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Images perturbed subtly to be misclassified by neural networks, called adversarial examples, have emerged
as a technically deep challenge and an important concern for several application domains. Most research
on adversarial examples takes as its only constraint that the perturbed images are similar to the originals.
However, real-world application of these ideas often requires the examples to satisfy additional objectives,
which are typically enforced through custom modifications of the perturbation process. In this article, we
propose adversarial generative nets (AGNs), a general methodology to train a generator neural network to emit
adversarial examples satisfying desired objectives. We demonstrate the ability of AGNs to accommodate a
wide range of objectives, including imprecise ones difficult to model, in two application domains. In particular,
we demonstrate physical adversarial examples—eyeglass frames designed to fool face recognition—with better
robustness, inconspicuousness, and scalability than previous approaches, as well as a new attack to fool a
handwritten-digit classifier.
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1 INTRODUCTION

Deep neural networks (DNNs) are popular machine-learning models that achieve state-of-the-
art results on challenging learning tasks in domains where there is adequate training data and
compute power to train them. For example, they have been shown to outperform humans in
face verification, i.e., deciding whether two face images belong to the same person [32, 74].
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Unfortunately, it has also been shown that DNNs can be easily fooled by adversarial examples—
mildly perturbed inputs that to a human appear visually indistinguishable from benign inputs—and
that such adversarial examples can be systematically found [10, 73].

While the early attacks and almost all extensions (see Section 2) attempt to meet very few ob-
jectives other than the adversarial input being similar (by some measure) to the original, there
are many contexts in which it is necessary to model additional objectives of adversarial inputs.
For example, our prior work considered a scenario in which adversaries could not manipulate in-
put images directly but, rather, could only manipulate the physical artifacts captured in such im-
ages [68]. Using eyeglasses for fooling face-recognition systems as a driving example, we showed
how to encode various objectives into the process of generating eyeglass frames, such as ensuring
that the frames were capable of being physically realized by an off-the-shelf printer. As another
example, Evtimov et al. considered generating shapes that, when attached to street signs, would
seem harmless to human observers but would lead neural networks to misclassify the signs [20].

These efforts modeled the various objectives they considered in an ad hoc fashion. In contrast, in
this article, we propose a general framework for capturing such objectives in the process of gener-
ating adversarial inputs. Our framework builds on recent work in generative adversarial networks
(GANs) [25] to train an attack generator, i.e., a neural network that can generate successful attack
instances that meet certain objectives. Moreover, our framework is not only general, but, unlike
previous attacks, produces a large number of diverse adversarial examples that meet the desired
objectives. This could be leveraged by an attacker to generate attacks that are unlike previous ones
(and hence more likely to succeed), but also by defenders to generate labeled negative inputs to
augment training of their classifiers. Due to our framework’s basis in GANs, we refer to it using
the anagram AGNs, for adversarial generative nets.

To illustrate the utility of AGNs, we return to the task of printing eyeglasses to fool face-
recognition systems [68] and demonstrate how to accommodate a number of types of objectives
within it. Specifically, we use AGNs to accommodate robustness objectives to ensure that produced
eyeglasses fool face-recognition systems in different imaging conditions (e.g., lighting, angle) and
even despite the deployment of specific defenses; inconspicuousness objectives, so that the eye-
glasses will not arouse the suspicion of human onlookers; and scalability objectives requiring that
relatively few adversarial objects are sufficient to fool DNNs in many contexts. We show that
AGNs can be used to target two DNN-based face-recognition algorithms that achieve human-level
accuracy—VGG [59] and OpenFace [1]—and output eyeglasses that enable an attacker to either
evade recognition or to impersonate a specific target, while meeting these additional objectives. To
demonstrate that AGNs can be effective in contexts other than face recognition, we also train AGNs
to fool a classifier designed to recognize handwritten digits and trained on the MNIST dataset [43].

In addition to illustrating the extensibility of AGNs to various types of objectives, these demon-
strations highlight two additional features that, we believe, are significant advances. First, AGNs
are flexible in that an AGN can train a generator to produce adversarial instances with only vaguely
specified characteristics. For example, we have no way of capturing inconspicuousness mathemat-
ically; rather, we can specify it only using labeled instances. Still, AGNs can be trained to produce
new and convincingly inconspicuous adversarial examples. Second, AGNs are powerful in gener-
ating adversarial examples that perform better than those produced in previous efforts using more
customized techniques. For example, though some of the robustness and inconspicuousness ob-
jectives we consider here were also considered in prior work, the adversarial instances produced
by AGNs perform better (e.g., ∼70% vs. 31% average success rate in impersonation) and accommo-
date other objectives (e.g., robustness to illumination changes). AGNs enable attacks that previous
methods did not.
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We next review related work (Section 2) and then describe the AGN framework (Section 3) and
its instantiation against face-recognition DNNs (Section 4). Then, we evaluate the effectiveness of
AGNs, including with physically realized attacks and a user study to examine inconspicuousness
(Section 5). Finally, we discuss our work and conclude (Section 6).

2 RELATED WORK

In this section, we describe prior work on test-time attacks on machine-learning algorithms, work
that focuses on physical-world attacks, and proposed defenses.

Fooling Machine-learning Algorithms. In concurrent research efforts, Szegedy et al. and Big-
gio et al. showed how to systematically find adversarial examples to fool DNNs [10, 73]. Given an
input x that is classified to F (x ) by the DNN, Szegedy et al.’s goal was to find a perturbation r of
minimal norm (i.e., as imperceptible as possible) such that x + r would be classified to a desired
target class ct . They showed that, when the DNN function, F (·), and the norm function are differ-
entiable, finding the perturbation can be formalized as an optimization to be solved by the L-BFGS
solver [56]. Differently from the minimal perturbations proposed by Szegedy et al., Biggio et al. fo-
cused on finding perturbations that would significantly increase the machine-learning algorithm’s
confidence in the target class [10]. Attacks akin to Biggio et al.’s are more suitable for the security
domain, where one may be interested in assessing the security of algorithms or systems under
worst-case attacks [9, 24].

