols for the scalar (dot) product of two vectors which then can be used in

larger data mining tasks. These approximations have high accuracy, low data leakage, and

one to two orders of magnitude better efficiency. We show these accuracy and efficiency
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results through extensive experimentation. We also analyze the security properties of these

approximations, and propose a revised notion of secure approximations which allows for much

more efficient approximations.

While we can, using clever technical means, keep sensitive data private in data mining,

these means do nothing to ensure that the people involved provide correct data. Some entities

may have incentive to lie. In chapter 5, we propose game-theoretic mechanisms to ensure

truthful data sharing in distributed data mining. We use the Nobel Prize winning Vickrey-

Clarke-Groves (VCG) mechanism to ensure truthfulness in the non-cooperative case, and

the Shapley value in the cooperative case. To implement these mechanisms, we do not rely

on the ability to check a given party’s input data for truthfulness. Instead, we incentivize

truthfulness based solely on the data mining result. This is useful when privacy is important.

Under a reasonable assumption, we show that these mechanisms are incentive compatible,

and, through experimentation, we show that they are applicable in practice.

In chapter 6, we extend the results from chapter 5 to present some general theoretical

results regarding multiparty computation and mechanism design. In particular, we show

that if a result’s utility can be evaluated, then we can use this evaluation to incentivize

truthful behavior using the VCG mechanism. Furthermore, we show that the intermediate

results in the VCG calculation need not be evaluated by an external party. The only result

which might need external evaluation is the final result.

One commonly used technology in data sharing is the use of cloud data services to do

computationally intensive tasks. These cloud services, however, have their own incentives

at play. In chapter 7, we examine the problem of verifying the processing of queries in

data outsourcing. We use the principles of game theory and economics to vastly reduce

the complexity of query verification on outsourced data. We consider two cases: First, we

consider the scenario where multiple non-colluding providers exist, and then, we consider the

case where only one provider exists. Using a game theoretic model, we show that given the

proper mechanism and incentive structure, we can effectively deter dishonest behavior on the

part of the providers with very few computational and monetary resources. We prove that
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the incentive for a provider to cheat can be reduced to zero. Finally, we show that a simple

verification method can achieve this reduction through experimental evaluation.

Finally, we summarize our results in chapter 8.



CHAPTER 2

RELATED WORK

In this chapter, we enumerate the various works related to the topic of this dissertation.

2.1 Prior Work in Approximate Data Mining

Privacy-preserving data mining (PPDM) is a vast field with hundreds of publications in many

different areas. The two landmark papers by Agrawal and Srikant (Agrawal and Srikant 2000)

and Lindell and Pinkas (Lindell and Pinkas 2000) began the charge, and soon many privacy

preserving techniques emerged for computing many data mining models (Kantarcioglu and

Clifton 2004; Vaidya and Clifton 2002; Clifton, Kantarcioglu, Vaidya, Lin, and Zhu 2002;

Pinkas 2002). Other techniques can be found in the survey (Aggarwal and Yu 2008). For our

purposes, we will focus on those works which are quite closely related to approximate data

mining.

There are quite a few protocols previously proposed for the secure computation of the dot

product. The protocol proposed by (Vaidya and Clifton 2002) is quadratic in the size of the

vector (times a security parameter). It does, however, have some privacy concerns accoring

to (Goethals, Laur, Lipmaa, and Mielikainen 2005). This same work, along with several

others (Du and Atallah 2001; Ioannidis, Grama, and Attallah 2002) propose other protocols

which are based on very slow public key cryptography. (Ravikumar, Cohen, and Feinberg

2004) proposes a sampling-based algorithm for secure dot product computation which relies

on secure set intersection as a sub-protocol. However, the secure set intersection problem is

also nontrivial. It either relies on a secure dot product protocol (Vaidya and Clifton 2002)

(which would lead to a circular dependency with (Ravikumar, Cohen, and Feinberg 2004)), or

a large amount of extremely expensive cryptographic operations (Vaidya and Clifton 2005b).

10
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The sketching primitives used in this work have been applied to data mining in several

different capacities. The Johnson-Lindenstrauss theorem is employed for data mining by

(Liu, Kargupta, and Ryan 2006), however, they employ the Johnson-Lindenstrauss theo-

rem as the sole means of preserving privacy, whereas we are using it as part of a process.

Other works (Fradkin and Madigan 2003; Wang, Garofalakis, and Ramchandran 2007) use

Johnson-Lindenstrauss projection as an approximation tool. These, however, do not make

use of the projection in a privacy-preserving context, and are merely concerned with fast

approximations.

The work of (Kantarcioglu, Nix, and Vaidya 2009) presents a sketching protocol for the

scalar product based on Bloom filters. However, its experimentation and discussion of actual

data mining tasks was insufficient. Our protocols perform better on real data mining tasks,

especially at high compression ratios.

2.2 Prior Work in Incentive Compatible Classification

Cryptography and game theory have a great deal in common, in terms of the goals they try to

achieve. The problems tackled by cryptography generally seek to assure that participants in

certain activites are forbidden to deviate (profitably) from the prescribed protocol by render-

ing such actions detectable, impossible, or computationally infeasible. Similarly, mechanism

design seeks to forbid deviations, but it does so by rendering the deviations unprofitable. It

is understandable, therefore, that a fair amount of work has been done to use the techniques

of one to solve the problems of the other. Most of this work is not directly related to ours,

since a fair amount of the game theoretic security work deals with specific functions, and the

individual steps of the computations of those functions.

Shoham and Tennenholtz (Shoham and Tennenholtz 2005), define the class of NCC, or

non-cooperatively computable functions, and define specifically the boolean functions which

are NCC. In addition, the paper defined two additional classes, p-NCC and s-NCC, which

stand for probabilistic-NCC and subsidized-NCC, respectively. p-NCC are the functions



12

which are computable with some probability non-cooperatively, and s-NCC are the functions

which are computable when external monetary motivation is allowed. This was expanded to

consider different motivations (McGrew, Porter, and Shoham 2003), and coalitions (Ashlagi,

Klinger, and Tenneholtz 2007). While our work does involve making functions computable

in a competitive setting, it involves more complicated functions, and specifies mechanisms to

ensure computability.

In addition to this, much work seeks to include a game-theoretic model in standard secure

multi-party computation. Instead of considering players which are honest, semi-honest, or

malicious, these works simply consider players to be rational, in the game theoretic sense.

Much of this work concentrates on the problem of secret sharing, that is, dividing a secret

number among players such that any quorum (sufficiently large subset) of them can recon-

struct the secret number. This was first studied by Halpern and Teague (Halpern and Teague

2004), and later re-examined by Gordon and Katz, (Gordon and Katz 2006). Other proto-

cols for this problem were outlined in (Abraham, Dolev, Gonen, and Halpern 2006) and

(Lysyanskaya and Triandopoulos 2006). The paper by Ong, et al.(Ong, Parkes, Rosen, and

Vadhan 2009), hybridizes the two areas, within the realm of secret sharing, by considering

some players honest and a majority of players rational. Other work seeks a broader realm of

computation, such as (Izmalkov, Micali, and Lepinski 2005), and (Kol and Naor 2008), which

build their computation model on a secret sharing model. There is other work that attempts

to combine game theoretic and cryptographic methodologies, many of which are surveyed in

(Katz 2008). Many of these rational secure computation systems could be used to ensure

privacy in our mechanism. However, like other secure computation systems, they make no

guarantees about the truthfulness of the inputs.

More closely related to the work in this paper, several works have attempted to enforce

honest behavior among the participants in a data sharing protocol. This paper builds on the

work of Agrawal and Terzi(Agrawal and Terzi 2006), who present a model which enforces

honesty in data sharing through use of auditing mechanisms. Layfield, et al., in (Layfield,

Kantarcioglu, and Thuraisingham 2009), present strategies which enforce honesty in a dis-
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tributed computation, without relying on a mediator. Jiang, et al., in (Jiang, Clifton, and

Kantarcıoğlu 2008) integrate the auditing mechanism with secure computation, to convert

existing protocols into rationally secure protocols. Dekel, et al.(Dekel, Fischer, and Procaccia

2008), create a mechanism-based framework for regression learning using risk minimization.

This work says nothing about privacy, and solely focuses on regression learning. Finally, the

work of Kargupta, et al.(Kargupta, Das, and Liu 2007), analyzes each step of a multi-party

computation process in terms of game theory, with the focus of preventing cheating withing

the process, and removing coalitions from gameplay. Each of these deals with the problem

of ensuring truthfulness in data mining. However, each one requires the ability to verify the

data after the calculation. Our mechanisms have no such requirement.

There is one work, by Zhang and Zhao (Zhang and Zhao 2005) which does not make use

of an auditing mechanism to encourage truthfulness. However, this work does not actually

encourage truthful sharing by all parties. The game theoretic strategies proposed for a non-

malicious player actually encourage the player to falsify his data, although not completely,

in the face of a malicious adversary. This strategy results in reduced accuracy, but greater

privacy. Interestingly enough, in the strategy presented, the malicious adversary has no

incentive to change his input. Our work does not consider parties to be malicious or otherwise.

Our work only assumes parties are rational. In addition, Zhang and Zhao focus on data

integration rather than data mining.

The Shapley value (Shapley 1952) has been applied to many things, from fair division

(Moulin 1992) to power cost allocation (Tan and Lie 2002), but has not been applied in this

way to data sharing.

2.3 Prior Work in Query Verification

Several works have outlined query verification methods. The vast majority of these works fo-

cus on specific types of queries. Some focus only on selection (Atallah, Cho, and Kundu 2008;

Chen, Ma, Hsu, Li, and Wang 2008; Mykletun, Narasimha, and Tsudik 2006; Xie, Wang,



14

Yin, and Meng 2007; Yang, Papadias, Papadopoulos, and Kalnis 2009), while others focus on

relational queries such as selection, projection, and joins (Pang, Zhang, and Mouratidis 2009;

Pang, Jain, Ramamritham, and Tan 2005). Still others focus only on aggregation queries

like sum, count, and average (Haber, Horne, Sander, and Yao 2006; Xu and Chang 2010;

Yi, Li, Cormode, Hadjieleftheriou, Kollios, and Srivastava 2009). Some of these processes

(Sion 2005; Yi, Li, Cormode, Hadjieleftheriou, Kollios, and Srivastava 2009) require different

verification schemes for each type of query, or even each individual query, requiring that the

subscriber knows which queries will be asked in advance.

Many of the aforementioned schemes require complex cryptographic protocols. Some en-

crypt the data itself, relying on homomorphic schemes to allow the cloud provider to perform

the computation (Gennaro, Gentry, and Parno 2010; Xu and Chang 2010). A homomorphic

operation will always be less efficient than the operation on the unencrypted data, rendering

the overhead of these protocols greater by orders of magnitude. Others, such as (Sion 2005),

rely on relatively simpler cryptographic primitives, like secure hash functions. To maintain

integrity, our scheme will also use hash functions. Our verification framework is, however,

simpler than these cryptography-based protocols, and can be used to improve the expected

runtime of any of these verification schemes.

The work of Canetti, Riva, and Rothblum (Canetti, Riva, and Rothblum 2011) also makes

use of multiple outsourcing services for query verification. However, they make use of all the

services all the time, and require a logarithmic number of rounds to ensure verifiability of

computation. In addition, they assume that at least one of the cloud providers is in fact

honest. We, in contrast, do not assume that any provider is honest, merely that they are ra-

tional (meaning that the provider wishes to maximize his profits), and we only use additional

providers a fraction of the time. In addition, we only require one round of computation.



CHAPTER 3

BACKGROUND

In order to keep this dissertation self-contained, we now give some necessary background

information, most notably in the fields of game theory and cryptography. We will make

extensive use of the game theory and some use of the cryptography.

Before proceeding with the background discussion, it is convenient to define a common

notation used within the literature and within this dissertation.

Given a vector, X = (x1, x2, ..., xn), we define:

X−i = (x1, x2, ..., xi−1, xi+1, ..., xn)

Or, intuitively, X−i is the vector X without the ith element.

3.1 Game Theoretic Background

Game theory is the study of competitive behavior among multiple parties. A game contains

four basic elements: players, actions, payoffs, and information (Rasmusen 2007). Players have

actions which they can perform at designated times in the game, and as a result of the actions

in the game, players receive payoffs. The players have different pieces of information, on which

the payoffs may depend, and it is the responsibility of the player to use a profitable strategy

to increase his or her payout. A player who acts in such a way as to maximize his or her

payout is termed rational. Games take many forms, and vary in the four attributes mentioned

above, but all games deal with them. The specific games we describe in this dissertation are

finite player, single round, incomplete information games, with payouts based on the final

result of players’ actions.

A game is said to be at equilibrium when no single player can unilaterally increase his or

her payoff by changing his or her strategy. In such a scenario, no players have any incentive to

15
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choose a different strategy. It was shown by Nash (Nash 1951) that all finite player games have

an equilibrium, although the equilibrium might require mixed strategies. A mixed strategy

is a strategy in which players choose each of the available actions with a certain probability.

For example, consider the game with two players, A and B. During the game, the players can

choose either action X or action Y, and both players choose their actions simultaneously. If

both players choose the same action, player A receives a utility of 1, while player B recieves

a utility of 0. Otherwise, player B recieves a utility of 1, and player A recieves a utility of 0.

This game can be represented by the table in figure 3.1.

Suppose player A’s strategy is to always choose action X. Player B could then choose his

action to be Y, and guarantee himself a payout of 1. However, if this was the case, then player

A could simply alter his strategy to choose action Y, thwarting player B’s strategy. Suppose,

however, that player A’s strategy is to flip a fair coin, choose X if it comes up heads, and

tails if it comes up Y. In this scenario, no matter what player B chooses, player B’s expected

payout is 1
2
. Player B can also choose to use this strategy. If both players use this strategy,

then the game is in equlibrium, since neither player has any incentive to unilaterally change

strategy. This equilibrium is the only equilibrium of the game, and since the strategies are

probabilistic, the equilibrium is a mixed strategy equilibrium.

We can also frame the above game as a game with a pure strategy equilibrium, but with

continuous actions. Instead of having the actions be X and Y , we allow each player to select,

as his action, a probability between zero and one that they would select X. Let the A’s

chosen probability be α, and let B’s chosen probability be β. As before, the equilibrium is

α = β = 1
2
. However, this equilibrium is in pure strategies, since the action is now to choose

the probability, not the action as before. This could be considered an irrelevant distinction.

However, it will prove useful in the models we present.

For behavior at an equilibrium to be considered rational, it must not only be incentive

compatible, meaning that no player has any incentive to unilaterally deviate from that strat-

egy, but it must also be individually rational. Individual rationality means that each player

is expected to be no worse off than they were before they chose to participate in the game.
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A→
B↓ X Y

X 1,0 0,1
X 0,1 1,0

Figure 3.1. A simple game with a mixed strategy equilibrium

More formally, it means that the payoffs for each player in the equilibrium have an expected

value greater than or equal to zero.

3.1.1 Mechanism Design for Non-Cooperative Games

Mechanism design is a sub-field of game theory, and deals with the construction of games for

the purpose of achieving some goal, when players act rationally. A mechanism is defined, for

our purposes1, as:

Definition 1 Given a set of n players, and a set of outcomes, A, let Vi be the set of possible

valuation functions of the form vi(a) which player i could have for an outcome a ∈ A. We

then define a mechanism as a function f : V1× V2× ...× Vn → A, which given the valuations

claimed by the players, selects an outcome, and n payment functions, p1, p2, ..., pn, where

pi : V1 × V2 × ... × Vn → <, that is, given the valuations claimed by the players, selects an

amount for player i to pay (Nisan 2007).

Thus, the overall payout to a player in this mechanism is his valuation on the outcome,

vi(a), minus the amount he is required to pay, pi(vi, v−i). A mechanism is said to be incentive

compatible if rational players would prefer to give the true valuation rather than any false

valuation. Or, more formally:

Definition 2 If, for every player i, every v1 ∈ V1, v2 ∈ V2, ..., vn ∈ Vn, and every v′i ∈ Vi,

where a = f(vi, v−i) and a′ = f(v′i, v−i), then vi(a)− pi(vi, v−i) ≥ vi(a
′)− pi(v′i, v−i), then the

mechanism in question is incentive compatible (Nisan 2007).

1Technically, this is only a direct revelation mechanism, but we will have no need to
generalize this.
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Thus, a player would prefer to reveal his true valuation rather than any other valuation,

assuming all other players are truthful.

Another important term is individual rationality, which is intuitively whether a player

would desire to participate in a game in the first place. The utility a player receives in the

event that they choose not to participate is called the reservation utility. In order for a

strategy to be considered an equilibrium, for all players, it must be individually rational and

incentive compatible.