More efficient algorithms were later proposed for finding adversarial examples that were even
more imperceptible (using different notions of imperceptibility) or were misclassified with even
higher confidence [13, 19, 27, 33, 35, 51, 52, 57, 63, 64]. For example, Papernot et al.’s algorithm aims
to minimize the number of pixels changed [57]. Carlini and Wagner experimented with different
formulations of the optimization’s objective function for finding adversarial examples [13]. They
found that minimizing a weighted sum of the perturbation’s norm and a particular classification
loss-function, Losscw , helps achieve more imperceptible attacks. They defined Losscw not directly
over the probabilities emitted by F (·) but rather over the logits, L(·). The logits are usually the
output of the one-before-last layer of DNNs, and higher logits for a class imply higher probability
assigned to it by the DNN. Roughly speaking, Losscw was defined as follows:

Losscw = max{Lc (x + r ) : c � ct } − Lct
(x + r ),

where Lc (·) is the logit for class c . Minimizing Losscw increases the probability of the target class,
ct , and decreases the probability of others.

Perhaps closest to our work is the work of Baluja and Fischer [8]. They propose to train an
auto-encoding neural network that takes an image as input and outputs a perturbed version of the
same image that would be misclassified. Follow-up research efforts concurrent to ours propose to
train generative neural networks to create adversarially perturbed images that lead to misclassifi-
cation [61, 77, 82]. These attacks require only that the perturbations have a small norm, and allow
perturbations to cover the entire image. In contrast, as we discuss in Sections 3–4, we propose
attacks that must satisfy stricter constraints (e.g., cover only a small, specific portion of the im-
age) and multiple objectives (e.g., generate eyeglasses that both lead to misclassification and look
realistic).

Moosavi et al. showed how to find universal adversarial perturbations, which lead not just one
image to be misclassified, but a large set of images [53]. Universal perturbations improve our
understanding of DNNs’ limitations, as they show that adversarial examples often lie in fixed di-
rections (in the images’ RGB space) with respect to their corresponding benign inputs. Differently
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from that work, we explore universal attacks that are both inconspicuous and constrained to a
small region.

Some work has explored digital-domain attacks that satisfy certain objectives [15, 29, 70, 78].
For example, Xu et al. showed to automatically create malicious PDFs that cannot be detected
using machine-learning algorithms [78]. These methods use customized algorithms to achieve
very precise objectives (e.g., create a valid PDF output). Our work instead focuses on a general
method for meeting objectives that might be imprecise.

Research suggests that adversarial examples are not a result of overfitting, as in that case ad-
versarial examples would be unlikely to transfer between models (i.e., to fool models with differ-
ent architecture or training data than the ones the adversarial examples were crafted for) [76]. A
widely held conjecture attributes adversarial examples to the inflexibility of classification mod-
els [21, 27, 67, 76]. This conjecture is supported by the success of attacks that approximate DNNs’
classification boundaries by linear separators [27, 52].

Physical Attacks on Machine Learning. Kurakin et al. demonstrated that imperceptible adver-
sarial examples can fool DNNs even if the input to the DNN is an image of the adversarial example
printed on paper [42]. Differently than us, they created adversarial perturbations that covered the
entire image they aimed to misclassify. Recently, Evtimov et al. showed that specially crafted pat-
terns printed and affixed to street signs can mislead DNNs for street-sign recognition [20]. Unlike
the work described in this article, they specified the printability and inconspicuousness objectives
in an ad-hoc fashion.

Our prior work proposed using eyeglasses to perform physically realizable dodging and imper-
sonation against state-of-the-art DNNs for facial recognition [68]. The problem of finding adver-
sarial eyeglass patterns was formalized as an optimization problem with multiple ad hoc objectives
to increase the likelihood that (1) face recognition can be fooled even when the attacker’s pose
changes slightly; (2) transitions between neighboring pixels on the eyeglasses are smooth; and
(3) the eyeglasses’ colors can be realized using an off-the-shelf printer. Unlike that prior work, the
approach described in this article is a general framework for generating adversarial inputs, in this
context instantiated to generate eyeglass patterns as similar as possible to real designs, while still
fooling the DNNs in a desired manner. Moreover, unlike prior work, we evaluate the inconspicu-
ousness of the eyeglasses using a user study. We find that the new algorithm can produce more
robust and inconspicuous attacks (Section 5.2 and Section 5.5). We also show the attacks produced
by the method we describe here to be scalable as well as robust in the face of defenses.

Another line of work attempts to achieve privacy from face-recognition systems by completely
avoiding face detection [31, 79]. Essentially, face detection finds sub-windows in images that con-
tain faces, which are later sent for processing by face-recognition systems. Consequently, by evad-
ing detection, one avoids the post processing of her face image by recognition systems. The pro-
posed techniques are not inconspicuous: they either use excessive makeup [31] or attempt to blind
the camera using light-emitting eyeglasses [79].

The susceptibility to attacks of learning systems that operate on non-visual input has also been
studied [14, 16, 17, 81]. For instance, researchers showed that speech-recognition systems can be
misled to interpret sounds unintelligible to humans as actual commands [14].

Defending Neural Networks. Proposals to ameliorate DNN’s susceptibility to adversarial ex-
amples follow three main directions. One line of work proposes techniques for training DNNs
that would correctly classify adversarial inputs or would not be susceptible to small perturba-
tions. Such techniques involve augmenting training with adversarial examples in the hope that
the DNN will learn to classify them correctly [27, 36, 37, 41, 73]. These techniques were found to
increase the norms of the perturbations needed to achieve misclassification. However, it remains
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unclear whether the increase is sufficient to make adversarial examples noticeable to humans.
A recent adversarial training method significantly enhanced the robustness of DNNs by training
using examples generated with the Projected Gradient Sign (PGD) attack, which is conjectured
to be the strongest attack using local derivative information about DNNs [45]. Two subsequent
defenses achieved relatively high success by approximating the outputs achievable via certain
norm-bounded perturbations and then ensuring these outputs are classified correctly [39, 50]. Un-
fortunately, the recent defenses [36, 39, 45, 50] are limited to specific types of perturbations (e.g.,
ones bounded in L∞), similarly to their predecessors [27, 37, 41, 73].

A second line of work proposes techniques to detect adversarial examples (e.g., References [22,
28, 48, 49]). The main assumption of this line of work is that adversarial examples follow a different
distribution than benign inputs and hence can be detected via statistical techniques. For instance,
Metzen et al. propose to train a neural network to detect adversarial examples [49]. The detector
would take its input from an intermediate layer of a DNN and decide whether the input is adver-
sarial. It was recently shown that this detector, as well as others, can be evaded using different
attack techniques than the ones on which these detectors were originally evaluated [12].

A third line of work suggests to transform the DNNs’ inputs to sanitize adversarial exam-
ples and lead them to be correctly classified, while keeping the DNNs’ original training proce-
dures intact [30, 44, 48, 66, 69]. The transformations aim to obfuscate the gradients on which
attacks often rely. In certain cases the defenses even rely on undifferentiable transformations (e.g.,
JPEG compression) to prevent the back propagation of gradients (e.g., Reference [30]). Unfor-
tunately, researchers have shown that it is possible to circumvent such defenses, sometimes by
vanilla attacks [4] and other times by more advanced means (e.g., by approximating the input-
transformation functions using smooth and differentiable functions) [5].

3 A NOVEL ATTACK AGAINST DNNS

In this section, we describe a new algorithm to attack DNNs. We define our threat model in Sec-
tion 3.1, discuss the challenges posed by vaguely specified objectives in Section 3.2, provide back-
ground on Generative Adversarial Networks in Section 3.3, and describe the attack framework in
Section 3.4.

3.1 Threat Model

We assume an adversary who gains access to an already trained DNN (e.g., one trained for face
recognition). The adversary cannot poison the parameters of the DNN by injecting mislabeled data
or altering training data. Instead, she can only alter the inputs to be classified.

The attacker’s goal is to trick the DNN into misclassifying adversarial inputs. We consider two
variants of this attack. In targeted attacks, the adversary attempts to trick the DNN to misclassify
the input as a specific class (e.g., to impersonate another subject enrolled in a face-recognition
system). In untargeted attacks, the adversary attempts to trick the DNN to misclassify the input as
an arbitrary class (e.g., to dodge recognition by a face-recognition system).

The framework we propose supports attacks that seek to satisfy a variety of objectives, such as
maximizing the DNN’s confidence in the target class in impersonation attacks and crafting pertur-
bations that are inconspicuous. Maximizing the confidence in the target class is especially impor-
tant in scenarios where strict criteria may be used in an attempt to ensure security—for instance,
scenarios when the confidence must be above a threshold, as is used to to prevent false positives
in face-recognition systems [34]. While inconspicuousness may not be necessary in certain sce-
narios (e.g., unlocking a mobile device via face recognition), attacks that are not inconspicuous
could easily be ruled out in some safety-critical scenarios (e.g., when human operators monitor
face-recognition systems at airports [72]).
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We assume a white-box scenario: The adversary knows the feature space (images in RGB rep-
resentation, as is typical in DNNs for image classification) and the architecture and parameters
of the system being attacked. Studying robustness of DNNs under such assumptions is standard
in the literature (e.g., References [13, 52]). Moreover, as shown in Section 5.4 and in prior work
(e.g., Reference [58]), black-box attacks can be built from white-box attacks on local substitute-
models. Gradient approximation techniques could also be used to generalize our proposed method
to black-box settings (e.g., References [23, 54]).

3.2 Vaguely Specified Objectives

In practice, certain objectives, such as inconspicuousness, may elude precise specification. In early
stages of our work, while attempting to produce eyeglasses to fool face recognition, we attempted
multiple ad-hoc approaches to enhance the inconspicuousness of the eyeglasses, with limited
success. For instance, starting from solid-colored eyeglasses in either of the RGB or HSV color
spaces, we experimented with algorithms that would gradually adjust the colors until evasion was
achieved, while fixing one or more of the color channels. We also attempted to use Compositional
Pattern-Producing Neural Networks [71] combined with an evolutionary algorithm to produce
eyeglasses with symmetric or repetitive patterns. These approaches had limited success both at
capturing inconspicuousness (e.g., real eyeglasses do not necessarily have symmetric patterns)
and at evasion or failed completely.

Other approaches to improve inconspicuousness such as ensuring that the transitions between
neighboring pixels are smooth [68] or limiting the extent to which pixels are perturbed (see the
CCS16 and �CCS16 attacks in Section 5) had some success at evasion but resulted in patterns that our
user-study participants deemed as distinguishable from real eyeglasses’ patterns (see Section 5.5).
Therefore, instead of pursuing such ad hoc approaches to formalize properties that may be in-
sufficient or unnecessary for inconspicuousness, in this work we achieve inconspicuousness via a
general framework that models inconspicuous eyeglasses based on many examples thereof, while
simultaneously achieving additional objectives, such as evasion.

3.3 Generative Adversarial Networks

Our attacks build on Generative Adversarial Networks (GANs) [25] to create accessories (specif-
ically, eyeglasses) that closely resemble real ones. GANs provide a framework to train a neural
network, termed the generator (G), to generate data that belongs to a distribution (close to the real
one) that underlies a target dataset. G maps samples from a distribution, Z , that we know how to
sample from (such as [−1, 1]d , i.e., d-dimensional vectors of reals between −1 and 1) to samples
from the target distribution.

To train G, another neural network, called the discriminator (D), is used. D’s objective is to
discriminate between real and generated samples. Thus, training can be conceptualized as a game
with two players, D and G, in which D is trained to emit 1 on real examples and 0 on generated
samples, and G is trained to generate outputs that are (mis)classified as real by D. In practice,
training proceeds iteratively and alternates between updating the parameters ofG and D via back-
propagation. G is trained to minimize the following function:

LossG (Z ,D) =
∑

z∈Z
lg(1 − D (G (z))). (1)

LossG is minimized when G misleads D (i.e., D (G (z)) is 1). D is trained to maximize the following
function:

GainD (G,Z , data) =
∑

x ∈data

lg(D (x )) +
∑

z∈Z
lg(1 − D (G (z))). (2)

GainD is maximized when D emits 1 on real samples and 0 on all others.
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Several GAN architectures and training methods have been proposed, including Wasserstein
GANs [2] and Deep Convolutional GANs [62], on which we build.