The specfic mechanism used in our data mining is the Vickrey-Clarke-Groves (VCG)

mechanism. The VCG mechanism, in general, seeks to maximize the social welfare of all

participants in a game. The social welfare can be defined as the sum of the valuations of all

players. Thus, VCG wishes to cause rational players to act in such a way that the sum of the

valuations each player has of the outcome is maximized. In mathematical notation, this is

where the outcome chosen is argmaxa∈A
∑

i vi(a), where A is the set of possible actions, and

vi is the valuation function for player i. The VCG mechanism is defined as follows:

Definition 3 A mechanism, consisting of payment functions p1, p2, ..., pn and a function f ,

for a game with outcome set A, is a Vickrey-Clarke-Groves mechanism if f maximizes the

social welfare, by satisfying the following equation:

f(v1, v2, ..., vn) = argmaxa∈A
∑

vi(a)

and for some functions h1, h2, ..., hn, where hi : V−i → < (hi does not depend on vi), for all

(v1, v2, ..., vn) ∈ V, pi(v1, v2, ..., vn) = h(v−i)−
∑

j 6=i vj(f(v1, v2, ..., vn)) (Nisan 2007).

Since pi is the amount paid by player i, this ensures that each player is paid an amount

equal to the valuation of all the other players. This means that each player would have

incentive to make actions to maximize the social welfare. The formal proof that the VCG

mechanism is incentive compatible can be found in (Nisan 2007).
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3.1.2 Cooperative Game Theory

Cooperative games, first formalized by von Neumann and Morgenstern (Von Neumann and

Morgenstern 1967) use a different setup than the standard non-cooperative game scenario.

Cooperative games consist of a set of players N (usually called the grand coalition) and a

valuation function v which maps subsets of N to the amount the subset of players can gain

by cooperating, with v(∅) = 0.

A non-cooperative game can be translated into the cooperative scenario in a few ways,

assuming that coalitions can enforce coordinated behavior. The most common methods are

to associate with each coalition the max-min or min-max sum of the gains its members can

guarantee by cooperating.

One important mechanism designed for use in cooperative games is the Shapley value

(Shapley 1952), which is defined for each player i as:

φi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

This function can also be defined as:

φi =
1

|N |!
∑
R

v(PR
i ∪ {i})− v(PR

i )

where R is taken over the possible orderings of N , and PR
i is defined as the elements of

R which precede i in R. Informally, this value is formed by taking the contribution brought

to the coalition by the player at each possible time the player could have been added to the

coalition. This overall sum gives a “fair” value for the player’s contribution to the grand

coalition.

The Shapley value is considered individually rational, that is, players will choose to join

the coalition if offered their Shapley value, if the game is superadditive. In a superadditive

game, for any disjoint coalitions S, T ⊆ N , we have:

v(S ∪ T ) ≥ v(S) + v(T )

For other games, the Shapley value is defined, but not necessarily individually rational.
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3.2 Cryptographic Background

In order to maintain the integrity of our outsourced data, we will need to employ some basic

cryptographic primitives. We will need to employ a scheme that allows the owner to make

sure that tuples he receives from the server are legitimate, and were not added or altered

by the server. We can use a simple message authentication code protocol known as HMAC

(Pub 2002) (Hash-based Message Authentication Code) to do this. HMAC requires the use

of cryptographic hash functions.

A cryptographic hash function or one-way hash function is a function mapping a large,

potentially infinite, domain to a finite range. This function is simple to compute (taking

polynomial time), but is difficult to invert. Equivalently, we can say that, for a cryptographic

hash function f , it is difficult to find an x and y such that x 6= y and f(x) = f(y). Examples

of cryptographic hash functions include MD5 (Rivest 1992), SHA-1, and SHA-256 (National

Institute of Standards and Technology 2002).

The HMAC system creates a keyed hash function from an existing cryptographic hash

function. Let m be the message for which we wish to create a code, and k be the key we wish

to use. Let f be our cryptographic hash function, and let its required input size be n. If k

has a length smaller than n, we pad k with zeroes until it has size n. If k is larger, we let k

be f(k) for the purposes of calculating the HMAC function. We define the HMAC function

as follows:

HMAC(m, k) = f((k ⊕ outpad)||f(k ⊕ inpad)||m)

where outpad and inpad are two constants which are the length of f ’s block size (in

practice, 0x5c...5c and 0x36...36, respectively).

Given a message m and its HMAC value h, if we have the key k, we can simply check

to see if HMAC(m,k) matches h. If it does, then the probability that the message is not

legitimate (i.e., fabricated or altered) is negligible. Someone who does not have the key k,

however, will be unable to compute HMAC(m,k), and will therefore be unable to forge a

correct message.
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Some more sophisticated methods of verifying data exist, such as Merkle hash trees(Merkle

1979), which allow larger and smaller granularities of the message to be authenticated without

authenticating the rest. These other methods of verification could be used to ensure data

integrity if desired. In practice, any method of ensuring data integrity once it is in the hands

of the outsourced servers will suffice. We will use the simple HMAC protocol to do this. Data

integrity will be a critical component of our second solution.

It is also of interest to note the traditional models of secure multiparty computation. In

multiparty computation, adversarial models include the semi-honest and malicious models.

A semi-honest adversary will follow the protocol we prescribe, but will attempt to learn

whatever information it can about others’ private data. A malicious adversary, however,

can act arbitrarily. A protocol can be considered secure against a malicious adversary if the

malicious adversary learns nothing but the function result, no matter what it does. This

does not, however, prevent a malicious adversary from lying about its input. Even the most

sophisticated cryptographic algorithms cannot ensure truthfulness.



CHAPTER 4

APPROXIMATE PRIVACY-PRESERVING DATA MINING

Privacy is a growing concern among the world’s populace. As social networking and cloud

computing become more prevalent in today’s world, questions arise about the safety and

confidentiality of the data that people provide to such services. In some domains, such as

medicine, laws such as HIPAA and the Privacy Act of 1979 step in to make certain that

sensitive data remains private. This is great for ordinary consumers, but can cause problems

for the holders of the data. These data holders would like to create meaningful information

from the data that they have, but privacy laws prevent them from disclosing the data to

others. In order to allow such collaboration between the holders of sensitive data, privacy-

preserving data mining techniques have been developed.

In privacy-preserving data mining, useful models can be created from sensitive data with-

out revealing the data itself. One way to do this is to perturb the data set using anonymization

or noise addition (Dwork 2008) and perform the computation on that data. This approach

was first pioneered by Agrawal and Srikant (Agrawal and Srikant 2000). These methods can

suffer from low utility, since the data involved in the computation is not the actual data be-

ing modeled. In addition, these protocols can suffer from some security problems(Kargupta,

Datta, Wang, and Sivakumar 2003; Huang, Du., and Chen 2005; Liu, Giannella, and Kar-

gupta 2006), which can lead to the retrieval of private data from the perturbed data given.

The other way to do this is using secure multiparty computation techniques to compute

the exact data mining result, on the actual data. Secure computation makes use of encryp-

tion schemes to keep the data secret, but relies on other tactics, such as encrypting the

function itself, or homomorphic properties of the encryption, to perform the computation.

This approach was first used by Lindell and Pinkas (Lindell and Pinkas 2000). These schemes

generally rely on very slow public key encryption, which results in a massive decrease in infor-
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mation output. The exact computation of data mining models can take thousands of times

longer when using these public key cryptosystems.

While many functions are very difficult to compute using secure multiparty computation,

some of these functions have approximations which are much easier to compute. This is

especially true in those data mining tasks that deal with aggregates of the data, since these

aggregates can often be easily estimated. Approximating the data mining result, however,

can lead to some data leakage if the approximation is not done very carefully. The security

of approximations has been analyzed by Feigenbaum, et al., (Feigenbaum, Ishai, Malkin,

Nissim, Strausse, and Wright 2006), but the results of their analysis showed that to make

an approximation fully private, the process of the computation must be substantially more

complex. Sometimes, this complexity can make computing the approximation more difficult

than computing the function itself!

Here, we present another security analysis that, while allowing some small, parameter

defined data leakage, creates the opportunity to use much simpler and less computationally

expensive approximations securely. We then use this model of security to show the security of

three approximation methods for a sub-protocol of many vertically partitioned data mining

tasks: the two-party dot product. The dot product is used in association rule mining, classi-

fication, and other types of data mining. We prove that our approximations are secure under

our reasonable security definitions. These approximations can provide one to two orders of

magnitude improvement in terms of efficiency, while sacrificing very little in accuracy.

4.0.1 Summary of Contributions

A summary of our contributions are as follows:

• We outline a practical security model for secure approximation which allows simple

protocols to be implemented securely.

• We showcase three sketching protocols for the dot product and prove their security

under our model.
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• Through experimentation, we show the practicality of these protocols in vertically par-

titioned privacy-preserving data mining tasks. These protocols can lead to a two order

of magnitude improvement in efficiency, while sacrificing very little in terms of accuracy.

Section 4.1 provides the standard definitions of secure approximations, and our minor

alteration thereof. Section 4.2 outlines the approximation protocols we use. Section 4.3 gives

the proof that these simple approximation protocols are secure under our definition of secure

approximation. In section 4.4, we give experimental results for different data mining tasks

using the approximations. Finally, we offer our overall conclusions in 4.5.

The work in this chapter is based on the works “An Efficient Approximate Protocol for

Privacy-Preserving Association Rule Mining (Kantarcioglu, Nix, and Vaidya 2009),” and

“Approximate Privacy-Preserving Data Mining on Vertically Partitioned Data (Nix, Kantar-

cioglu, and Han 2012).” The author of this dissertation was heavily involved in the publi-

cation of both, and was principal author on the second. The author of this dissertation has

permission to use this material.

4.1 Secure Approximations

Much has been written about secure computation, and the steps one must go through in

order to compute functions without revealing anything about the data involved. Securely

computing the approximation of a function poses another challenge. In addition to not re-

vealing the data through the computation process, we must also assure that the function we

use to approximate the actual function must not reveal anything about the data! To this

end, we outline a definition of secure approximations given by (Feigenbaum, Ishai, Malkin,

Nissim, Strausse, and Wright 2006), and then propose an alteration to this framework. This

alteration, while allowing a very small amount of data leakage, allows for the use of very effi-

cient approximation protocols, which can improve the efficiency of exact secure computation

by orders of magnitude.
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4.1.1 A secure approximation framework

The work of Feigenbaum, et. al. (Feigenbaum, Ishai, Malkin, Nissim, Strausse, and Wright

2006) gives a well-constructed and thorough definition of secure approximations. In the

paper, they first define a concept called functional privacy, then use this definition to define

the notion of a secure approximation. First, we examine the definition of functional privacy,

as follows:

Definition 1 Functional Privacy : Let f(x) be a deterministic, real valued function. Let

f̂(x) be a (possibly randomized) function. f̂ is functionally private with respect to f if there

exists a probabilistic, expected polynomial time sampling algorithm S such that for every

input x ∈ X, the distribution S(f(x)) is indistinguishable from f̂(x).

Note that the term “indistinguishable” in the definition is left intentionally vague. This

could be one of the standard models of perfect indistinguishability, statistical indistinguisha-

bility, computational indistinguishability (Menezes, Van Oorschot, and Vanstone 1997), or

any other kind of indistinguisability. In these cases, the adjective applied to the indistin-

guishablity is also applied to the functional privacy (i.e., statistical functional privacy for

statistical indistinguishability).

Intuitively, this definition means that the result of f̂ yields no more information about the

input than the actual result of f would. Note, however, that this does not claim that there

is any relation between the two outputs, other than the privacy requirement. This does not

require that the function f̂ be a good approximation of f . Feigenbaum, et al., therefore, also

provide a definition for approximations, which is also used in the final concept of a secure

approximation.

Definition 2 P-approximation: Let P (f, f̂) be a predicate for determining the “closeness”

of two functions. A function f̂ is a P -approximation of f if P (f, f̂) is satisfied.

Now, for this definition to be useful, we need to define a predicate P to use for the closeness

calculation. The most commonly used predicate P is the 〈ε, δ〉 criterion, in which 〈ε, δ〉 (f, f̂)

is satisfied if and only if ∀x, P r[(1− ε)f(x) ≤ f̂(x) ≤ (1 + ε)f(x)] > 1− δ. We do not refer
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to any other criterion in our work, but the definition is provided with a generic closeness

predicate for the sake of completeness.

Finally, we present the liberal definition of secure two party approximations as outlined

in Feigenbaum, et al.

Definition 3 Secure Approximation (2-parties): Let f(x1,x2) be a deterministic function

mapping the two inputs x1 and x2 to a single output. A protocol p is a secure P -approximation

protocol for f if there exists a functionally private P -approx-imation f̂ such that the following

conditions hold:

Correctness The outputs of the protocol p for each player are in fact equal to the same

f̂(x1,x2).

Privacy There exist probabilistic polynomial-time algorithms S1,S2 such that

{(S1(x1, f(x1,x2), f̂(x1,x2)), f̂(x1,x2))}(x1,x2)∈X
c≡

{(viewp
1(x1,x2), outputp2(x1,x2))}(x1,x2)∈X ,

{(f̂(x1,x2),S2(x1, f(x1,x2), f̂(x1,x2)))}(x1,x2)∈X
c≡

{(outputp1(x1,x2), viewp
2(x1,x2))}(x1,x2)∈X

where A
c≡ B means that A is computationally equivalent to B. Note that in the above

definition all instances of f̂(x1,x2) have the same value, as opposed to being some random

value from the distribution of f̂ . This limits the application of the simulators to a single

output. This definition essentially says that we have a functionally private function f̂ which

is a P -approximation of f which itself is computed in a private manner, such that no player

learns anything else about the input data.

4.1.2 Our definition

Having defined the essential notions of functional privacy, approximations, and secure ap-

proximations, we now define another notion of functional privacy, which, while less secure

than the above model, allows for vastly more efficient approximations.
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Definition 4 〈ε, δ〉-functional privacy : A function f̂ is 〈ε, δ〉-functionally private with

respect to f if there exists a polynomial time simulator S such that Pr[|S(f(x), R)− f̂(x)| <

ε] > 1− δ, where R is a shared source of randomness involved in the calculation of f̂ .

Intuitively, this definition allows for a non-negligible but still small acceptable information

loss of at most ε, while still otherwise retaining security. In practice, the amount of infor-

mation revealed could be much smaller, but this puts a maximum bound on the privacy of

the function. In addition, we allow the simulator access to the randomness function used in

computing f̂ , which allows the simulator to more accurately produce similar results to f̂ .

The acceptable level of loss ε can vary greatly with the task at hand. For example, if the

function is to be run on the same data set several times, the leakage from that data set would

increase with each computation. Thus, for applications with higher repetition, we would want

a much smaller ε. The ε can be adjusted by using a more accurate approximation.

In their work describing the original definition above, Feigenbaum, et al. (Feigenbaum,

Ishai, Malkin, Nissim, Strausse, and Wright 2006) dismissed a simple, efficient approximation

protocol based on their definition of functional privacy. This approximation was a simple ran-

dom sampling based method for approximating the hamming distance between two vectors.

The claim was that even if the computation was done entirely securely, some information

about the randomness used in the computation would be leaked into the final result. Thus,

we simply explicitly allow the randomness to be used by the simulator in our model. We feel

this is realistic, as the randomness is common knowledge to all parties in the computation.

In short, the previous definition of (Feigenbaum, Ishai, Malkin, Nissim, Strausse, and

Wright 2006) aims to eliminate data leakage from the approximation result. Our definition

simply seeks to quantify it and reduce it to acceptable levels. In return, we can use much

simpler approximation protocols securely. For example, the eventual secure hamming distance

protocol given by (Feigenbaum, Ishai, Malkin, Nissim, Strausse, and Wright 2006) has two

separate protocols (one which works for high distance and one for low distance) each of which

requires several rounds of oblivious transfers between the two parties. Under our definition,
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protocols can be used which use only a single round of computation and work for any type

of vector, as we will show in the next section.

4.2 Scalar Product Approximation Techniques for Distributed Data Mining

Data mining is, in essence, the creation of useful models from large amounts of raw data. This

is typically done through the application of machine learning based model building algorithms

such as association rules mining, naive bayes classification, linear regression, or other model

creation algorithms. Distributed data mining, then, is the creation of these models from data

which is distributed (partitioned) across multiple owners. The dot product of two vectors

has many applications in vertically partitioned data mining. Many data mining algorithms

can be reduced to one or more dot products between two vectors in the vertically partitioned

case. Vertical partitioning can be defined as follows:

Let X be a data set containing tuples of the form (a1, a2, ..., ak) where each a is an attribute

of the tuple. Let S be a subset of {1, 2, ..., k}. Let XS be the data set where the tuples contain

only those attributes specified by the set S. For example, X{1,2} would contain tuples of the

form (a1, a2). The data set X is said to be vertically partitioned across n parties if each party

i has a set Si, and the associated data XSi , and

n⋃
i=1

Si = {1, 2, ..., k}

In previous work, it has been shown that the three algorithms we test in this paper can

in fact be reduced to the dot product of two zero-one vectors in the vertically partioned case.

These algorithms are association rules mining(Kantarcioglu, Nix, and Vaidya 2009), naive

Bayes classification(Vaidya and Clifton 2004), and C4.5 decision tree classification(Vaidya

and Clifton 2005a).

We developed three sketching protocols for the approximation of the dot product of two

zero-one vectors. These protocols are used to provide smaller input to an exact dot product

protocol, which is then used to estimate the overall dot product, as outlined in figure 4.1.
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Figure 4.1. Dot Product Approximation Concept

First, we present a protocol based on Bloom filters(Bloom 1970). Second, we present a

sketching protocol based on the Johnson-Lindenstrauss theorem (Johnson and Lindenstrauss

1984) and the work of (Achlioptas 2003) and (Li, Hastie, and Church 2006). Then, we present

a simple sampling algorithm which is also secure under our model. Finally, we present a proof

of the security of these approximations in our security model.

4.2.1 Bloom Filter Sketching

A set of items X can be represented as a bit vector of length n, where n is the total number

of possible items, where the bit at position i is 1 if the item i is in set X. A Bloom filter is

a lossy method of representing the set using a vector f of m bits, where m < n. First, we

create k independent hash functions (h1(x), ..., hk(x)), each of which has a range of {1, ...,m}.

Then, for each element x ∈ X, and for all i = 1...k, we set fhi(x) to one. To test if an element

x is an element of X given f , we simply test to see if fhi(x) = 1 for all i = 1...k. Now, it is

possible that an element might be falsely identified as being in X, if other elements hash to

h1(x), ..., hk(x). Thus, it is important that the hash functions are chosen carefully.

Now, suppose we want to calculate the intersection of two sets X1 and X2 represented by

Bloom filters F1, F2. The following formula is given in (Broder and Mitzenmacher 2004):

1

m

(
1− 1

m

)−k|X1∩X2|

≈ Z1 + Z2 − Z12

Z1Z2

where Z1 is the number of zeroes in F1, Z2 is the number of zeroes in F2, and Z12 is the

number of zeroes in the inner product of Z12, equal to m − (F1 · F2). Solving algebraically,
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we can come up with an expression for the approximation of |X1 ∪X2|:

|X1 ∪X2| ≈
ln(m(Z1 + Z2 + Z12))− ln(Z1)− ln(Z2)

−kln(1− 1
m

)

Now, if the sets X1 and X2 were originally represented as bit vectors of length n, then

this provides an approximation of the dot product of the original vectors. This algorithm is

shown below as Algorithm 4.2.1.

Algorithm 4.2.1 Bloom Filter Dot Product Protocol

Sketch(Vector v,m,k):
sketch← [0, ..., 0]m
for i← 1...|v| do

if vi = 1 then
for j ← 1...k do
sketchhj(i) ← 1

end for
end if

end for
return sketch
———————————————————————–
DotProductApproximation(Vector u,Vector v,m,k):
u′ ← Sketch(u,m, k)
v′ ← Sketch(v,m, k)
Z1 ← countZeroes(u′)
Z2 ← countZeroes(v′)
Z12 ← m− SecureDotProduct(u′, v′)

return ln(m(Z1+Z2+Z12))−ln(Z1)−ln(Z2)

−kln(1− 1
m
)

4.2.2 Johnson-Lindenstrauss (JL) Sketching

The Johnson-Lindenstrauss theorem (Johnson and Lindenstrauss 1984) states that for any set

of vectors, there is a random projection of these vectors which preserves Euclidean distance

within a tolerance of ε. More formally, for a given ε, there exists a function f : Rd → Rk such

that for all u and v in a set of points,

(1− ε)||u− v||2 ≤ ||f(u)− f(v)||2 ≤ (1 + ε)||u− v||2
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It is shown in that because of this property, the dot product is also preserved within a

tolerance of ε. As with any sketching scheme, the probability of being close to the correct

answer increases with the size of the sketch.

As outlined in (Achlioptas 2003) and (Li, Hastie, and Church 2006), to do our random

projection, we generate a k×n matrix R, where n is the number of rows in the data set, and

k is the number of rows in the resultant sketch. Each value of this matrix has the value 1, 0,

or -1, with probabilities set by a sparisity factor s. The value 0 has a probability of 1 − 1
s
,

and the values 1 and -1 each have a probability of 1
2s

. In order to sketch a vector a of length

n, we do
√
s√
k
Ra, which will have a length of k. This preserves the dot product to within a

certain tolerance. So, to estimate the dot product of two vectors a and b, we merely compute
√
s√
k
Ra ·

√
s√
k
Rb. Note that this will be equal to sRa·Rb

k
, and in practice, we typically omit the

√
s√
k

term from the sketching protocol, and simply divide by the length of the sketch and multiply

by the sparsity factor after performing the dot product. This yields the same result. This is

shown below as Algorithm 4.2.2.

According to (Li, Hastie, and Church 2006), the sparsity factor s can be as high as n
logn

before significant error is introduced, and as s increases, the time and space requirements for

the sketch decrease. Nevertheless we still used relatively low sparsity factors, to show that

even in the slowest case, we still have an improvement.

4.2.3 Random Sampling

In addition to the more complicated method above, to estimate the dot product of two

vectors, one could simply select a random sample of both vectors, compute the dot product,

then multiply by a scaling factor to estimate the total dot product. Note that this works

fairly well on vectors where the distribution of values is known, such as zero-one vectors,

but can work quite poorly on arbitrary vectors. The sampling algorithm is shown below in

Algorithm 4.2.3.
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Algorithm 4.2.2 Johnson-Lindenstrauss(JL) Dot Product Protocol

RandomMatrixGeneration(n,k):
Matrix R
for i← 1...n do

for j ← 1...k do

Rj,i
$← { 1

2s
: −1, 1− 1

s
: 0, 1

2s
: 1}

end for
end for
return R
———————————————————————–
DotProductApproximation(Vector u,Vector v, k):
Matrix R← RandomMatrixGeneration(|u|, k)
u′ ← Ru
v′ ← Rv
return s·SecureDotProduct(u′,v′)

k

Algorithm 4.2.3 Sampling Protocol

Sketch(Vector v, samplingFactor ∈ [0...1]):
sketch← []
for i← 1...n do
r

$← [0...1]
if r < samplingFactor then
sketch.append(vi)

end if
end for
return sketch
———————————————————————–
DotProductApproximation(u,v,samplingFactor)
u′ ← Sketch(u)
v′ ← Sketch(v)

return SecureDotProduct(u′,v′)·|u|
|u′|
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4.3 Approximation Protocol Security

We now provide a proof that each of the above protocols provides a secure approximation in

the sense outlined above. We first show the 〈2ε, δ2〉-functional privacy of the protocols, then

show that the protocols are secure under the liberal definition of secure approximations.

Theorem The protocols outlined in section 4.2 are both 〈2ε, δ2〉-functionally private, and

meet the liberal definition for secure approximations (definition 3).

Proof:

Proof of Functional Privacy. Let ε, δ be the approximation guarantees granted by the

above protocols. That is, Pr[|u·v−DotProductApproximation(u, v)| > ε] < 1−δ. For Bloom

filters, these bounds are given by the estimation formula found in (Broder and Mitzenmacher

2004). For JL, these bounds are provided by the Johnson-Lindenstrauss theorem itself, as

shown by the work of (Liu, Kargupta, and Ryan 2006). For sampling, we can use the Hoeffding

inequality (Hoeffding 1965) to establish a bound on the error:

Pr[|f̂(x)− f(x)| ≥ ε] ≤ 2e−2ε
2n2

Where n is the sample size. As f̂ can be taken to be an estimate of the mean of the

product of the random variables, the Hoeffding inequality holds for the dot product of the

samples. So, we set our δ to 2e−2ε
2n2

.

Note that, with both of these approximation protocols, adjusting the size (for JL, the

matrix size, and for sampling, the sample size), allows us to adjust the ε of the functional

privacy requirement. This would allow us to adjust the ε value to be as low as we deemed

necessary for our purposes.

Now, let our simulator S(f(x), R) generate two random zero-one vectors u and v such

that f(u, v) = u · v = f(x). We then apply the randomness given to perform a calculation

of the dot product approximation β = f̂(u, v). Now, the probability that |f(x) − f̂(x)| ≥ ε

is 1 − δ. The probability that |f(x) − β| ≥ ε is also 1 − δ, since f(x) = f(u, v). As these

are independent events, the probability that neither occurs is δ2. In the case this occurs,
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we have |f(x) − f̂(x)| ≤ ε and |f(x) − β| ≤ ε, which means that −ε ≤ f(x) − f̂(x) ≤

ε and −ε ≤ f(x) − β ≤ ε. Because of this, the difference between the two quantities

(f(x)− f̂(x))− (f(x)− β) = β − f̂(x) can be no more than 2ε. If our simulator returns β,

then we have shown that f̂ is 〈2ε, δ2〉-functionally private with respect to f .

Proof of Secure Approximation (under Definition 3). For the approximation to

be considered secure, it must compute the same value for both players (which is trivially true

for all protocols), and be private with respect to the views of each player. Now, consider,

in each case, what each player sees. Player 1 sees his input, a sketch of that input, and the

inputs and outputs of a secure dot product protocol. Our simulator can take that input,

sketch it, and simulate the secure dot product protocol, altering its output to be f̂(x) to

player 1. Since this output is all player 1 sees outside of the secure dot product protocol, it

cannot distinguish this from the true output. Player 2 sees the same thing, his input, a sketch

of that input, and the operations of a secure dot product protocol on the inputs. Since the

subprotocol is secure, neither player can learn anything about the inputs that the sketches

would not tell them.

Having shown that the sketching protocols are 〈ε, δ〉-functionally private, and that the

computation protocol is secure under definition 3, we now claim that the entire protocols are

secure under our model.

4.4 Experiments

In order to determine the efficiency and effectiveness of the algorithms proposed, we con-

ducted several experiments. Each of the sketching protocols presented were inserted into the

data mining process for three different data mining tasks: association rules mining, naive

Bayes classification, and C4.5 decision tree classification. For Bloom filters, since previous

experimental results (Kantarcioglu, Nix, and Vaidya 2009) showed that an increase in the

number of hash functions (k) in the Bloom filter protocol did not result in an increase in

accuracy, we chose to keep k = 1. We used three separate sparsity values for JL sketching:
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s = 1, which results in a matrix completely full of 1 and -1, s = 100, and s = 1000. The

efficiency of JL increases with s, and these values are much lower than what is required to

achieve good accuracy (Li, Hastie, and Church 2006).

For association rules mining, we used the retail data set found at (Goethals 2005), which

lists transactions from an anonymous Belgian retail store. We considered three variables in

the association rules experiments: the required support, the required confidence, and the

compaction ratio of the sketching protocol. For testing the required support, we used 2%,

3%, 4%, 5%, and 6%, while holding the confidence constant at 70% and the compaction

ratio constant at 10%. For the confidence, we used 60%, 65%, 70%, 75%, and 80% while

holding the support constant at 4% and the compaction ratio constant at 10%. Finally, for

the compaction ratio, we used 1%, 5%, 10%, 15%, and 20%, holding the support constant at

4% and the confidence constant at 70%. For naive Bayes and C4.5 decision tree classification,

we used the Adult data set from the UC Irvine Machine Learning Repository (Asuncion and

Newman 2007), which consists of data from the 1993 US Census. As there were no paramaters

to set for naive Bayes or the decision tree, we varied only the compaction ratio as above. We

did, however, discretize each attribute of the data set before performing the data mining, as

continuous data would not function under our model. For each task and variable set, we ran

ten separate experiments, using different initialization values for the inherent randomness in

the sketching protocols. We employed ten-fold cross-validation for the classification tasks.

The accuracy results were then averaged over all ten trials to come up with the final result.

4.4.1 Accuracy

Association Rules Mining

To assess the accuracy of the algorithms on association rules mining, we look at both the

number of false positives (that is, the number of invalid associations returned by the algo-

rithm) and false negatives (the number of valid assocations not returned by the algorithm).

For the association rules mining, this is a better picture of the accuracy than overall accu-
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False Positives(Bloom) False Positives(JL,Sampling) False Negatives

Figure 4.2. Association Mining Results Varying Sketch Size

racy, since the true positives are so much rarer than the true negatives. Figure 4.2 shows the

results when we varied the compaction ratio. Note that at very low compaction, the Bloom

filter method almost always fills the filter, resulting in a dot product estimation of infinity.

Now, since this makes no sense, we set any dot product estimation larger than the original

vector to be equal to the size of the original vector. This, in turn, results in an incredibly

high false positive rate at low compaction ratios for Bloom filters. JL and sampling are very

similar in terms of accuracy, with a slight overall edge to JL. Note that by the time we reach

a compression ratio of 10%, no more false negatives arise in any JL sketching (regardless of

sparsity), or in the sampling protocol.

Figures 4.3 and 4.4 show the results varying the required confidence and required support,

respectively. As one might expect, there is no discernable correlation between these variables

and the accuracy of the approximation for it. A larger error rate generally indicates that

there are more itemsets near the exact required value, which means a smaller error in the dot

product might result in the incorrect rejection or acceptance of an itemset. This is especially

true for a support value of 2%, since below 2%, the number of supported itemsets increases

dramatically. In any case, JL and sampling again had similar performance, while Bloom

filters had more errors most of the time.
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False Positives False Negatives

Figure 4.3. Association Mining Results Varying Confidence

False Positives False Negatives

Figure 4.4. Association Mining Results Varying Support
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Naive Bayes Classification

Figure 4.5 (left side) shows the results for naive Bayes classification. Two of the data points

for Bloom filters are not shown on the graph. The 1% filter resulted in an overall accuracy

of 23%, since, as stated before, a very high compaction ratio results in filling the filter every

time. Thus, each partial probability is computed to be dataLength
classSize

, which, by the formula

above, results in the algorithm choosing the least likely class. The 10% value is roughly 58%.

The 5% value is higher because at 5% we only fill the filter some of the time, which leads to

the algorithm simply guessing the most likely class each time. However, once we reach a 15%

compaction ratio, the Bloom filter method begins to perform well.

JL and sampling, again, perform quite similiarly. The accuracy, as expected, increases

with the sketch size. The thin black line on the graph represents the accuracy of the naive

Bayes classification on the original, uncompacted data. The accuracy of the approximation for

both JL and sampling hovers right around the original accuracy, and in some cases performs

better. This is understandable due to the machine learning phenomenon of overfitting. When

a model is built on some data, it performs quite well on the data it was trained with, but the

model will not perform as well on test data. When this happens, the model is said to overfit

the training data. Often some noise is added to the model to remove the overfitting problem.

The approximation of the dot product can provide such noise. Thus, the approximations can

achieve higher accuracy than the exact result.

C4.5 Decision Tree

Figure 4.5 (right side) shows the results for C4.5 decision tree classification. The results

are consistent with our findings in other tasks. The Bloom filters provide lower accuracy,

while JL and sampling are very similar. Interestingly enough, the more sparse versions of JL

outperformed the unabridged (s = 1) version. This is likely due to the fact that the sparse

vectors provided slightly less distortion in the multiplication, resulting in a closer approxima-

tion for the dot product. In this case, as opposed to the naive Bayes case, the original tree
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Naive Bayes C4.5 Decision Tree

Figure 4.5. Naive Bayes and C4.5 Results Varying Sketch Size

provides a higher degree of accuracy, mainly because the C4.5 algorithm implements noise

introduction by pruning the tree after building it.

4.4.2 Efficiency

In order to gauge the efficiency of our sketching protocols, we ran several timing experiments.

The machine used was an AMD Athlon(tm) 64X2 dual core processor 4800T at 2.5 GHz

with 2GB of RAM, running Windows Vista, and running on the Java 6 Standard runtime

environment update 24. As our sub-protocol for exact dot product computation, we use the

protocol of Goethals, et al (Goethals, Laur, Lipmaa, and Mielikainen 2005), as it is provably

secure, and lends itself well to improvement from our sketching protocols.