3.4 Attack Framework

Except for a few exceptions [8, 20, 61, 68, 82], in traditional evasion attacks against DNNs the
attacker directly alters benign inputs to maximize or minimize a pre-defined function related to
the desired misclassification (see Section 2). Differently from previous attacks, we propose to train
neural networks to generate outputs that can be used to achieve desired evasions (among other
objectives), instead of iteratively tweaking benign inputs to become adversarial.

More specifically, we propose to train neural networks to generate images of artifacts (e.g., eye-
glasses) that would lead to misclassification. We require that the artifacts generated by these neural
networks resemble a reference set of artifacts (e.g., real eyeglass designs), as a means to satisfy an
objective that is hard to specify precisely (e.g., inconspicuousness). We call the neural networks
we propose adversarial generative nets (AGNs). Similarly to GANs, AGNs are adversarially trained
against a discriminator to learn how to generate realistic images. Differently from GANs, AGNs are
also trained to generate (adversarial) outputs that can mislead given neural networks (e.g., neural
networks designed to recognize faces).

Formally, three neural networks comprise an AGN: a generator, G; a discriminator, D; and a
pre-trained DNN whose classification function is denoted by F (·). When given an input x to the
DNN, G is trained to generate outputs that fool F (·) and are inconspicuous by minimizing1

LossG (Z ,D) − κ ·
∑

z∈Z
LossF (x +G (z)). (3)

We define LossG in the same manner as in Equation (1); minimizing it aims to generate real-looking
(i.e., inconspicuous) outputs that mislead D. LossF is a loss function defined over the DNN’s clas-
sification function that is maximized when training G (as −LossF is minimized). The definition
of LossF depends on whether the attacker aims to achieve an untargeted misclassification or a
targeted one. For untargeted attacks, we use:

LossF (x +G (z)) =
∑

i�x

Fci
(x +G (z)) − Fcx

(x +G (z)),

while for targeted attacks we use:

LossF (x +G (z)) = Fct
(x +G (z)) −

∑

i�t

Fci
(x +G (z)),

where Fc (·) is the DNN’s output for class c (i.e., the estimated probability of class c in case of a
softmax activation in the last layer). By maximizing LossF , for untargeted attacks, the probability of
the correct class cx decreases; for targeted attacks, the probability of the target class ct increases.
We chose this definition of LossF , because we empirically found that it causes AGNs to converge
faster than Losscw or loss functions defined via cross entropy, as used in prior work [13, 68]. κ is a
parameter that balances the two objectives of G; we discuss it further below.

As part of the training process, D’s weights are updated to maximize GainD , defined in Equa-
tion (2), to tell apart realistic and generated samples. In contrast to D and G, F (·)’s weights are
unaltered during training (as attacks should fool the same DNN at test time).

The algorithm for training AGNs is provided in Algorithm 1. The algorithm takes as input a
set of benign examples (X ), a pre-initialized generator and discriminator, a neural network to be

1We slightly abuse notation by writing x + r to denote an image x that is modified by a perturbation r . In practice, we use
a mask and set the values of x within the masked region to the exact values of r .
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ALGORITHM 1: AGN training

Input: X , G, D, F (·), dataset, Z , Ne , sb ,κ ∈ {0, 1}
Output: Adversarial G

1 for e ← 1 to Ne do

2 create mini-batches of size sb from dataset;

3 for batch ∈ mini-batches do

4 z ← sb samples from Z ;

5 gen← G (z);

6 batch← concat (gen, batch);

7 if even iteration then // update D

8 update D by backpropagating ∂GainD

∂batch
;

9 else // update G
10 if F (·) fooled then return G;

11 d1 ← − ∂GainD

∂gen ;

12 x ← sb sample images from X ;

13 x ← x + gen;

14 Compute forward pass F (x );

15 d2 ← ∂LossF

∂gen ;

16 d1,d2 ← normalize(d1,d2);

17 d ← κ · d1 + (1 − κ) · d2;

18 update G via backpropagating d ;

fooled, a dataset of real examples (which the generator’s output should resemble; in our case this
is a dataset of eyeglasses), a function for sampling fromG’s latent space (Z ), the maximum number
of training epochs (Ne ), the mini-batch2 size sb , and κ ∈ [0, 1]. The result of the training process
is an adversarial generator that creates outputs (e.g., eyeglasses) that fool F (·). In each training
iteration, either D or G is updated using a subset of the data chosen at random. D’s weights are
updated via gradient ascent to increase GainD; G’s weights are updated via gradient descent to
minimize Equation (3). To balance the generator’s two objectives, the gradients from GainD and
LossF are normalized to the lower Euclidean norm of the two and then combined into a weighted
average controlled by κ. When κ is closer to zero, more weight is given to fooling F (·) and less
to making the output of G realistic. Conversely, setting κ closer to one places more weight on
increasing the resemblance between G’s output and real examples. Training ends when the max-
imum number of training epochs is reached, or when F (·) is fooled, i.e., when impersonation or
dodging is achieved.

4 AGNS THAT FOOL FACE RECOGNITION

We next describe how we trained AGNs to generate inconspicuous, adversarial eyeglasses that
can mislead state-of-the-art DNNs trained to recognize faces. To do so, we (1) collect a dataset of
real eyeglasses, (2) select the architecture of the generator and the discriminator and instantiate
their weights, (3) train DNNs that can evaluate the attacks, and (4) set the parameters for the
attacks.

2Mini-batch: A subset of samples from the dataset used to approximate the gradients and compute updates in an iteration
of the algorithm.
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Fig. 1. A silhouette of the eyeglasses we use.

Fig. 2. Examples of raw images of eyeglasses that we collected (left) and their synthesis results (right).

4.1 Collecting a Dataset of Eyeglasses

A dataset of real eyeglass-frame designs is necessary to train the generator to create real-looking
attacks. We collected such a dataset using Google’s search API.3 To collect a variety of designs,
we searched for “eyeglasses” and synonyms (e.g., “glasses,” “eyewear”), sometimes modified by an
adjective, including colors (e.g., “brown,” “blue”), trends (e.g., “geek,” “tortoise shell”), and brands
(e.g., “Ralph Lauren,” “Prada”). In total, we made 430 unique API queries and collected 26,520
images.

The images we collected were not of only eyeglasses; e.g., we found images of cups, vases,
and logos of eyeglass brands. Some images were of eyeglasses worn by models or on complex
backgrounds. Such images would hinder the training process. Hence, we trained a classifier to
detect and keep only images of eyeglasses over white backgrounds and not worn by models. Using
250 hand-labeled images, we trained a classifier that identified such images with 100% precision
and 65% recall. After applying it to all the images in the dataset, 8,340 images remained. Manually
examining a subset of these images revealed no false positives.

Using images from this dataset, we could train a generator that can emit eyeglasses of differ-
ent patterns, shapes, and orientations. However, variations in shape and orientation made such
eyeglasses difficult to efficiently align to face images while running Algorithm 1. Therefore, we
preprocessed the images in the dataset and transferred the patterns from their frames to a fixed
shape (a silhouette of the shape is shown in Figure 1), which we could then easily align to face
images. We then trained the generator to emit images of eyeglasses with this particular shape, but
with different colors and textures. To transfer the colors and textures of eyeglasses to a fixed shape,
we thresholded the images to detect the areas of the frames. (Recall that the backgrounds of the
images were white.) We then used Efros and Leung’s texture-synthesis technique to synthesize
the texture from the frames onto the fixed shape [18]. Figure 2 shows examples. Since the texture
synthesis process is nondeterministic, we repeated it twice per image. At the end of this process,
we had 16,680 images for training.

Since physical realizability is a requirement for our attacks, it was important that the generator
emitted images of eyeglasses that are printable. In particular, the colors of the eyeglasses needed to
be within the range our commodity printer (see Section 5.2) could print. Therefore, we mapped the
colors of the eyeglass frames in the dataset into the color gamut of our printer. To model the color
gamut, we printed an image containing all 224 combinations of RGB triplets, captured a picture of
that image, and computed the convex hull of all the RGB triplets in the captured image. To make
an image of eyeglasses printable, we mapped each RGB triplet in the image to the closest RGB
triplet found within the convex hull.

3https://developers.google.com/custom-search/.

ACM Transactions on Privacy and Security, Vol. 22, No. 3, Article 16. Publication date: June 2019.

https://developers.google.com/custom-search/


16:10 M. Sharif et al.

4.2 Pretraining the Generator and the Discriminator

When training GANs, it is desirable for the generator to emit sharp, realistic, diverse images. Emit-
ting only a small set of images would indicate the generator’s function does not approximate the
underlying distribution well. To achieve these goals, and to enable efficient training, we chose the
Deep Convolutional GAN, a minimalistic architecture with a small number of parameters [62]. In
particular, this architecture is known for its ability to train generators that can emit sharp, realistic
images.

We then explored a variety of options for the generator’s latent space and output dimensionality,
as well as the number of weights in bothG and D (via adjusting the depth of filters). We eventually
found that a latent space of [−1, 1]25 (i.e., 25-dimensional vectors of real numbers between −1
and 1) and output images of 64 × 176 pixels produced the best-looking, diverse results. The final
architectures of G and D are reported in Figure 3.

To ensure that attacks converged quickly, we initializedG andD to a state in which the generator
can already produce real-looking images of eyeglasses. To do so, we pretrained G and D for 200
epochs and stored them to initialize later runs of Algorithm 1.4 Moreover, we used Salimans et al.’s
recommendation and trained D on soft labels [65]. Specifically, we trained D to emit 0 on samples
originating from the generator and 0.9 (instead of 1) on real examples. Figure 4 presents a couple
of eyeglasses emitted by the pretrained generator.

4.3 DNNs for Face Recognition

We evaluated our attacks against four DNNs of two architectures. Two of the DNNs were built on
the Visual Geometry Group (VGG) neural network [59]. The original VGG DNN exhibited state-
of-the-art results on the Labeled Faces in the Wild (LFW) benchmark, with 98.95% accuracy for
face verification [32]. The VGG architecture contains a large number of weights (the original DNN
contains about 268.52 million parameters). The other two DNNs were built on the OpenFace neural
network, which uses the Google FaceNet architecture [1]. OpenFace’s main design consideration is
to provide high accuracy with low training and prediction times so that the DNN can be deployed
on mobile and IoT devices. Hence, the DNN is relatively compact, with 3.74 million parameters,
but nevertheless achieves near-human accuracy on the LFW benchmark (92.92%).

We trained one small and one large face-recognition DNN for each architecture. Since we
wanted to experiment with physically realizable dodging and impersonation, we trained the DNNs
to recognize a mix of subjects available to us locally and celebrities of whom we could acquire im-
ages for training. The small DNNs were trained to recognize five subjects from our research group
(three females and two males) and five celebrities from the PubFig dataset [40]: Aaron Eckhart,
Brad Pitt, Clive Owen, Drew Barrymore, and Milla Jovovich. We call the small DNN of the VGG
and OpenFace architectures VGG10 and OF10. The large DNNs, termed VGG143 and OF143, were
trained to recognize 143 subjects. Three of the subjects were members of our group, and 140 were
celebrities with images in PubFig’s evaluation set. In training, we used about 40 images per subject.

Training the VGG Networks. The original VGG network takes a 224 × 224 aligned face image
as input and produces a highly discriminative face descriptor (i.e., vector representation of the
face) of 4,096 dimensions. Two descriptors of images of the same person are designed to be closer
to each other in Euclidean space than two descriptors of different people’s images. We used the
descriptors to train two simple neural networks that map face descriptors to probabilities over the
set of identities. In this manner, the original VGG network effectively acted as a feature extractor.