First, we ran several timing experiments computing the complete dot product of zero-one

vectors of size 1000. The average time for the computation was 105 seconds. To ensure

that the algorithm scaled linearly, we then ran it on vectors of size 2000, and the average

computation time was 211 seconds. So, we determined the time-per-element in the dot

product protocol to be .105 seconds. From this point forward, we computed the runtime of

the approximate protocol in terms of the run time of the exact protocol by counting the time

not involved in the computation of dot products, then adding it to the estimated dot product
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Mining Sketching Compaction Ratio
Task Protocol 1% 5% 10% 15% 20%

Assoc. Mining

Bloom Filter 1.1043% 5.0671% 10.0794% 15.0824% 20.0854%
JL(s=1) 1.2330% 5.9753% 12.0635% 17.9322% 23.9004%

JL(s=100) 1.1019% 5.5068% 11.0154% 16.6250% 22.1959%
JL(s=1000) 1.0968% 5.4391% 10.9785% 16.4922% 22.0116%

Sampling 1.0798% 5.0972% 10.0880% 15.0792% 20.0882%

Naive Bayes

Bloom Filter 1.0394% 5.03990% 10.0406% 15.0408% 20.0411%
JL(s=1) 1.1039% 5.5099% 11.0198% 16.5268% 22.0332%

JL(s=100) 1.0902% 5.3681% 10.8624% 16.2493% 21.2520%
JL(s=1000) 1.0888% 5.3322% 10.7194% 15.9864% 21.0516%

Sampling 1.0132% 5.0134% 10.0139% 15.0144% 20.0147%

C4.5 Tree

Bloom Filter 0.0014% 0.0062% 0.7244% 2.3581% 2.9318%
JL(s=1) 0.2036% 0.2284% 0.6555% 1.8956% 2.7209%

JL(s=100) 0.1893% 0.1945% 0.5923% 1.7182% 2.6438%
JL(s=1000) 0.1759% 0.1962% 0.5841% 1.6502% 2.6122%

Sampling 0.0220% 0.1915% 0.8003% 1.4445% 2.5389%

Figure 4.6. Efficiency Results: Percent of the Exact Algorithm Runtime

calculation time based on the previous timing experiments. The actual formula used was:

ti + .105s · nd · compactionRatio · n
.105s · nd · n

Where ti is the time involved in the sketching, nd is the number of dot products performed,

n is the length of the vectors involved, and compactionRatio is the fraction of the original

vector’s size which is retained by the sketching protocol. The results for three different

sketching algorithms and five different compaction ratios are be are seen in figure 4.6.

In all cases, the algorithms are much faster than the exact algorithm. Because it produces

a matrix with 1 or -1 for every value, JL with s = 1 has a large amount of pre-processing

before it can apply the projection to each vector, which again, takes time. This runtime can

be improved by using the sparsity factor. We chose, however, to present the worst case, as it is

still much better than the original runtime. The association rules mining process involved the

fewest number of dot products computed. Therefore, the preprocessing and other portions

of the algorithms took up a greater percentage of the time in association rules mining. The
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Naive Bayes process had orders of magnitude more dot product calculations, so the overall

time was dominated by the number of dot product calculations necessary.

In the decision tree case, the number of dot products computed varied with the algorithm

involved. This is because we use the dot products to determine if a node is to be split.

If a split is found to be not useful, the split will not occur. The compaction introduced

enough error into the calculation that splits with very little information gain were not even

attempted, resulting in much fewer dot products being calculated. The different algorithms

all calculated far fewer dot products at every compaction level, resulting in a much greater

efficiency increase.

4.5 Conclusions

We have presented several interesting approximation techniques for the secure compuation

of the dot product of two vectors. These protocols can be applied to many different data

mining tasks, and can provide an efficiency increase to any protocol that uses a secure dot

product as a sub-protocol. Depending on the protocol invoked, and the parameters used,

these protocols can increase efficiency by up to two orders of magnitude without sacrificing

much in the way of accuracy.



CHAPTER 5

INCENTIVE COMPATIBLE PRIVACY-PRESERVING DISTRIBUTED

CLASSIFICATION

Information has become a power currency in our society. As such, people treat information

with care and secrecy. There are times, however, that information needs to be shared among

owners for the betterment of society, or simply for their own profit. Data mining seeks to take

information and aggregate it into models that are more useful than the original information.

Since people are cautious and do not wish to give up their private information the need

for privacy-preserving data mining has arisen. In addition to the simple desire for privacy,

certain government regulations, such as the Health Insurance Portability and Accountability

Act (HIPAA) (Annas 2003) require that certain data be kept private.

Techniques for privacy preserving data mining are many in number. Some of these include

anonymizing data (Sweeney 2002; Machanavajjhala, Kifer, Gehrke, and Venkitasubramaniam

2007; Xiao and Tao 2007), noise addition techniques (Islam and Brankovic 2003; Dwork,

Kenthapadi, McSherry, Mironov, and Naor 2006), and cryptographic techniques (Pinkas 2002;

Clifton, Kantarcioglu, Vaidya, Lin, and Zhu 2002), in addition to countless others. The

cryptographic techniques have the distinction of being able to compute models based on

unperturbed data, since the cryptography ensures that the data will not be revealed. However,

they make no guarantees that participants will not use false data anyway.

Consider the following scenario: Suppose that the different intelligence agencies around

the world wish to share their information on terrorist networks, in order to increase global

knowledge about terrorists and terrorist organizations. This, of course, is a noble goal, and

would benefit mankind as a whole. Intelligence agencies, however, wish to receive credit for

capturing terrorists, and to this end, may provide false information in hopes of having the

best information to themselves. However, several agencies could have this plan. Even if the

42
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agencies compute the overall terrorist information model securely and privately, this would

not change the fact that the end result would not be an accurate model based on real data.

Because of this, the intelligence agencies get no closer to finding terrorists, potentially causing

danger to ordinary citizens.

Granted, this is a rather extreme example, but it illustrates the failure of traditional

cryptographic secure multi-party computation to ensure that players use truthful data. The

discipline of cryptography can be used to create provably secure protocols which guarantee

the privacy of the data of all parties in data mining. What then does this say about the

correctness of the result of the calculation? It is true that in many situations, it can be

proved that the calculation will be correct with respect to the data supplied by the players

for the calculation. This is usually based on commitments that must be made by each player,

ensuring that no player can change their input at any time during the calculation. However,

this does not ensure that the player would provide true data for the calculation! In particular,

if the data mining function is reversible, that is, given two inputs, x and x′, and the result

f(x), it is simple to calculate f(x′), then a player might wish to provide false data in order to

exclusively learn the correct data mining result! (Shoham and Tennenholtz 2005) One simple

example of a reversible data mining function in practice is the Naive Bayes classifier in the

vertically partitioned case, which takes the form

p(C) ·
∏
i=1..n

p(Fi|C)

where p(C) is the probability of a given class, and p(Fi|C) is the probability of an attribute Fi

given that the instance is a member of that class. If a player j wished to cheat, and provided

p′(Fj|C) instead, the calculation would become

p(C) · p′(Fj|C) ·
∏

i=1..n|i 6=j

p(Fi|C)

To retrieve the correct result, player j can multiply the above by
p(Fj |C)

p′(Fj |C)
, yielding the original

formula. This is merely an example of the many useful data mining functions which are

reversible.
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In order to combat this problem, scholars have attempted to mesh game theory with

cryptography to deal with the actions of players who act in their own self interest. Given

that one can verify, after the fact, albeit with some cost, that a player used their true data,

it is quite simple to ensure that players use true data. We simply audit the process with a

high enough frequency, and stiff enough penalty, that players will think twice about lying

about their data. The classic IRS game (Rasmusen 2007) is a typical example of this: a

taxpayer can be motivated to be truthful on his return by both the magnitude of the penalty

for cheating, and the frequency of audits. The higher the penalty, the less frequent audits

need to be. However, in most cases, the ability to audit the data defeats the purpose of

privacy-preserving data mining, in that it requires a trusted auditor to be able to access each

player’s data. The main question we address in this paper is: What guarantees can we make

about the truthfulness of players’ data when we have no way of verifying the data used by a

given player?

We tackle this problem by using a monetary mechanism to encourage players to be truthful

about their data without being able to verify the truthfulness of the data that players provide.

It is important to be able to do this without verifying data, because the verification of the

data could violate privacy! To illustrate the effectiveness of an after-the-fact mechanism,

consider the following scenario: Several passengers are flying on a chartered cross-country

flight, and the flight passes on fuel costs to the passengers. In order to board, the charter

airline requires all passengers to report their weight, so that the airline can calculate the

necessary fuel to get to their destination. In this case, passengers have the incentive to tell

the turth about their weights, since if they under-report, the plane could crash from lack of

fuel, and no amount of money (or embarrassment) saved is worth their lives. In addition,

if they over-report, they are simply increasing their cost. Therefore, there is no reason to

verify each passenger’s weight by means of a scale, since each passenger will give their correct

weight (unless, of course, they do not know their weight).

In a similar vein, our data mining mechanism does not require the verification of the data,

it simply encourages truthfulness through extrinsic incentives. Namely, it provides monetary
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incentives which subsidize the calculation, and these, in turn, motivate truthful behavior. We

invoke a Vickrey-Clarke-Groves (VCG) mechanism based on the accuracy of the result itself

in order to encourage correct data reporting. We show that, to the risk-averse player, the

mechanism will encourage true data sharing, and for the risk-neutral player, the mechanism

gives a close approximation that encourages minimal deviation from the correct data. In ad-

dition, we provide another mechanism based on the Shapley value which encourages truthful

sharing in the cooperative setting. This is important since the non-cooperative setting only

considers individuals and the lies that a single player can make. The cooperative solution

considers what happens when players can collude in order to cheat the system, and creates

incentives for entire groups of players to truthfully reveal their data.

For the purposes of this work, we focus on classification tasks. We choose to focus on clas-

sification tasks for three reasons. First, classification tasks have a widely accepted measure of

utility: classification accuracy. This allows us to build our mechanisms on the common utility

metric. Second, classification tasks are common in practice, used in association rules mining,

recommender systems, and countless other applications. Finally, we focus on classification

tasks because we feel the results generalize well to any task with a well-formed accuracy and

utility metric.

Our contributions can be summarized as follows:

• We develop two mechanisms to encourage truthful data sharing which does not require

the ability to audit or verify the data, one for the non-cooperative case, and one for the

cooperative case.

• We prove that these mechanisms are incentive compatible under reasonable assump-

tions.

• We provide extensive experimental data which shows the viability of the mechanisms

in practice.

In the next section, section 5.1, we describe the game theoretic model we use to represent

the data mining process, the assured information sharing game. In section 5.2, we outline
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our mechanisms, and prove their incentive compatibility. In section 5.3, we show experi-

mental data on different kinds of data mining problems, indicating the practical use of this

mechanism. Finally, in section 5.4, we give our conclusions.

The contents of this chapter are based on “Incentive Compatible Distributed Data Min-

ing (Kantarcioglu and Nix 2010),” and “Incentive Compatible Privacy-Preserving Distributed

Classification (Nix and Kantarcioglu 2012b),” the latter of which was published in the IEEE

Transactions on Dependable and Secure Computing. The entire contents of the paper ap-

pear within this dissertation. IEEE does not require permission to include entire articles in

dissertations. The author of this dissertation was principal author on both publications, and

the co-authors have given consent for this material to appear in the dissertation.

5.1 Our Model: The Assured Information Sharing Game

In order to analyze data mining tasks in terms of game theory, we now describe a game

scenario outlining the process for some data mining task. This model is a simple model in

which a mediator does the data mining calculations. This may not be necessary, but for

now, we use this to simplify our calculations. In terms of doing the calculation, the mediator

can be removed using the cryptographically secure techniques outlined in (Kol and Naor

2008) or (Izmalkov, Micali, and Lepinski 2005), however, it may or may not be possible to

remove the mediator for payments. We examine this further in chapter 6. We also consider

only individual actions, rather than coalitions, for simplicity.

Definition 4 Mediated Information Sharing Game

Players: P1, P2, ..., Pn, and a mediator Pt.

Preconditions: Each player Pi ∈ {P1, ..., Pn} has xi, a piece of data which is to be shared

for the purposes of computing some function of the data. Pt is another party who is bound

to compute a data mining model from the players’ data in a secure fashion. Pt is also in

possession of a small independent test data set. It is reasonable that Pt could have such
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a set through observation of a small amount of public data, though this amount of data may

not be enough to build an accurate model.

Game Progression:

1. Each player Pi ∈ {P1, ..., Pn}, selects x′i, which may or may not equal be equal to xi, or

chooses not to participate. These inputs are committed. Define X to be the vector of original

values xi, and X ′ to be the vector of chosen values x′i.

2. Players send X ′ to Pt for secure computation of the data mining function. The function

which builds the model will be referred to as D.

3. All players receive the function result, m = D(X ′).

Payoffs: For each P1...Pn, define the utility of a participating player as the following:

ui(xi, D(X ′)) = max{vi(m)− vi(D(xi)), 0} − pi(X ′,m)− c(D)

vi(m) is the intrinsic utility of the function result, which we approximate as the accuracy of

a data mining function. Thus, vi(m) = acc(m) where acc is some accuracy metric applied to

the data mining model. This will, of course, vary based on the truthfulness of each player. We

normalize each player’s reservation utility, that is, the utility received if the player chooses

not to participate, to zero. This can be done without loss of generality by subtracting the

reservation utility (which is vi(D(xi)), based on the accuracy of the model based only on one’s

own data), from the valuations in the mechanism. Note that a player will always recieve at

least this much utility, so we obtain the expression max{vi(m) − vi(D(xi)), 0}. pi(X
′,m) is

the amount paid by Pi, based on the inputs and the results. Note that if pi were to be negative,

it would mean that Pi receives money instead. c(D) is the computational cost of computing

D. Since D is securely computed, there will be some cryptography involved in the computation

of the model, hence computational cost should be considered.

5.1.1 The Cooperative Sharing Game

Using a very simple method, we can define the assured information sharing game in the

context of a cooperative game. The players are already defined. The valuation function
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vc(S) where S is a subset of the grand coalition of players (N), can be defined as the sum

of the maximum valuations attainable by each player through collaboration among S. More

formally:

vc(S) =
∑
i∈S

maxxSminx−Svi(xS, x−S)

This maximum value that the coalition S can guarantee is called the max-min value,

and the formulation of the vc function is commonly called the α-effective form of the non-

cooperative game (Aumann 1961). The β-effective form uses the min-max value, that is, the

worst-case value for the maximum value which can be achieved by collaboration among S.

Since each coalition’s goal is to maximize their own payout, without regard for the payouts

of others, players do not need to consider the worst case maximum, but the best case given

any play by the other players. Therefore, we choose the α-effective form of the game.

Since we normalize the reservation utility for each player to zero, both the empty coalition

∅ and singleton coalitions {i}, for i ∈ N , have a valuation of 0. A two player coalition will

have a valuation equal to twice the accuracy of the classifier created by both players’ data,

minus the accuracy of the classifiers of both players individually, as for players i and j where

i 6= j, the gain experienced by i is acc(D(xi, xj))− acc(D(xi)) and the gain experienced by j

is acc(D(xi, xj))− acc(D(xj)). In general,

vc(S) = |S|acc(D(XS))−
∑
i∈S

acc(D(xi))

Our assumption, as before, is that the true data provides the best data mining model, for

each subset of players. Therefore, this expression, over expectation, will be maximized when

all members of S share truthful data. Any player who joins the coalition is best served by

using truthful data. We assume players not joining the grand coalition will be attempting to

disrupt the coalition in whatever way possible.

5.2 Our Solution

To motivate players to truthfully reveal the information, we propose the following:
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1. In addition to computing the data mining model, Pt also computes D(X ′−i) for each

Pi, that is, the data mining function without using the data provided by player i.

2. For each Pi, we let pi(X
′,m) =

∑
j 6=i vj(D(X ′−i)) −

∑
j 6=i vj(m) − c(D), where vi is

determined by measuring the accuracy of the data mining model on the independent test set

which Pt has. This pays each player an amount equal to the difference in accuracy between

the overall data mining model and the data mining model without his input, essentially

rewarding each player based on their own contribution to the model. We include the −c(D)

term in order to balance out the cost of the calculation. Figure 5.1 shows the process used

to calculate the payment for a given player i.

Theorem 5.1 The above mechanism motivates players to truthfully reveal their inputs,

under the following assumption:

Assumption: For each player i, the probability of an increase in the classifier’s accuracy

decreases significantly with the distance between the player’s actual data and the data the

player provides to the classifier building process. More formally, we may state that the ex-

pected value of the classifier’s accuracy does not increase with said distance. Mathematically,

for X = xi ∪X−i and X ′ = x′i ∪X−i, this can be written as

E[acc(D(X))] ≥ E[acc(D(x′))] + f(dist(X,X ′))

where f is a non-negative, increasing function for all i, xi, x
′
i and X−i.

This is essentially the implicit assumption used by any data miner: that deviating from

the true data makes a bad classifier more likely. We feel that this assumption is, while not

always true, always reasonable. Raw data mining processes, in practice, use true data unless

they are trying to combat the problem known as “overfitting”. Overfitting is when the data

model is too well tuned to training data, and this causes accuracy on practical data to fall.

In such instances, outliers are removed, or irrelevant dimensions are reduced away, but the

data otherwise remains true. Usually, if the data is to be doctored in any way, it would be

done before the data mining process would even take place. Another way to think of this
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Figure 5.1. Payment calculation for player i

assumption might be to say that we assume all players’ data is relevant to the data mining

task.

Proof (Incentive Compatibility): We proceed in a similar fashion to the proof of VCG

incentive compatibility. For any given i, xi, X−i, and x′i, we must show that

E[ui(X = xi ∩X−i)] ≥ E[ui(X
′ = x′i ∩X−i)].

The utility of i for X is given by

ui(xi, D(X)) = max{vi(D(x))− vi(D(xi)), 0}

−pi(X,D(X))− c(D)

where

pi(X,D(X)) =
∑
j 6=i

vj(D(X−i))−
∑
j 6=i

vj(D(X))− c(D).
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Likewise,

ui(x
′
i, D(X ′)) = max{vi(D(X ′))− vi(D(xi)), 0}

−pi(X ′, D(X ′))− c(D)

where

pi(X
′, D(X ′)) =

∑
j 6=i

vj(D(X−i))−
∑
j 6=i

vj(D(X ′))− c(D).

Over expectation, in order for incentive compatibility to exist, this requires that

E[max{vi(D(X))− vi(D(xi), 0}] + E[
∑

j 6=i vj(D(X))] ≥

E[max{vi(D(X ′))− vi(D(xi)), 0}] + E[
∑

j 6=i vj(D(X ′))].

By our assumption that the expected value of vk(D(X ′)) (for all k decreases as X ′ dif-

fers from X, we know that E[
∑

j 6=i vj(D(X))] ≥ E[
∑

j 6=i vj(D(X ′))]. We also know that

E[max{vi(D(X)) − vi(D(xi), 0}] ≥ E[max{vi(D(X ′)) − vi(D(xi)), 0}], since either the last

expression is zero, in which case the first expression is greater than or equal to zero, the last

expression is greater than zero, in which case the first expression is greater than or equal to

the last expression by our assumption. Therefore, the mechanism is incentive compatible.

Proof (Individual Rationality): To show that the mechanism is individually rational, we

need only show that the mechanism has a utility of at least zero (since we have normalized

the reservation utility to zero). Note, once again, that the utility of player i is given by

ui(xi, D(X)) = max{vi(D(x))− vi(D(xi)), 0}

−pi(X,D(X))− c(D)

Since max{vi(D(x)) − vi(D(xi)), 0} is at least zero, and −c(D) is offset by the term in
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pi(X,D(X)), we need only show that E[
∑

j 6=i vj(D(X−i)) −
∑

j 6=i vj(D(X))] ≤ 0. Note

that, X−i has a nonzero distance from X. Therefore, by our assumption, E[vj(D(X−i))] ≤

E[vj(D(X))] for all j. Because of this, E[
∑

j 6=i vj(D(X−i)) −
∑

j 6=i vj(D(X))] ≤ 0, and the

mechanism is individually rational.

5.2.1 The Cooperative Solution

In order to encourage the truthful sharing of data in the cooperative setting, we employ the

Shapley value. Specifically, we offer the players the Shapley value of their contribution to

the data mining process, as determined by the independent test set held by the mediator. In

order to calculate this Shapley value, the mediator computes 2|N | − 1 data mining models.

Each of these models corresponds to a different non-empty subset of N , and uses only the

data for the players belonging to that subset. We then use the formula

φi =
∑

S⊆N\{i}

|S|!(n− |S| − 1)!

n!
(vc(S ∪ {i})− vc(S))

to calculate the Shapley value. We then add this value to the individual payout of each

player. Figure 5.2 shows the process involved in computing each player’s Shapley value.

Theorem 5.2 The above mechanism is expected to be individually rational and incentive

compatible under the assumption outlined in Theorem 5.1.

Proof (Individual Rationality)Recall that the Shapley value is individually rational if the

coalitional game is superadditive. Also recall that our assumption states that, over expecta-

tion, the best model comes from the data closest to the true data. Now, let S, T ⊆ N , where

S ∩ T = ∅. We claim that

E[vc(S ∪ T )] ≥ E[vc(S) + vc(T )]

By the above formula for vc,

vc(S) = |S|acc(D(XS))−
∑
i∈S

acc(D(xi))
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and

vc(T ) = |T |acc(D(XT ))−
∑
i∈T

acc(D(xi))

Now,

vc(S ∪ T ) = |S ∪ T |acc(D(XS∪T ))−
∑
i∈S∪T

acc(D(xi)) =

(|S|+ |T |)acc(D(XS∪T ))−
∑
i∈S∪T

acc(D(xi))

Since S and T are disjoint,∑
i∈S

acc(D(xi)) +
∑
i∈T

acc(D(xi)) =
∑
i∈S∪T

acc(D(xi))

Because of this, we need only confirm that

(|S|+ |T |)acc(D(XS∪T )) ≥ |S|acc(D(XS)) + |T |acc(D(XT ))

Since, by our assumption,

E[acc(D(XS∪T ))] ≥ E[acc(D(XS))]

and

E[acc(D(XS∪T ))] ≥ E[acc(D(XT ))]

we have, over expectation, that

|S|acc(D(XS∪T )) + |T |acc(D(XS∪T )) =

(|S|+ |T |)acc(D(XS∪T )) ≥ |S|acc(D(XS)) + |T |acc(D(XT ))

Therefore, the function is expectedly superadditive, and the mechanism is expectedly indi-

vidually rational.

Proof (Incentive Compatibility): Given that the mechanism is individually rational, we

need only confirm that the grand coalition N is not out-performed by any subcoalition. Let

S ⊆ N . Because the game is expectedly superadditive, we have

E[vc(N)] ≥ E[vc(S) + vc(N \ S)

Therefore, the mechanism is incentive compatible.
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Figure 5.2. Shapley value calculation for player i

5.2.2 A Note on Efficiency

One major issue with the Shapley value is that computing the Shapley value over the test data

requires building 2|N |− 1 models (as the empty model does not need to be built), which is of

course extremely unwieldly for large N . There exist several good approximation algorithms

for the Shapley value, the latest of which is found in (Fatima, Wooldridge, and Jennings

2008). If the exact computation is required, however, the computation of the Shapley value

can be parallelized using a cloud architecture, as each model computation is independent of

the others. One method to parallelize the computation is as follows:

• For each non-empty subset of players, S ⊆ N , create a process to build the model on

the data belonging to that non-empty subset of players. We label each process by its

set S.

• Each process computes the utility value (the accuracy measure) of its model on the test

set.

• Each process S where |S| = 1 sends its value to the processes S ′ where |S ′| = 2 and

S ⊂ S ′.
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• Each process S where |S| = 2 receives the values from the lower processes, and computes

the difference between its value and the values it receives. It labels the differences

based on the player missing from the value calculation di. It then multiplies this di by

(|S|−1)!(n−|S|)!
n!

to get a partial value for the computation of φi, which we will call φiS . It

then sends its utility value, and the partial computations φiS to all processes S ′ where

|S ′| = 3 and S ⊂ S ′.

• Each process S where |S| = k receives the values from the lower processes and computes

the partial Shapley values in the same manner, adding the results of φiS to the other

values of φiS′ it receives. It then sends its values to the processes S ′ where |S ′| = k+ 1.

• Process N simply calculates the final Shapley values from the partial Shapley values

and its own value, finally returning the results.

As there are N layers of processes in the calculation, and at most N2 additions and N

subtractions taking place in each process, if the process were completely parallelized (that is,

each process on a separate machine), the entire process would take only O(N3) time, after

the time it takes to spawn the individual processes. However, since the number of processes

is exponential, this is only feasible if N is small. It is expected that for most real world

applications, N will be small, and the overall calculation will be feasible.

In addition to efficiency concerns over the Shapley value, there are also some concerns

over the efficiency of the secure computation of the data mining models themselves. Cer-

tain secure implementations of the data mining functions may themselves be prohibitively

expensive. However, there do exist relatively fast implementations for some. For example,

the Naive Bayes classification algorithm can be implemented quite efficiently, without us-

ing homomorphic encryption, with random data hiding techniques (Kantarcioglu and Vaidya

2003).
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5.3 Experiments

Having proven that the mechanisms are incentive compatible under reasonable assumptions,

we now set out to show how the mechanism performs in practice. As previously mentioned,

the assumption that the best model is given by the true data is not always correct. This

can happen when the data is stacked in particular ways, or due to the simple overfitting

phenomenon. However, most of data mining relies on this assumption when aggregating

results. We therefore ran a series of experiments on real data to show the mechanism’s

practical viability.

5.3.1 Methodology

We tested the mechanism on the following three different data mining models: naive Bayes

classification, ID3 decision tree classification, and support vector machine (SVM) classifica-

tion. For the decision tree and SVM, we used the Weka data mining library(Hall, Frank,

Holmes, Pfahringer, Reutemann, and Witten ). We used three different data sets from the

UC Irvine Machine Learning Repository(Asuncion and Newman 2007).

Adult(census-income). This is the data set used in chapter 4 for naive Bayes and C4.5.

For our purposes, we included only 20,000 randomly selected rows of this data set, 18,000 for

training, and 2,000 for the independent test set. In addition, certain fields were omitted due

to their continuous nature, and others (such as age) were generalized to more discrete values

to prevent overfitting.

German-credit. This data set contains credit applications in Germany, and classifies

people as either a good credit risk (+) or a bad credit risk (-). There were two continuous

attributes (duration and amount) which we generalized to avoid overfitting.

Car-evaluation. This data set takes the characteristics of cars and classifies them as

unacceptable, acceptable, good, or very good. Since we wished to deal only with binary

classification problems for the purposes of this experiment, we generalized the class into
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simply unacceptable (unacc) or acceptable (acc) with those vehicles which were originally

evaluated as good or very good being listed as acceptable. No attributes were adjusted.

We chose to use real data, rather than fabricated data, because the mechanisms in question

deal with the actions of real people. The incentive to lie for an individual row of the data set

is not in play here. We are looking at the incentive for the owner of several pieces of data to

lie about his input to a classification process. It is the potential for knowledge discovery, and

the exclusive discovery thereof, which would drive someone to lie about the data they have.

In each case, 10% of the data was set aside as an independent test set (to be used by the

mediator).

Each training data set was partitioned vertically into three pieces, each piece having

as close to the same number of fields as possible. Each of these pieces was designated as

belonging to a player. Thus, all the experiments involve three parties, for simplicity.

For each data set and data mining method, we first ran 50 trials to determine the overall

accuracy using the truthful data, and the estimated payouts to each player in this case. In

order to combat overfitting, each trial consisted of the classification of 20 separate bootstrap

samples of the test data (that is, a sample with replacement). The size of these samples was

25% of the test set size.

After this, for each player, we varied the truthfulness of that player’s data. Any choice of

x′i is either honest or dishonest. However, the dishonest choices may have varying degrees of

dishonesty, with some applying merely a small perturbation to the input, and some blatantly

dishonest about every data row. We classify moves by the amount of dishonesty in them. Let

x′i[k] refer to an input for which k times the total number of rows in the input are falsified,

that is, k is the fraction of falsified rows in the data. Thus, x′i[.01] would be an input for

which a mere 1% of the data would be falsified. x′i[1], on the other hand, would essentially

be a random set drawn from the domain.

In order to test the results of the falsification (or, equivalently, the perturbation) of the

data, we tested the model with several different perturbation values. For each player i, we

used x′i[.01], x′i[.02], x′i[.04], x′i[.08], x′i[.16], x′i[.32], x′i[.64], and x′i[1]. Note that only one



58

player’s data was perturbed at any given time. This was because we wished to determine

what a player’s unilateral deviation would do when other players were truthful. To calculate

the expected payout for player i, we would subtract the overall accuracy for the model without

the data belonging to player i from the overall accuracy of the full model.

To determine what happens in the cooperative game setting, we ran several additional ex-

periments. Using the same three data sets (census-income, german-credit, and car-evaluation),

and the same three data mining models (naive Bayes, ID3 decision tree, and SVM) we deter-

mined the Shapley value for each player given every possible subset of truthful players, over

50 trials. If a player is indicated as truthful, then the player truthfully shared the data, and

if the player is listed as a liar, then the player has replaced the data with randomly generated

values from the set of possible values. This “full lie” was chosen because it is intuitively the

most likely to disrupt the coalition of the truthful.

5.3.2 Results

The Non-Cooperative Case

Figures 5.3 through 5.5 show the overall accuracy and estimated payouts to each player for

each model, data set, and perturbation. For the estimated payouts, each line shows the

payout to the player that is lying, for each perturbation value.

In the vast majority of cases, deviation from the truth produces a lower payout, on the

average. Some cases produce a small payout increase on the average, however. Smaller

deviations have a higher probability of increasing payout than larger deviations. In practice,

a small (1-4%) deviation from the truth has the effect of reducing the impact of overfitting,

and can result in a slightly more accurate classifier. However, rarely is the amount gained

significant.

It is worth mentioning that in several cases, the calculation would not qualify as individ-

ually rational without further subsidy. For example, the Adult data set, under naive Bayes

classification and ID3 decision tree classification, produces payouts for each player which



59

Census-Income German-Credit Car-Evaluation

Figure 5.3. Results for Naive Bayes Classification

Census-Income German-Credit Car-Evaluation

Figure 5.4. Results for ID3 Decision Tree Classification
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Census-Income German-Credit Car-Evaluation

Figure 5.5. Results for SVM Classification

are negative. This means that the addition of a third player’s data decreases the accuracy

of the classifier. This is likely due to the presence of many fields in the data. While each

player’s fields perform well, combining the fields results in a slight reduction in accuracy due

to redundant or irrelevant fields.

There are a few exceptions to the generalization about small deviations and small payout

increases, such as the volatile looking graph for the estimated payouts for the SVM data

mining on the Adult data set, as the graph moves up and down very quickly, and does

appear to increase sharply in a few places. However, the scale of this graph shows that this

fluctuation is actually very small. The difference between any two points on this graph is no

more than 0.6% in terms of the overall accuracy of the classifier.

While a risk-neutral player might attempt to perturb the data slightly to gain a slight

average profit, a risk-averse player would certainly never perturb the data. In all cases,

at least one bootstrap sample produced a lower classifier accuracy for any perturbed data.
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Therefore, if the player is risk-averse, then the player would provide true data, since otherwise

there would be a risk of losing profit.

The Cooperative Case

For the cooperative case, the results are documented in figures 5.6 through 5.8. We show,

in each graph, the average Shapley value achieved for each player for each number of liars

for truthful and lying players. All possible subsets of lying players were tried, but the two-

dimensional nature of paper prevents the meaningful graphing of all data points. We used

this projection to convey the findings of the data without resorting to a listing of data points.

Without exception, the Shapley value for a given player decreased when the player lied.

The results for the truthful players wildly varied. Sometimes a lie would improve the values

for the other, truthful players, other times the lie would reduce the value for the remaining

players. In only very few cases would the average value of a truthful player’s Shapley value

prove lower than the liars’ values, but even in this case, moving to a lie would only reduce

the Shapley value. In many cases, the Shapley value would become zero when many players

lied, this is because no player’s data improved upon any other player’s data.

For one combination of data and model (census-income, decision tree), the Shapley value

is always negative. This is most likely due to the fact that the model overfits the training data

quite severely for the decision tree, likely due to the vastly larger size of the census-income

data set. Even with the values becoming negative, however, lying still decreased the Shapley

value for the liar.

5.4 Conclusions

We have shown that, under a reasonable assumption, our mechanisms which reward players

based on their contribution to the model is incentive compatible. We then determined the

usefulness of the mechanism in practice by running our mechanism using real data. This
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Census-Income German-Credit Car-Evaluation

Figure 5.6. Cooperative Results for Naive Bayes Classification

Census-Income German-Credit Car-Evaluation

Figure 5.7. Cooperative Results for ID3 Decision Tree

Census-Income German-Credit Car-Evaluation

Figure 5.8. Cooperative Results for SVM Classification
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shows that, while the assumption used in the incentive compatibility proof is not always

strictly true, the mechanism yields proper motivation for the vast majority of cases.

While our primary goal has been to ensure that players truthfully reveal their data, one

could also take a different approach to the problem. If a deviation from the truth affords a

player a payout advantage, then this means that the deviation has necessarily increased the

overall accuracy of the final classifier. So, in the cases where it is advantageous to lie, we have

created a better classifier than the truthful data would provide! Thus, while the mechanisms

do not guarantee truthfulness every time, in the cases where it does not, it results in a better

classifier. If the goal of the process is then changed to the creation of the best model, rather

than ensuring truth, the mechanism works even better.



CHAPTER 6

GENERAL RESULTS IN INCENTIVE BASED COMPUTATION

We now turn our attention to the general process of multiparty computation. While the

process in chapter 5 dealt with data mining, we contend that the non-cooperative process

can be generalized to encourage truthful behavior in arbitrary multyparty computation. We

only require that there be some method to evaluate the utility of a given result which can be

evaulated by an uninterested party.

6.1 A Game Theoretic Formalization of Multiparty Computation

In order to show that we can encourage honesty in multiparty computation, we must first

formally define the game associated with multiparty computation.

Definition 5 Mediated Multiparty Computation Game

Players: P1, P2, ..., Pn, and a mediator Pt.

Preconditions: Each player Pi ∈ {P1, ..., Pn} has xi, a input to a function f(x1, ..., xn).