4For training, we used the Adam optimizer [38] and set the learning rate to 2e−4, the mini-batch size to 260, β1 to 0.5, and
β2 to 0.999.
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Fig. 3. Architectures of the neural networks used in this work. Inputs that are intermediate (i.e., received
from feature-extraction DNNs) have dotted backgrounds. Deconv refers to transposed convolution and FC

to fully connected layer. N -simplex refers to the set of probability vectors of N dimensions, and the 128-
sphere denotes the set of real 128-dimensional vectors lying on the Euclidean unit sphere. All convolutions
and deconvolutions in G and D have strides and paddings of two. The detector’s convolutions have strides
of two and padding of one. The detector’s max-pooling layer has a stride of two.
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Fig. 4. Examples of eyeglasses emitted by the generator (left) and similar eyeglasses from the training set
(right).

Table 1. Performance of the Face-recognition DNNs

SR naïve SR naïve

Model acc. dodge impers. thresh. TPR FPR

VGG10 100% 3% 0% 0.92 100% 0%
VGG143 98% 5% 0% 0.82 98% 0%
OF10 100% 14% 1% 0.55 100% 0%
OF143 86% 22% <1% 0.91 59% 2%

We report the accuracy, the success rate (SR) of naïve dodging and imperson-
ation (likelihood of naïve attackers to be misclassified arbitrarily or as a priori

chosen targets), the threshold to balance correct and false classifications, the
true-positive rate (TPR; how often the correct class is assigned a probability
above the threshold), and the false-positive rate (FPR; how often a wrong class
is assigned a probability above the threshold).

This is a standard training approach, termed transfer learning, which is commonly used to train
high-performing DNNs using ones that have already been trained to perform a related task [80].

The architectures of the VGG-derived neural networks are provided in Figure 3. They consist
of fully connected layers (i.e., linear separators) connected to a softmax layer that turns the linear
separators’ outputs into probabilities. We trained the networks using the standard technique of
minimizing cross-entropy loss [26]. After training, we connected the trained neural networks to
the original VGG network to construct end-to-end DNNs that map face images to identities.

An initial evaluation of VGG10 and VGG143 showed high performance. To verify that the DNNs
cannot be easily misled, we tested them against naïve attacks by attaching eyeglasses emitted
by the pretrained (non-adversarial) generator to test images. We found that impersonations of
randomly picked targets are unlikely—they occur with 0.79% chance for VGG10 and <0.01% for
VGG143. However, we found that dodging would succeed with non-negligible chance: 7.81% of the
time against VGG10 and 26.87% against VGG143. We speculated that this was because the training
samples for some subjects never included eyeglasses. To make the DNNs more robust, we aug-
mented their training data following adversarial training techniques [41]: For each image initially
used in training, we added two variants with generated eyeglasses attached. We also experimented
with using more variants but found no additional improvement. Also following Kurakin et al., we
included 50% raw training images and 50% augmented images in each mini-batch during train-
ing [41].

Evaluating VGG10 and VGG143 on held-out test sets after training, we found that they achieved
100% and 98% accuracy, respectively. In addition, the success of naïve dodging was at most 4.60%
and that of impersonation was below 0.01%. Finally, to maintain a high level of security, it is im-
portant to minimize the DNNs’ false positives [34]. One way to do so is by setting a criteria on
the DNNs’ output to decide when it should be accepted. We were able to find thresholds for the
probabilities emitted by VGG10 and VGG143 such that their accuracies remained 100% and 98%,
while the false-positive rates of both DNNs were 0%. The performance of the DNNs is reported in
Table 1.
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Training the OpenFace Networks. The original OpenFace network takes a 96 × 96 aligned face
image as input and outputs a face descriptor of 128 dimensions. Similar to the VGG networks, the
descriptors of images of the same person are close in Euclidean space, while the descriptors of
different people’s images are far. Unlike VGG, the OpenFace descriptors lie on a unit sphere.

We again used transfer learning to train the OpenFace networks. We first attempted to train
neural networks that map the OpenFace descriptors to identities using architectures similar to
the ones used for the VGG DNNs. We found these neural networks to achieve competitive ac-
curacies. Similarly to the VGG DNNs, they were also vulnerable to naïve dodging attempts,
but unlike the VGG DNNs, straightforward data augmentation did not improve their robust-
ness. We believe this may stem from limitations of classifying data on a sphere using linear
separators.

To improve the robustness of the DNNs, we increased their depth by prepending a fully con-
nected layer followed by a hyperbolic-tangent (tanh) layer (see Figure 3). This architecture was
chosen as it performed the best of different ones we experimented with. We also increased the
number of images we augmented in training to 10 (per image in the training set) for OF10 and
to 100 for OF143. The number of images augmented was selected such that increasing it did not
further improve robustness against naïve attacks. Similarly to the VGG networks, we trained with
about 40 images per subject, and included 50% raw images and 50% augmented images in training
mini-batches.

We report the performance of the networks in Table 1. OF10 achieved 100% accuracy, while
OF143 achieved 85.50% accuracy (comparable to Amos et al.’s finding [1]). The OpenFace DNNs
were more vulnerable to naïve attacks than the VGG DNNs. For instance, OF10 failed against
14.10% of the naïve dodging attempts and 1.36% of the naïve impersonation attempts. We believe
that the lower accuracy and higher susceptibility of the OpenFace DNNs compared to the VGG
DNNs may stem from the limited capacity of the OpenFace network induced by the small number
of parameters.

Training an Attack Detector. In addition to the face-recognition DNNs, we trained a DNN to
detect attacks that target the VGG networks following the proposal of Metzen et al. [49]. We chose
this detector because it was found to be one of the most effective detectors against imperceptible
adversarial examples [12, 49]. We focused on VGG DNNs because no detector architecture was
proposed for detecting attacks against OpenFace-like architectures. To mount a successful attack
when a detector is deployed, it is necessary to simultaneously fool the detector and the face-
recognition DNN.