Pt is another party who is bound to compute the function f securely. We assume there exists

some valuation function for a given result, v(result), and that this valuation function is the

same for all players (that is, for all i, vi(result) = v(result). There also exists a function

Vf (result) which gives a good estimate for the intrinsic utility of the result, v(result). For-

mally, we state that the expected value of Vf (result) is within ε of v(result). It is reasonable

that Pt would be able to have such a function in many cases, especially in cases where the

result has a real-world consequence that can be observed.

64
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Game Progression:

1. Each player Pi ∈ {P1, ..., Pn}, selects x′i, which may or may not equal be equal to xi, or

chooses not to participate. These inputs are committed. Define X to be the vector of original

values xi, and X ′ to be the vector of chosen values x′i.

2. Players send X ′ to Pt for secure computation of the function. Pt then computes f(X ′).

3. All players receive the function result, m = f(X ′).

Payoffs: For each P1...Pn, define the utility of a participating player as the following:

ui(xi, f(X ′)) = max{vi(m)− vi(f(xi)), 0} − pi(X ′,m)− c(f)

vi(m) is the intrinsic utility of the function result. In the case where a function result is

required to be exact, this will be nonzero only for the correct value, and zero for all others.

It is also possible that an incomplete vector would lead to a non-evaluation of the function.

We denote a failed evaluation by vi(X
′) = ⊥. Thus, we also define vi(⊥) = 0. Other

functions might have varying intrinsic values. We normalize each player’s reservation utility,

that is, the utility received if the player chooses not to participate, to zero. This can be done

without loss of generality by subtracting the reservation utility (which is vi(D(xi)), based on the

accuracy of the model based only on one’s own data), from the valuations in the mechanism.

Note that a player will always recieve at least this much utility, so we obtain the expression

max{vi(m) − vi(D(xi)), 0}. pi(X ′,m) is the amount paid by Pi, based on the inputs and the

results. Note that if pi were to be negative, it would mean that Pi receives money instead.

c(f) is the computational cost of computing f . Since f is securely computed, there will be

some cryptography involved in the computation of the model, hence computational cost should

be considered.

6.2 The VCG Solution

To motivate players to truthfully reveal the information, we propose the following:

1. In addition to computing the data mining model, Pt also computes f(X ′−i) for each Pi,

that is, the data mining function without using the data provided by player i.
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2. For each Pi, we let pi(X
′,m) =

∑
j 6=i Vf (f(X ′−i)) −

∑
j 6=i Vf (m) − c(f), where Vf is

calculated by Pt. This pays each player an amount expectedly equal to the difference in

intrinsic value of the function evaluated with the given input, minus the value of the function

evaluated with out that player’s input, essentially rewarding each player based on their own

contribution to the evaluation. We include the −c(f) term in order to balance out the cost of

the calculation. Figure 1 shows the process used to calculate the payment for a given player

i.

Theorem 7.1 The above mechanism motivates participating players to truthfully reveal

their inputs, under the following assumption:

Assumption: For each player i, the probability of an increase in the intrinsic value of

f(x′i, X−i) decreases significantly with the distance between the player’s actual input and the

input the player provides to the computation. More formally, we may state that the expected

value of the classifier’s accuracy does not increase with said distance. Mathematically, for

X = xi ∪X−i and X ′ = x′i ∪X−i, this can be written as

E[vi(f(X))] ≥ E[vi(f(X ′))] + f(dist(X,X ′))

where f is a non-negative, increasing function for all i, xi, x
′
i and X−i.

Again, we feel this assumption is appropriate, since, unless the function’s value is indepen-

dent of a player’s input, a player cannot easily find a x′i 6= xi such that vi(f(X ′)) ≈ vi(f(X)).

If a the function’s value is independent of a player’s input, then that player has no incentive

to provide the input, and therefore will not participate in the protocol. As the player’s input

was not necessary for the computation, we feel this does not cause any problems.

Proof (Incentive Compatibility): Our proof closely resembles our proof of incentive com-

patibility in chapter 5. For any given i, xi, X−i, and x′i, we must show that

E[ui(X = xi ∩X−i)] ≥ E[ui(X
′ = x′i ∩X−i)].

The utility of i (ui) for X is given by
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ui(xi, f(X)) = max{vi(f(X))− vi(f(xi)), 0}

−pi(X, f(X))− c(f)

where

pi(X, f(X)) =
∑
j 6=i

Vf (f(X−i))−
∑
j 6=i

Vf (f(X))− c(f).

Likewise,

ui(x
′
i, f(X ′)) = max{vi(f(X ′))− vi(f(xi)), 0}

−pi(X ′, f(X ′))− c(f)

where

pi(X
′, f(X ′)) =

∑
j 6=i

Vf (f(X−i))−
∑
j 6=i

Vf (f(X ′))− c(f).

Over expectation, in order for incentive compatibility to exist, this requires that

E[max{vi(f(X))− vi(f(xi), 0}] + E[
∑

j 6=i Vf (f(X))] ≥

E[max{vi(f(X ′))− vi(f(xi)), 0}] + E[
∑

j 6=i Vf (f(X ′))].

By our assumption that the expected value of Vf (f(X ′)) decreases as X ′ differs from X, we

know that E[
∑

j 6=i vj(f(X))] ≥ E[
∑

j 6=i vj(f(X ′))]. We also know that E[max{vi(f(X)) −

vi(f(xi), 0}] ≥ E[max{vi(f(X ′)) − vi(f(xi)), 0}], since either the last expression is zero, in

which case the first expression is greater than or equal to zero, the last expression is greater

than zero, in which case the first expression is greater than or equal to the last expression by

our assumption. Therefore, the mechanism is incentive compatible.
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Proof (Individual Rationality): To show that the mechanism is individually rational, we

need only show that the mechanism has a utility of at least zero (since we have normalized

the reservation utility to zero). Note, once again, that the utility of player i is given by

ui(xi, f(X)) = max{vi(f(x))− vi(f(xi)), 0}

−pi(X, f(X))− c(f)

Since max{vi(f(x))−vi(f(xi)), 0} is at least zero, and−c(f) is offset by the term in pi(X, f(X)),

we need only show that E[
∑

j 6=i Vf (f(X−i)) −
∑

j 6=i Vf (f(X))] ≤ 0. Note that, X−i has

a nonzero distance from X. Therefore, by our assumption, E[vj(f(X−i))] ≤ E[vj(f(X))]

for all j. Because of this, E[
∑

j 6=i vj(f(X−i)) −
∑

j 6=i vj(f(X))] ≈ E[
∑

j 6=i Vf (f(X−i)) −∑
j 6=i Vf (f(X))] ≤ 0, and the mechanism is individually rational.

6.3 Offloading Computation from the Trusted Party

Our computation process has one major drawback: the trusted party must compute n + 1

function results. Here, we show that all the function results except for one (f(X ′) itself) can

be computed by the parties whose inputs are involved (that is, for f(X ′−i, all parties except

Pi), without the need for interaction with the mediator Pt. Formally, we state:

Theorem 7.2 In the above computation process, the computation of the function f(X ′−i),

and the evaluation thereof (Vf (X
′
−i)) may be performed in a distributed, secure manner by

the parties P−i = {P1, ..., Pn\{Pi}, and no player in this set has any incentive to behave

dishonestly for the calculation.

Proof : As before, the utility of a given player i is given by:

ui(xi, f(X)) = max{vi(f(x))− vi(f(xi)), 0}

−pi(X, f(X))− c(f)
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where

pi(X, f(X)) =
∑
j 6=i

Vf (f(X−i))−
∑
j 6=i

Vf (f(X))− c(f).

Note that, for any given player i, the function Vf (f(X−j) for j 6= i does not affect the

payout of player i. If we account for the increased computation cost in both instances of the

c(f) term, the payout is not altered by an increase in the computation load. Therefore, since

the outcome of the function f(X−j) has no bearing on the eventual payout of Pi, Pi has no

incentive to lie about inputs to f(X−j). Thus, for all players Pj ∈ P−i, no player Pj has

incentive to falsely compute Vf (f(X−i)).

The last computation, Vf (f(X)), cannot be calculated by any players, as they would all

have incentive to report a value greater than the actual valuation. This is due to the fact

that the payout directly increases with the difference between Vf (f(X)) and Vf (f(X−i)), thus

increasing Vf (f(X)) would increase every player’s payout. Therefore, only an outside party

can be trusted to compute Vf (f(X)).

These two results show that there exists a class of functions which admits a mechanism

enforcing honesty among non-cooperating parties.



CHAPTER 7

GAME THEORETIC QUERY VERIFICATION ON OUTSOURCED DATA

7.1 Introduction

As the amount of data that we generate increases, so does the time and effort necessary

to process and store the data. With an increase in time and effort comes an increase in

monetary cost. To this end, many have turned to outsourcing their data processing to “the

cloud.” Cloud computing services are offered by many large companies, such as Amazon,

IBM, Microsoft, and Google, as well as smaller companies such as Joyent and CSC. For

example, Google (Google 2011) recently launched the Google BigQuery Service, which is

designed for exactly this purpose: outsourced data processing. The distributed nature of

these cloud services shortens data processing time significantly. In addition, these cloud

services provide a massive amount of data storage.

In a perfect world, these cloud providers would impartially devote all the computation

necessary to any task paid for by the subscribers. In such a world, the querying process would

look like figure 7.1 (minus the verifier), where the subscriber outsources the data D to the

cloud, sends queries (Q), and the cloud does the necessary calculations and returns the result

(Q(D)). However, a cloud provider is a self-interested entity. Since it is very difficult for the

users of the cloud to see the inner workings of the cloud service, a cloud provider could “cut

corners,” delivering a less accurate or incomplete computation result which would take fewer

system resources to compute. This would, of course, save computational resources for the

provider, provided the subscriber was unable to tell a false result from a true one. Because

of this, query verification, or the assurance of query result correctness, has been identified as

one of the major problems in data outsourcing (Sion 2007).
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Figure 7.1. Data Outsourcing with Verification

Many techniques have been developed and employed for query verification. In figure 7.1

above, the subscriber sends a query to the outsourcing service, and receives a response. Query

verification would then be another process where the subscriber determines if the response is,

in fact, the result of the query. The verification process may belong to the owner, or it may

be another process entirely. In any case, the verifier aims to make sure that the outsourced

server responded correctly. These verification techniques range from simple to extremely

complex, and generally rely on the subscriber storing some sketch of the data (much smaller

in size), or some cryptographic protocols. Such protocols do a good job verifying the data,

but are often slow, or only work with specific types of queries. Many of them assume that the

subscriber knows which queries he will execute in advance, so that a sketch can be created

for each one. None of these, however, consider the heart of the problem: the self-interest of

the parties.

The problem of data outsourcing, and the resultant query verification, is fundamentally

a problem of incentives. A cloud subscriber wants to get the result of his queries accurately

and efficiently, with as low a cost as possible. A cloud provider, however, is most concerned

about the profitable use of its computing resources. These incentives can be at odds with

each other. The natural way of analyzing competing incentives is to use game theory. An
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interaction between parties is cast as a game, where players use strategy to maximize their

gains. The gains from an interaction can be offset artificially by contracts, which can be

enforced by law. These adjustments can make actions which were once profitable, such as

“cutting corners” in a calculation, less profitable through the use of penalties. The contracts,

therefore, aim not to detect whether a cloud provider is cheating, but to remove the incentive

for the provider to cheat altogether.

We propose a game theory-based approach to query verification on outsourced data. We

model the process of querying outsourced data as a game, with contracts used to enforce be-

havior. Data outsourcing does not take place in a vacuum. Service Level Agreements (SLAs)

exist for all types of cloud services(Patel, Ranabahu, and Sheth 2009), and are enforceable

contracts in court. Thus, we can augment the SLA with an incentive structure to encourage

honest behavior. Using a very simple query verification technique, we show that even the

threat of verification is enough to deter cheating by a cloud provider.

We consider the case where multiple, non-colluding cloud providers exist. Non-colluding

means that the cloud providers do not share information. We believe this is realistic, since

cloud providers are competing entities and do not wish to share data with their competitors.

In this scenario, we show that without the use of special verification techniques, a data owner

can guarantee correct results from rational cloud providers, while incurring an additional cost

that is only a small fraction of the overall computation cost.

Our contributions can be summarized as follows:

• We develop a game theoretic model of query verification on outsourced data.

• We show that the model has an equilibrium where the cloud provider behaves honestly.

• Finally, we show that our incentives can improve the expected runtime of any query

verification method, making it extremely flexible.

This chapter does not consider the privacy of the outsourced data (similar to (Canetti,

Riva, and Rothblum 2011)). However, any privacy-preserving technique for outsourcing data
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could still be used in our framework. The use of our game theoretic techniques will not affect

the privacy-preserving properties of such schemes.

Portions of the work in this chapter have been published in “Contractual Agreement

Design for Enforcing Honesty in Cloud Outsourcing (Nix and Kantarcioglu 2012a).” The

author of this dissertation was the principal author in the aforementioned work, and has

permission from the co-author to include this work.

7.2 The First Solution

We consider the case where multiple non-colluding cloud providers exist. This means that

the parties do not exchange strategies and do not exchange information. Since multiple

providers exist, our strategy will be to choose two of them, checking the results of one against

the other. We model the query verification process as a game. The game has the following

characteristics:

Players (3): the Data Owner(O), and two outsourced servers (S1 and S2).

Actions : The data owner begins the game by selecting a probability α, and declares this

probability to the servers. He then sends the query (Q) to one of the two servers, with equal

probability. With probability α he also sends the query to the other server. If server Si

receives the query, they then respond to the query with either Q(D), that is, the query result

on the database D, or Q′i(D) which is some result other than Q(D). We apply the subscript

i to Q′ to indicate that one player’s method of cheating is different from the other players’

method of cheating. We denote the honest action as h, and the cheating action as c. These

actions are depicted in figure 7.2.

Information: Data Owner O has given his database D to S1 and S2, with an HMAC

message authentication code appended to each tuple. Any message authentication scheme

would work here, but its purpose and only effect is that it maintains the integrity of the data.

This means that the servers cannot alter any tuples and cannot add any tuples without being

detected. The players have entered into an agreement (a contract) before the game, and the
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contents of this contract are known to all players. The contract could contain the probability

α. We assume that no updates are to be made to the database once they are outsourced

(they are outsourced purely for the purposes of querying).

Payoffs : The owner recieves the information value of the results received, given by Iv(Q),

where Q is either Q(D) or Q′i(D), minus the amount paid to the servers P (Q). The servers

recieve this payment, minus the cost of computing the query, C(Q). For simplicity’s sake,

we assume that both outsourcing services have the same cost of computation and receive

the same payment for the query. The logic below easily applies to the case where costs are

different, but this assumption simplifies the equations involved. These payoffs are additionally

adjusted by the aforementioned contract. We assume the reservation utility of all parties is

zero, and if any party declines the contract, then none of the parties participate.

We assume that Iv(Q(D)) ≥ (1 + α)P (Q) and P (Q) ≥ C(Q). If this were not the case,

then the game would not be individually rational without some outside subsidies (that is,

some player’s expected payout would be less than zero). In essence, we want to ensure that

the data owner would want to pay (1 + α)P (Q) to receive the result, and the cloud provider

would accept P (Q) for the computation. To do this, we make sure that the value that the

data owner places on the query is at least the expected payment, and the cost to the cloud

providers is no more than the amount they would be paid. No one takes a loss on the

transaction.

We now present two contracts, both of which provide simple solutions to the above game in

which neither server has incentive to cheat. The first is very simple and requires no additional

computation. The second is intuitively more fair, and thus more likely to be accepted in a real

world scenario. Both contracts, however, would be accepted by rational players. It should

be noted that both of these contracts are loosely based on the results from Auditing Game

II and III in (Rasmusen 2007).

Contract 1 If the owner asks for query responses from both servers, and the results do

not match, both servers pay a penalty of F to the owner, and return the money paid for the

computation P (Q) as well.
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Figure 7.2. The Two-Cloud Query Verification System

Theorem 7.1 The above game with contract 1 has an individually rational, incentive

compatible equilibrium in which the servers behave honestly.

Proof : Let C(Q′i) be the cost of computing Q′i for Si. Note that, because S1 and S2

do not collude, S1 does not know Q′2, and S2 does not know Q′1. The only function both

know for sure is Q. Without additional knowledge, we can assume that the probability that

Q′1(D) = Q′2(D) is negligible. For a player to even consider returning Q′i instead of Q, we

must have C(Q′i) ≤ C(Q), since a player will not cheat if they do not gain anything from

it. We also assume that Iv(Q
′
i(D)) < 0 < Iv(Q(D)), since not only is the false result not

what the owner asked for, but also appears to be the true result if not verified. If the wrong

answer is believed to be correct, this would lead to wrong decisions, and ultimately, financial

loss, on the part of the owner. Now, we can define the expected payoffs to each player, where

uP (x, y) is the expected utility for player P when S1 takes action x and S2 takes action y.

Note that, in these equations and throughout the rest of the paper, we omit the argument

D from Q, since D is fixed. We begin with O. If both players are honest (equation 7.1), O

recieves the value of the information gained from the query, minus the expected payment for

the calculation, 1 + α times P (Q). If one player is dishonest (equations 7.2 and 7.3), then

with probability α, O detects this and gets both the honest and the dishonest result and the
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fine F from both players. With probability 1 − α, he does not detect this, and gets either

the correct value or the incorrect value with equal probability. In the event that both players

cheat (equation 7.4), they are once again caught with probability α, but in this case, when

they are not caught, O receives only bogus values. This results in the following equations:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q) (7.1)

uO(h, c) = α(2F + Iv(Q) + Iv(Q
′
2)) (7.2)

+ (1− α)(
1

2
(Iv(Q) + Iv(Q

′
2))− P (Q))

uO(c, h) = α(2F + Iv(Q) + Iv(Q
′
1)) (7.3)

+ (1− α)(
1

2
(Iv(Q) + Iv(Q

′
1))− P (Q))

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2)) (7.4)

+ (1− α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

For the servers, if both servers are honest (equations 7.5 and 7.8), they receive the pay-

ment for the query, minus the cost of the query, provided they are selected to perform the

calculation. This selection probability is why the equations below contain 1
2
. Otherwise, they

gain nothing and lose nothing. If one player is dishonest, that player (equations 7.7 and

7.10), regardless of whether the other player is honest, with probability α is caught, and loses

the fine F . With probability 1 − α, the player is not caught, and gains the payment P (Q),

minus the cost of computing his cheat, C(Q′i), if he is chosen for the computation. If a player

is honest while the other player is dishonest (equations 7.6 and 7.9), that player similarly is

punished with probability α, but invests a cost of C(Q) instead of C(Q′i) in the computation.

This gives us the following equations:

uS1(h, h) =
1

2
(1 + α)(P (Q)− C(Q)) (7.5)

uS1(h, c) =
1

2
(1− α)(P (Q)− C(Q))− αF (7.6)

uS1(c, h) = uS1(c, c) =
1

2
(1− α)(P (Q)− C(Q′1))− αF (7.7)



77

uS2(h, h) =
1

2
(1 + α)(P (Q)− C(Q)) (7.8)

uS2(c, h) =
1

2
(1− α)(P (Q)− C(Q))− αF (7.9)

uS2(h, c) = uS1(c, c) =
1

2
(1− α)(P (Q)− C(Q′2))− αF (7.10)

We can now find the α for which the expected value for S1 is less when he cheats than

when he is honest, assuming S2 is honest. By symmetry, this will be the same for S2. Thus,

we set:
1

2
(1− α)(P (Q)− C(Q′1))− αF ≤

1

2
(1 + α)(P (Q)− C(Q))

Let H represent the quantity P (Q)−C(Q), and H ′ represent the quantity P (Q)−C(Q′1).

Distribute the (1 + α) and (1− α) to get:

1

2
(H ′)− α

2
(H ′)− αF ≤ 1

2
(H) +

α

2
(H)

Rearranging and combining terms, we get:

1

2
(C(Q)− C(Q′1)) ≤ αF + αP (Q)

+
α

2
(C(Q)− C(Q′1))

Let G represent the quantity C(Q) − C(Q′1), that is, the amount the server would gain

from cheating. Substituting this in and factoring out an α, we get:

1

2
G ≤ α(F + P (Q) +

1

2
G)

Multiplying through by two, we get:

G ≤ α(2F + 2P (Q) +G)

And, solving for α,

G

2F + 2P (Q) +G
≤ α (7.11)
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Since we can define F to be whatever we want in the contract, we can make this minimum

α value arbitrarily small. If α is at least this much, then S1 (and by symmetry, S2) has no

incentive to cheat. If S2 is not honest, then S1 has no incentive to be honest, but the payout

is less for both (much less, if F is large). Therefore, the best outcome is for both players to

behave honestly.

Now, we need to show that choosing α is incentive compatible for O. Given that both

players are honest, O’s utility is given as:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q)

which, by our assumption, is greater than or equal to zero. Thus, it is individually rational

for O. If α is increased, it merely decreases this value, so O has no incentive to increase α. If

we decrease α, then S1 and S2 will see cheating as the more profitable choice, and will begin

cheating. This leads to:

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2))

+ (1− α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

Now, since our α is less than our prescribed value in equation (7.11), F is bounded above by

G
α
− 2P (Q)−G. Because of this, as α approaches zero, the first term of the above equation

decreases. The second term is negative (as Iv(Q
′
1) and Iv(Q

′
2) are less than zero), and gets

worse as α approaches zero. Thus, if α is less than our prescribed value, O expects to lose

value from cheating. So, O has no incentive to deviate from α = G
2F+2P (Q)+G

.

Now, in practice, O does not know G. Thus, he must choose the smallest α that he knows

he can use. Since P (Q) ≥ C(Q) ≥ G, O can choose α = P (Q)
2F+2P (Q)−P (Q)

= P (Q)
2F−P (Q)

.

Now, based on the above analysis, it is clear that a cheater will gain less than an honest

player when the value of α is chosen as above, regardless of whether the other player is honest.

Thus, S1 and S2 have no incentive to cheat, and this is incentive compatible for these players

as well.

Now, quickly, a note on individual rationality: O has expected payout of Iv(Q) − (1 +

α)(P (Q). If this is greater than the reservation utility (zero), then the contract is individually
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rational for O. By our initial assumption about the value of the query, this is true. S1 and

S2, in equilibrium, have an expected payout of 1
2
(1 +α)(P (Q)−C(Q)). Again, by the above

assumption, this is true.

As this is both incentive compatible and individually rational for all players, this contract

creates the best possible equilibrium where S1 and S2 do not cheat, and O pays only (1 + α)

times the price of a single computation (where α is small).

7.3 A More Intuitively Fair Solution

Now, it might seem unfair to punish both players when only one player cheats. The rational

player would see the above contract as completely fair, but humans are not always completely

rational. Thus, we also examine a contract which identifies the cheater and punishes only the

cheater.

Contract 2 If the owner asks for query responses from both servers, and the results do

not match, the owner performs a potentially costly audit of the computation. Each server

whose result does not match the result given by the owner’s process pays a fine F to the

owner.

Theorem 7.2 The above game under contract 2 also has an equilibrium where both

servers remain honest.

Proof : Let all variables be defined as above, and let c(A(Q,Q′1, Q
′
2)) represent the cost of

auditing the computation. The payout functions associated with this contract are as follows:

We begin with O. If both players are honest (equation 7.12), O recieves the value of the

information gained from the query, minus the expected payment for the calculation, 1 + α

times P (Q). If one player is dishonest (equations 7.13 and 7.14), then with probability α,

O detects this and gets both the honest and the dishonest result and the fine F from the

dishonest player. In this case, he also pays for a costly audit (c(A(Q,Q′1, Q
′
2)) to determine

which player cheated. With probability 1 − α, he does not detect this, and gets either the

correct value or the incorrect value with equal probability. In the event that both players
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cheat (equation 7.15), they are once again caught with probability α, and both pay the fine.

However, O only recieves false values, and still pays for the audit. This results in the following

equations:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q) (7.12)

uO(h, c) = α(F + Iv(Q) + Iv(Q
′
2)− c(A(Q,Q′1, Q

′
2))) (7.13)

+ (1− α)(
1

2
(Iv(Q) + Iv(Q

′
2))− P (Q))

uO(c, h) = α(F + Iv(Q) + Iv(Q
′
1)− c(A(Q,Q′1, Q

′
2))) (7.14)

+ (1− α)(
1

2
(Iv(Q) + Iv(Q

′
1))− P (Q))

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2)− c(A(Q,Q′1, Q

′
2))) (7.15)

+ (1− α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))

For the servers, if both servers are honest (equations 7.16 and 7.19), they receive the

payment for the query, minus the cost of the query, provided they are selected to perform

the calculation. This selection probability is why the equations below contain 1
2
. Otherwise,

they gain nothing and lose nothing. If one player is dishonest, that player (equations 7.18

and 7.21), regardless of whether the other player is honest, with probability α is caught, and

loses the fine F . With probability 1 − α, the player is not caught, and gains the payment

P (Q), minus the cost of computing his cheat, C(Q′i), if he is chosen for the computation. In

this case, if a player is honest while the other player is dishonest (equations 7.17 and 7.20),

the player is not punished, and therefore receives exactly the same payment as if both players

were honest. This gives us the following equations:

uS1(h, h) =
1

2
(1 + α)(P (Q)− C(Q)) (7.16)

uS1(h, c) =
1

2
(1− α)(P (Q)− C(Q)) (7.17)

uS1(c, h) = uS1(c, c) =
1

2
(1− α)(P (Q)− C(Q′1))− αF (7.18)
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uS2(h, h) =
1

2
(1 + α)(P (Q)− C(Q)) (7.19)

uS2(c, h) =
1

2
(1− α)(P (Q)− C(Q)) (7.20)

uS2(h, c) = uS1(c, c) =
1

2
(1− α)(P (Q)− C(Q′2))− αF (7.21)

We can now find the α for which the expected value for S1 is less when he cheats than

when he is honest, assuming S2 is honest. By symmetry, this will be the same for S2. Thus,

we set:
1

2
(1− α)(P (Q)− C(Q′1))− αF ≤

1

2
(1 + α)(P (Q)− C(Q))

This inequality is exactly the same as in theorem 7.1. Thus, letting G represent the

quantity C(Q)− C(Q′1), we get:

G

2F + 2P (Q) +G
≤ α (7.22)

Since we can define F to be whatever we want in the contract, we can make this minimum

α value arbitrarily small. If α is at least this much, then S1 (and by symmetry, S2) has no

incentive to cheat. If S2 is not honest, then S1 has no incentive to be honest, but the payout

is less for both (much less, if F is large). Therefore, the best outcome is for both players to

behave honestly.

Now, we need to show that choosing α is incentive compatible for O. Given that both

players are honest, O’s utility is given as:

uO(h, h) = Iv(Q(D))− (1 + α)P (Q)

which, by our assumption, is greater than or equal to zero. Thus, it is individually rational

for O. If α is increased, it merely decreases this value, so O has no incentive to increase α. If

we decrease α, then S1 and S2 will see cheating as the more profitable choice, and will begin

cheating. This leads to:

uO(c, c) = α(2F + Iv(Q
′
1) + Iv(Q

′
2)− c(A(Q,Q′1, Q

′
2)))

+ (1− α)(
1

2
(Iv(Q

′
1) + Iv(Q

′
2))− P (Q))
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As in theorem 7.1, the first term of this equation decreases as α tends to zero (regardless

of c(A(Q,Q′1, Q
′
2)), and the second term is negative. Thus, as α decreases, O’s expected

payout decreases. Therefore, O has no incentive to adjust α up or down, and this α is

incentive compatible for O. The arguments in theorem 7.1 for the incentive compatibility of

the servers and the individual rationality of both players continue to apply in this case. Thus,

the contract is both incentive compatibile and individually rational for all parties involved.

The audit process mentioned above could be done in several ways. The simplest, although

most expensive, of these would be for the owner to retrieve all the data, then perform the

query himself. Obviously, this defeats the purpose of data outsourcing. Based on the fact

that the outsourced data uses some message authentication codes to keep the data from

being modified, we can improve this. First, for selection queries, if one player fails any MAC

checks, then they are obviously cheating. If one player returns fewer results than the other,

then they are also obviously cheating. For aggregate queries, we can have each source return

the tuples which were selected for the aggregation process. We can then check to see if

the aggregate query result matches the values returned by the server. Finding a tuple set

that matches a false query result might prove incredibly difficult if the false query was not

generated from a sample. We can also apply the same techniques used for selection queries,

noting that the cloud that returns fewer tuples must be cheating (provided all tuples returned

are authenticated). Essentially, for a given query, we end up asking the providers to “show

their work,” or face consequences.

Note the generality of this result. In contrast with many other results, it works for any

query on any database (with the caveat that the query is deterministic), and it works in

only one round of computation.

7.4 The Single Cloud Case

Though the above scenario is quite simple and very efficient, it does require giving both money

and data to multiple parties. It might be that the cost of maintaining two cloud services (due
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to storage costs and other overhead) is expensive. A data owner might also want to minimize

the outside exposure of his data set. It is possible, then, to use a similar scheme to verify the

result from a single cloud. For the single cloud case, we focus on a database with a single

relation. The extension to include joins will be considered in future work. We once again

cast the process of query verification as a game. The game has the following characteristics:

Players (2): the Data Owner (O) and the outsourced Server(S).

Actions : The data owner begins the game by selecting a probability α, and declares this

probability to the server. This probability α is the probability with which the result of the

query (Q) will be verified (v). With probability 1 − α, the query will not be verified (n).

After receiving this probability, the server may choose to cheat (c), revealing q′S = Q′(R), an

incorrect result, or honestly (h) give the result qS = Q(R). The data owner then verifies with

the probability α, first by performing a local evaluation, then, if necessary, a full query audit.

Information: O has given his database relation (R) to S, along with authenication codes

for each tuple (to prevent modification). O retains a sketch of the database (R′) which will

be used for verification. O has a process V (Q, q) which determines whether the argument q

is equal to qS with high probability, using the sketch R′. In addition, an auditing method

A(Q, q,R) exists which will determine whether the query was executed correctly with cer-

tainty but is very expensive. The players have entered into a contract before the game, and

the contents of the contract are known to all players. This contract can adjust the payoffs

below.

Payoffs : Let ptp be the probability that V (Q, qS) returns true, ptn be the probability that

V (Q, q′S) returns false, pfp = 1 − ptn, and pfn = 1 − ptp (These are the probabilities of true

positives, true negatives, false positives and false negatives from V , respectively). Let C(X)

be the cost of computing the expression X. Let Iv(X) be the value of the information given

by X. The expected utilities (payoffs) for each player, without the intervening contract, are

as follows:
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When the owner decides not to verify, he simply receives the value of the query result

(honest or not), minus the amount paid for the calculation, resulting in:

uO(n, h) = Iv(qS)− P (Q)

uO(n, c) = Iv(q
′
S)− P (Q)

Similarly, the server simply gains the amount paid, minus the cost of the calculation:

uS(n, h) = P (Q)− C(qS)

uS(n, c) = P (Q)− C(q′S)

If the owner chooses to verify, he also pays the cost of verification, and in the case of a

failed V , also pays the cost of an audit. If the audit fails (which would only happen in the

case of a cheating server), he does not pay the price for the calculation.

uO(v, h) = Iv(qS)− P (Q)− C(V (Q, qS))

− pfn · C(A(Q, qS, R))

uO(v, c) = Iv(Q
′(R))− C(V (Q, q′S))

− ptn · C(A(Q, q′S, R))− pfp · P (Q)

An honest server, in the case of the verification, gets the same payout he would without

verification. This is the price of the query minus the cost to calculate it. A cheating server

is only paid if he is not caught, so he is only paid in the case of a false positive from V .

uS(v, h) = P (Q)− C(qS)

uS(v, c) = pfp · P (Q)− C(q′S)
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Now, since O declares a verification probability in advance, we can write the above as:

uO(α, h) = αuO(v, h) + (1− α)uO(n, h)

uS(α, h) = αuS(v, h) + (1− α)uS(n, h)

uO(α, c) = αuO(v, c) + (1− α)uO(n, c)

uS(α, c) = αuS(v, c) + (1− α)uS(n, c)

Note that, in practice, a payment might not be rendered for every query, and instead the

server might charge a flat fee for its services, or some other payment structure. In these cases,

one could consider the total payments spread out throughout the queries. This assumption

that payment is rendered for each query will not invalidate our solution.

We make some assumptions about the values used above. First, we assume that Iv(qS) ≥

P (Q) ≥ C(qS). This is because this inequality is necessary for participation in the game to

be individually rational (since this guarantees that the best expected payoff for each player,

assuming no one cheats, is at least zero). Naturally, if the query was not worth enough to the

owner, he would not pay the price, and if the price did not cover the cost of computation for

the server, he would not perform the calculation. Second, we assume that as q′S approaches

qS, C(q′S) approaches C(qS). This implies that it is difficult to compute a q′S such that

V (Q, q′S) is expectedly true. As q′S moves away from qS, the cost can decrease. This provides

the initial incentive for the server to cheat. These assumptions are logical, since computing

a value close to actual result becomes more and more like computing the actual result. For

example, if a cheating server were to run the query on a sample of the data and extrapolate

the result, the estimated result would get more accurate as the sample size got larger, but the

computational resources used would also increase. We assume that the cost of V and A are

constant for a given Q (no matter if qS or q′S is provided to them as an argument). Finally,

we once again assume that Iv(q
′
S) < 0 < Iv(qS), due to the result not being what O asked for.