We used the architecture proposed by Metzen et al. (see Figure 3). For best performance, we
attached the detector after the fourth max-pooling layer of the VGG network. To train the de-
tector, we used 170 subjects from the original dataset used by Parkhi et al. for training the VGG
network [59]. For each subject we used 20 images for training. For each training image, we cre-
ated a corresponding adversarial image that evades recognition. We trained the detector for 20
epochs using the Adam optimizer with the training parameters set to standard values (learning
rate = 1e − 4, β1 = 0.99, β2 = 0.999) [38]. At the end of training, we evaluated the detector on 20
subjects who were not used in training, finding that it had 100% recall and 100% precision.

4.4 Implementation Details

We used the Adam optimizer to update the weights of D and G when running Algorithm 1. As
in pretraining, β1 and β2 were set to 0.5 and 0.999. We ran grid search to set κ and the learning
rate and found that a κ = 0.25 and a learning rate of 5e−5 gave the best tradeoff between success
in fooling the DNNs, inconspicuousness, and the algorithm’s runtime. The number of epochs was
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Table 2. Combinations of Domains, Attack Types, and Objectives Considered for Evaluation

Domain Type Objectives

Robustness vs.

Section Dig. Phys. Untarg. Targ. Inconspicuous. Aug. Detect. Print. Pose Lum. Universal. Transfer.

5.1 ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓

5.2 ✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

5.3 ✓ ✓ ✓ ✓ ✓ ✓

5.4 ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓

✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

For each experimental section, we mark the combinations of domains (digital or physical) in which the attack was tested, the
attack types (untargeted or targeted) tested, and the objectives of the attack, chosen from inconspicuousness, robustness
(against training-data augmentation, detection, printing noise, pose changes, and luminance changes), universality, and
transferability.
Note that while we did not explicitly design the attacks to transfer between architectures, we found that they transfer
relatively well; see Section 5.4.

limited to at most one, as we found that the results the algorithm returned when running longer
were not inconspicuous.

The majority of our work was implemented in MatConvNet, a MATLAB toolbox for con-
volutional neural networks [75]. The OpenFace DNN was translated from the original imple-
mentation in Torch to MatConvNet. We released the implementation online: https://github.com/
mahmoods01/agns.

5 EVALUATING AGNS

We extensively evaluated AGNs as an attack method. In Section 5.1 we show that AGNs reliably
generate successful dodging and impersonation attacks in a digital environment, even when a
detector is used to prevent them. We show in Section 5.2 that these attacks can also be successful
in the physical domain. In Section 5.3, we demonstrate universal dodging, i.e., generating a small
number of eyeglasses that many subjects can use to evade recognition. We test in Section 5.4 how
well our attacks transfer between models. Table 2 summarizes the combinations of domains the
attacks were performed in, the attack types considered, and what objectives were aimed or tested
for in each experiment. While more combinations exist, we attempted to experiment with the most
interesting combinations under computational and manpower constraints. (For example, attacks
in the physical domain require significant manual effort, and universal attacks require testing with
more subjects than is feasible to test with in the physical domain.) In Section 5.5 we demonstrate
that AGNs can generate eyeglasses that are inconspicuous to human participants in a user study.
Finally, in Section 5.6 we show that AGNs are applicable to areas other than face recognition
(specifically, by fooling a digit-recognition DNN).

5.1 Attacks in the Digital Domain

In contrast to physically realized attacks, an attacker in the digital domain can exactly control
the input she provides to DNNs, since the inputs are not subject to noise added by physically
realizing the attack or capturing the image with a camera. Therefore, our first step is to verify that
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the attacker can successfully fool the DNNs in the digital domain, as failure in the digital domain
implies failure in the physical domain.

Experiment Setup. To evaluate the attacks in the digital domain, we selected a set of subjects
for each DNN from the subjects the DNNs were trained on: 20 subjects selected at random for
VGG143 and OF143 and all 10 subjects for VGG10 and OF10. In impersonation attacks, the targets
were chosen at random. To compute the uncertainty in our estimation of success, we repeated
each attack three times, each time using a different image of the attacker.

As baselines for comparison, we evaluated three additional attacks using the same setup. The
first attack, denoted CCS16, is our proposed attack from prior work [68]. The CCS16 attack itera-
tively modifies the colors of the eyeglasses until evasion is achieved. We ran the attack up to 300
iterations, starting from solid colors, and clipping the colors of the eyeglasses to the range [0, 1]
after each iteration to ensure that they lie in a valid range. The second attack is the PGD attack
of Madry et al. [45], additionally constrained to perturb only the area covered by the eyeglasses.
Specifically, we started from eyeglasses with solid colors and iteratively perturbed them for up to
100 iterations, while clipping the perturbations to have max-norm (i.e., L∞-norm) of at most 0.12.
We picked 100 and 0.12 as the maximum number of iterations and max-norm threshold, respec-
tively, as these parameters led to the most powerful attack in prior work [45]. The PGD attack can
be seen as a special case of the CCS16 attack, as the two attacks follow approximately the same
approach except that PGD focuses on a narrower search space by clipping perturbations more
aggressively to decrease their perceptibility. As we show below, the success rate of PGD was sig-
nificantly lower than of CCS16, suggesting that the clipping PGD performs may be too aggressive
for this application. Therefore, we evaluated a third attack, denoted �CCS16, in which we clipped
perturbations, but did so less aggressively than PGD. In �CCS16, we set the number of iterations
to 300, as in the CCS16 attack, and clipped perturbations to have max-norm of at most 0.47. We
selected 0.47 as the max-norm threshold as it is the lowest threshold that led to success rates at
fooling face recognition that are comparable to CCS16. In other words, this threshold gives the best
chance of achieving inconspicuousness without substantially sacrificing the success rates. To max-
imize the success rates of the three attacks, we optimized only for the evasion objectives (defined
via categorical cross-entropy), and ignored other objectives that are necessary to physically real-
ize the attacks (specifically, generating colors that can be printed and ensuring smooth transitions
between neighboring pixels [68]).