We also assume that C(A(Q, q′S, R)) < Iv(qS) − Iv(q′S), since if the audit were more costly

than the amount of information supplied by the query, the audit would not take place.
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We now outline a contract which removes the incentive for the server to cheat. It is quite

similar to the contract for the two-cloud case.

Contract 3 If the owner chooses to verify, and it is determined that the server has cheated,

the server pays a penalty of F +C(A(Q, q′S, R)). (Note: We explicitly force a cheating server

to pay the audit cost.)

Theorem 7.3 The game, using the above contract (depicted in figure 7.3), has an equilib-

rium in pure strategies. O will select an α which makes cheating less profitable (expectedly)

than correctly revealing the result. S chooses not to cheat.

Proof: Contract 3 makes the following changes to the payoffs of the single cloud game:

uO(v, c) = Iv(q
′
S)− C(V (Q, q′S))

−ptn · F − pfp · P (Q)

uS(v, c) = pfp · P (Q)− C(q′S)

−ptn · (C(A(Q, q′S, R)) + F )

We first begin with the above equations for uO and uS in terms of α. We want to find the

α such that uS(α, h) ≥ uS(α, c). Substituting in, we get:

uS(α, h) = α(P (Q)− C(qS))

+(1− α)(P (Q)− C(qS))

= P (Q)− C(qS)

uS(α, c) = α(pfpP (Q)− C(q′S)

−ptn(C(A(Q, q′S, R)) + F ))

+(1− α)(P (Q)− C(q′S))

Multiplying through by α and 1− α:

P (Q)− C(qS) ≥ αpfpP (Q)− αC(q′S)

−αptn(C(A(Q, q′S, R)) + F )

+P (Q)− C(q′S)− αP (Q)

+αC(q′S)
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Figure 7.3. Verifying Queries With a Single Cloud

C(q′S)− C(qS) ≥ α(pfpP (Q)− C(q′S)− P (Q) + C(q′S))

− ptn(C(A(Q, q′S, R)) + F )

Canceling out like terms, we get:

C(q′S)− C(qS) ≥ α(pfp − 1)P (Q)

− αptn(C(A(Q, q′S, R)) + F )

Now, since Q′ is easier to compute than Q, pfp < 1, both sides of this inequality are

negative. We therefore multiply both sides by −1 and simplify to get the following:

C(qS)− C(q′S) ≤ α((1− pfp)P (Q)

+ ptn(C(A(Q, q′S, R)) + F ))
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Since 1− pfp is equal to ptn, we can substitute in ptn, then divide by the coefficient of α,

yielding the final expression:

α ≥ C(qS)− C(q′S)

ptn(C(A(Q, q′S, R)) + F + P (Q))

When α increases, the payout for cheating decreases, provided C(A(Q, q′S, R)) and F are

large enough. So, as long as the expression above is satisfied, the server will choose not to

cheat.

Now, while C(A(Q, q′S, R)) is fixed, F is something that can be adjusted in the contract.

Therefore, if the penalty F is astronomically high, we can severely reduce α, while maintaining

that there is no incentive to cheat for S. This is what is known as a “boiling-in-oil” contract

(Rasmusen 2007).

We must also show that this α is incentive compatible for O. Consider what happens

when α is increased. If α is greater than the above value, O ends up verifying more, while S

continues telling the truth. Because of this, O loses valuation. So, O will not choose α higher

than this. If α is less than this value, then S will start cheating. The possible increase in

payout to O would be αF , but since α is small, and Iv(qS) is so much greater than Iv(q
′
S),

this would likely result in a decrease in payout for O. Therefore, α is not less than the above

expression either. Thus, we have an equilibrium.

7.5 Implementation Details

The game outlined above is fairly general, and allows for any local verification method V to

be used. Here, we outline a simple sampling verification method which becomes much more

viable when the verification process is not being run with every query. First, let us assume

that the data consists of N signed tuples, each of which has a unique, consecutive id from 1

to N . Let O maintain some sample of size k of these N tuples, together with the value N .

This sample is selected uniformly at random from the entire data set, with replacement. This

sample can be used to compute V (Q, q′S) for many different types of queries. For aggregate

queries such as count, sum, average, standard deviation, etc., one could simply perform the
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action on the k tuples, and extrapolate based on N . If this sample value is within some ε of

the query result q′S, then we declare the result correct. Otherwise, we perform the audit.

For selection queries, note that because each tuple is signed, we know that the server

cannot modify any tuples, nor can it insert new tuples. It can only either remove relevant

tuples from the result, or insert irrelevant tuples into the result. If the server inserts irrelevant

tuples, this can be easily verified by O by simply noting that the tuple does not match the

query. Thus, it is only difficult to verify when a tuple has been left out. As before, we can

perform the selection query on the sample of k tuples, and extrapolate the number of tuples

that should be returned by qS. If the number of tuples in q′S is within some ε, we declare the

result correct. If the number of tuples in q′S is greater than our estimate, then we should also

declare the result correct, since a greater number of tuples cannot be wrong. Otherwise, we

perform the audit.

There are plenty of other methods used to verify queries on outsourced data, and any of

them would work as a verification method V in our scheme. We choose this one, however,

because of its simplicity. Note that it does not require expensive cryptographic operations.

One thing remains in the definition of the verification mechanism, and that is the defini-

tion of ε. As the selection of k tuples can be considered a selection of k random variables

X1, ..., Xk ∈ R, and in each case we are interested in a function f which maps R → <,

and any alteration in a given Xi can only change the value of the aggregate function by at

most some ci (this ci is 1 for count, the max value of the given attribute for sum, the max

value squared for standard deviation, etc), we can apply McDiarmid’s inequality (McDiarmid

1989), giving us the following:

Pr{|E[f(X1, ..., Xk)]− f(X1, ..., Xk)| ≥ ε} ≤ 2e
− 2ε2∑k

i=1
c2
i

Note, this inequality does not depend on the value of N . It simply depends on the sample

size. For example, say we want to devise a sample size k such that the probability that an

average query on attribute a of the sample is within ε = 1% of the true result with probability

.999. ci is given as max{|a|}
k

. The probability in the above works out to 2e
− .0002average{a}

2

max{|a|}2/k . We
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want this to be less than or equal to .001. Solving for k, we get

ln(.0005) ≤ − .0002average{a}2k
max{|a|}2

−ln(.0005)max{|a|}2

.0002average{a}2
≤ k

This gives us a k value of approximately 38004.51 times the maximum value of the at-

tribute a, divided by the square of the result. As the average of the result is no more than

the maximum value of a, and its square can be much larger, k can be 38 thousand tuples, or

less, depending on the distribution of a, even if the number of tuples is in the millions. Note

that this is does not help the data owner find the value of k, as the owner does not know the

actual result. This merely shows that a good k exists, and it is independent of the number

of tuples in the dataset for many common queries.

38,000 tuples is not a particularly small number, especially with some sketches using only

three bytes (Yi, Li, Cormode, Hadjieleftheriou, Kollios, and Srivastava 2009). However, this

sample can be used to verify many different types of queries, and does not have to plan for the

queries in advance. In addition, the verification will only be performed a fraction (α) of the

time. This fraction, through the use of the penalty in the contract, can be made arbitrarily

small, leading to a very fast expected runtime.

Now, one method of generating a false query (for aggregate queries) might be to use the

same sampling method as above. Note, however, that in order to ensure that the sample

chosen by the server has a result within ε of the result of the owner’s sample, the server

would need a much tighter epsilon.

With some probability δ, the owner’s sample result is within ε of the correct result. This

is also true for the server. However, consider the worst case where the owner’s sample value

is Q(R)− ε and the server’s sample value is Q(R) + ε. The probability δ is not sufficient to

bound the difference between the two sample values. To ensure that with probability δ the

owner’s sample result is within ε of the result returned by the server (with the given high

probability), the server would have to return the actual result, as any leeway would lead to

a worst case scenario where the difference is greater than ε.
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In order to prevent sampling bias, a protocol could be implemented to resample from the

data. As each tuple has a unique id, the owner could, at some interval, request the tuples

with a given set of ids. The owner would know if the tuples he desired were not returned. In

order to prevent the server from learning the exact sample (which would lead to the server

simply using that sample for calculations), the owner would select some dummy tuples, or

in some cases, the entire data set. A similar method, selecting all tuples involved, can be

employed for auditing the queries.

7.6 Experiments

To test the effectiveness of the sampling protocol for catching cheating on real data, we

ran a series of experiments. The mechanisms outlined in sections 3 and 4 do not need

any experimentation, as they are proven and mathematically sound. These experiments

were designed to show that the sampling technique can identify cheating with a non-trivial

probability. Other verification methods will work similarly in our framework, as long as they

can identify cheating with non-trivial probability. For example, if a simple method exists

to verify a certain query deterministically, then it could be called in place of our sampling

scheme, and would allow our α to be even smaller. The sampling protocol is important,

however, due to its generality and simplicity.

7.6.1 Methodology

We used the US Census 1990 data set (census-income) from the UC Irvine Machine Learning

repository, which contains over 2.3 million tuples (Asuncion and Newman 2007). This is

again the same data set used in the two previous chapters. We focused on a few major fields

in this data set.

We processed results for eight different aggregation queries of varying types. Since selec-

tion queries can be estimated via counts, we chose to focus on aggregation queries.

The query types are as follows:
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1. Count, equality selection (count the people whose race value is 2–black)

2. Count, range selection (count the people whose income is greater than 40000)

3. Count, range and equality conjunction (count the people who are over age 30 and never

married)

4. Count, range disjunction (count the people who are under age 18 or have an income of

less than 10000)

5. Sum, equality selection (find the sum of the incomes of all people who never married)

6. Sum, range and equality conjunction (find the sum of the incomes of all people who are

over age 40 and whose place of birth is the place they work)

7. Average, range selection (find the average age of all people who have an income greater

than 80000)

8. Average, equality conjunction, sparse result (find the average income of all people who

are male and of race 9–Japanese)

For each query, we ran 100 trials, estimating the full result of the query with five different

sample sizes: 1000 tuples, 5000 tuples, 10000 tuples, 20000 tuples, and 40000 tuples. As

above, these samples are selected uniformly at random with replacement. We determined the

likelihood that each sample would accept the correct value for varying values of ε from 0 to

.5r where r is the estimated result. Since the verification process would not know the actual

result, we based the ε on the estimated result given by the sample, as we expected it to be

close to the actual result.

We then ran the samples against different means of falsifying the result, to determine if

the sample method could catch a cheater. The first type of falsification was the same as

our verification technique, sampling the data. We once again ran 100 trials for 1000, 5000,

10000, 20000, and 40000 tuple samples, both for detecting the cheating and for creating the

cheating.
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The second type of falsification was a “worst case” falsification, where the exact result was

computed, but then Laplace noise was added to the final result. An adversary would never

actually do this, as it would be more expensive than simply computing the result itself, but

this provides a way to test our scheme beyond the normal means. The mean of the Laplace

noise was of course the result itself (which we will call r), whereas the width parameter was

varied from r/5, r/10, r/20, and r/50. We chose Laplace noise as opposed to any other type

of noise because it is used in differential privacy as a means of masking query results while

still achieving meaningful results (Dwork 2006). Each of these sets of noise ran 100 trials

against each sample size as before.

7.6.2 Results

Space restrictions prevent the inclusion of the hundreds of graphs generated by the experi-

ments. However, if we examine one factor at a time, we can show the general trend of the

sampling protocol to correctly or incorrectly identify cheating values. The omitted graphs

show similar trends.

Query Type. Figure 7.4 shows the ROC (receiver operating characteristic) curves for

each of the eight queries, for a sample size of 10000, against every type of result falsification

we used. These ROC curves shows the tradeoff between the probability of a false negative

and the probability of a true negative. The queries themselves all behave similarly. At a

sample size of 10000, we can always find an ε where some nontrivial fraction of cheating will

be caught. There is always a tradeoff, however. As ε decreases, more legitimate results will

be marked as wrong, and forced to be fully audited. Proper use of the sampling technique

involves careful selection of epsilon in order to increase ptn, while reducing pfn as much as

possible. In practice, it is more important that ptn be high, since we can mitigate the effect

of false positives by increasing the penalty, thereby decreasing α and reducing the number

of times that we do the verification. ptn is acceptably high for fairly small ε (0.00125r to

0.005r).
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Query 1 Query 2 Query 3 Query 4

Query 5 Query 6 Query 7 Query 8

Figure 7.4. ROC Curves for the 8 Query Types: Sample Size 10000

Sample Size 1000 Sample Size 5000 Sample Size 10000

Sample Size 20000 Sample Size 40000

Figure 7.5. ROC Curves for Five Sample Sizes: Query 2
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Sample Size 1000 Sample Size 5000 Sample Size 10000

Sample Size 20000 Sample Size 40000

Figure 7.6. ROC Curves for Five Sample Sizes: Query 3, Sampling Cheater Only

Sample Size. Figure 7.5 shows the ROC curves for query 2 for each sample size used.

Clearly, as the sample size increases, the potential for better choices of epsilon increases.

With a sample size of 40000, there is even a type of cheating (r/5 noise) that allows for a

false negative rate of .02 and a true negative rate of .95. The obvious tradeoff here, though,

is that while you will do fewer full audits with a larger sample size, the verification process

will take more resources. The smaller sample sizes still have the ability to catch cheating,

but they will end up auditing many more legitimate results.

Cheater Sample Size. Figure 7.6 shows the ROC curves for query 3, against cheaters

using sampling only. We can clearly see that the curves move down and to the right as our

adversary’s sample size increases. This makes sense, as the cheater gets better at imperson-

ating the correct result, it becomes more difficult to distinguish the incorrect results from the

correct ones. However, in every case, even with a sample size of 1000, we are able to detect

cheating better than random guessing. Keep in mind that, in order to be useful, we merely
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Sample Size 1000 Sample Size 5000 Sample Size 10000

Sample Size 20000 Sample Size 40000

Figure 7.7. ROC Curves for Five Sample Sizes: Query 3, Noisy Cheater Only

need to be able to detect cheating with some non-negligible probability, and that any means

we choose to do that is acceptable.

Cheater Laplace Noise. Figure 7.7 shows the same query as figure 7, but this time

with our cheater only using the Laplace noise. Surprisingly, the noise addition version ends

up being easier to catch. This is due to the fact that the parameter on the Laplace noise is

large enough to cause issues. Still, at r/50, the cheating becomes quite difficult to detect for

low sample size.

7.6.3 Conclusions

In summary, by thinking about the problem of query verification from a different perspective,

namely, that of an economist, we can drastically reduce the computation required to ensure

that the result asked for is the result received. Using the game-theoretic framework outlined

here, we show that using a multiple servers, contracts can be designed that will ensure that

results obtained from an outsourced computation service are genuine, while requiring only a
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fractional increase in cost. This is, of course, in contrast to most methods of query verification,

which rely on complicated security technologies. The various query verification technologies

that are out there are still quite useful, however. Specialized verification methods which take

up very little space work well for common queries. They are, however, not generic and can

rely on some expensive operations. The outside-the-box approach of using a redundant data

service for verification vastly simplifies this process, and incurs a minimal cost.

In addition, we can similarly achieve a small cost using only one cloud provider. Note

that our verification method V does not have to be the one that we used in the experiments.

Existing verification methods could also be used, and if they are used, will only need to be

used a small fraction of the time.



CHAPTER 8

CONCLUSIONS

We have demonstrated various methods to improve data sharing in several cases. First, we

used approximations to improve the runtime of privacy-preserving data mining protocols. We

then used the tools of game theory to enforce honest behavior in secure data mining, data

outsourcing, and multiparty computation.

We demonstrated methods for approximating the scalar product of two vectors which can

then, in turn, be used to reduce the time complexity of several data mining tasks. We proved

the approximation secure under our definition, and we showed that the methods work in

practice through experimentation. In the best case, we were able to achieve two orders of

magnitude improvement on the initial time complexity.

We created game theoretic frameworks for enforcing honesty in data mining. The first,

more efficient framework, involved the Vickrey-Clarke-Groves mechanism and worked when

players did not collude. The second worked even when players collude, but is far more com-

putationally intensive. These mechanisms, however, enforce an outcome which cryptographic

protocols alone cannot enforce. This outcome is truthful behavior.

We then turned our game theory to the subject of data outsourcing. We showed several

mechanisms which will deter cheating on the part of the outsourced server. The first two

involve checking query results against a second outsourcing service. The third involves the use

of query verification methods. In all cases, we showed that we can make the probability that

we execute a query verification method arbitrarily small, and showed a simple verification

method which becomes practical when used in this framework.

Finally, we generalized the notion set forth in chapter 5 to multiparty computation. We

showed that there exists a class of functions which allow us to enforce honesty, and we also

98
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showed that some of the computation can be done outside the trusted server (although the

final evaluation still needs to be done in a trusted fashion). These various methods show that

with some outside-the-box thinking, be it with game theory or vector projections, secure data

sharing can be improved.
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