To test whether a detector would prevent attacks based on AGNs, we selected all ten subjects
for VGG10 and 20 random subjects for VGG143, each with three images per subject. We then
tested whether dodging and impersonation can be achieved while simultaneously evading the
detector. To fool the detector along with the face-recognition DNNs, we slightly modified the
objective from Equation (3) to optimize the adversarial generator such that the detector’s loss is
increased. In particular, the loss function we used was the difference between the probabilities
of the correct class (either “adversarial” or “non-adversarial” input) and the incorrect class. As
the vanilla PGD, CCS16, and �CCS16 attacks either failed to achieve success rates comparable to
AGNs or produced more conspicuous eyeglasses (Section 5.5), we did not extend them to fool the
detector.

We measured the success rate of attacks via two metrics. For dodging, we measured the percent-
age of attacks in which the generator emitted eyeglasses that (1) led the image to be misclassified
(i.e., the most probable class was not the attacker) and (2) kept the probability of the correct class
below 0.01 (much lower than the thresholds set for accepting any of the DNNs’ classifications; see
Table 1). For impersonation, we considered an attack successful if the attacker’s image was classi-
fied as the target with probability exceeding 0.92, the highest threshold used by any of the DNNs.
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Table 3. Results of Attacks in the Digital Environment

Without detector With detector

Dodging Impersonation Dodging Impers.

Model AGNs PGD �CCS16 CCS16 AGNs PGD �CCS16 CCS16 AGNs AGNs

VGG10 100±0% 37±10% 100±0% 100±0% 100±0% 10±5% 100±0% 100±0% 100±0% 100±0%

VGG143 100±0% 53±9% 100±0% 100±0% 88±5% 3±2% 82±5% 98±2% 100±0% 90±4%

OF10 100±0% 43±11% 100±0% 100±0% 100±0% 13±7% 87±9% 100±0% — —

OF143 100±0% 85±7% 100±0% 100±0% 90±4% 11±4% 78±6% 88±4% — —

We report the the mean success rate of attacks and the standard error when fooling the facial-recognition DNNs. To the
right, we report the mean success rates and standard errors of dodging and impersonation using AGNs when simultane-
ously fooling facial-recognition DNNs and a detector (see Section 4.3).

Fig. 5. An example of digital dodging. Left: An image of actor Owen Wilson (from the PubFig dataset [40]),
correctly classified by VGG143 with probability 1.00. Right: Dodging against VGG143 using AGN’s output
(probability assigned to the correct class <0.01).

When using the detector, we also required that the detector deemed the input non-adversarial with
probability higher than 0.5.

Experiment Results. Table 3 summarizes the results of the digital-environment experiments.
All dodging attempts using AGNs succeeded; Figure 5 shows an example. As with dodging, all
impersonation attempts using AGNs against the small DNNs (VGG10 and OF10) succeeded. A few
attempts against the larger DNNs failed, suggesting that inconspicuous impersonation attacks may
be more challenging when the DNN recognizes many subjects, although attacks succeeded at least
88% of the time.

Differently from AGNs, the success of PGD was limited—its success rates at dodging ranged
from 37% to 85%, and its success rates at impersonation were below 13%. This suggests that the
clipping performed by PGD may be too aggressive. The CCS16 and �CCS16 attacks achieved success
rates comparable to AGNs at both dodging and impersonation. Unlike for AGNs, in this set of ex-
periments the high success rates of the CCS16 and �CCS16 attacks were achieved by only attempting
to dodge or impersonate (i.e., fool the classifier), while ignoring other objectives, such as generat-
ing colors that can be printed (previously achieved by minimizing the so-called non-printability
score [68]). For physically realized attacks, evaluated in Section 5.2, satisfying these additional ob-
jectives is necessary for the CCS16 and �CCS16 attacks to succeed; there, however, measurements
suggest that AGNs capture the inconspicuousness and realizability objectives more effectively.

Using a detector did not thwart the AGN attacks: Success rates for dodging and impersonation
were similar to when a detector was not used. However, using a detector reduced the inconspicu-
ousness of attacks (see Section 5.5).

We further tested whether attackers can be more successful by using eyeglasses of different
shapes: We trained AGNs to generate eyeglasses of six new shapes and tested them against VGG143
and OF143. Three of the new shapes achieved comparable performance to the original shape
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(shown in Figure 5), but the overall success rates did not improve. Nevertheless, it would be useful
to explore whether using variety of eyeglass shapes can enhance the inconspicuousness of attacks
in practice.

5.2 Attacks in the Physical Domain

Attackers in the physical domain do not have complete control over the DNN’s input: Slight
changes in the attacker’s pose, expression, distance from the camera, and illumination may dra-
matically change the concrete values of pixels. Practical attacks need to be robust against such
changes. We took three additional measures to make the attacks more robust.

First, to train adversarial generators that emit images of eyeglasses that lead to more than one
of the attacker’s images to be misclassified, we used multiple images of the attacker in training the
generator. Namely, we set X in Algorithm 1 to be a collection of the attacker’s images. As a result,
the generators learned to maximize LossF for different images of the attacker.

Second, to make the attacks robust to changes in pose, we trained the adversarial generator
to minimize LossF over multiple images of the attacker wearing the eyeglasses. To align the eye-
glasses to the attacker’s face, we created and printed a three-dimensional (3D) model of eyeglasses
with frames that have the same silhouette as the 2D eyeglasses emitted by the generator (us-
ing code from GitHub [11]). We added tracking markers—specifically positioned green dots—to
the 3D-printed eyeglasses. The attacker wore the eyeglasses when capturing training data for the
generator. We then used the markers to find a projective alignment, θx , of the eyeglasses emitted
by the generator to the attacker’s pose in each image. The generator was subsequently trained to

minimize LossF

(
x + θx (G (z))

)
for different images of the attacker (x ∈ X ).

Third, to achieve robustness to varying illumination conditions, we modeled how light intensity
(luminance) affects eyeglasses and incorporated the models in AGN training. Specifically, we used
the Polynomial Texture Maps approach [46] to estimate degree-3 polynomials that map eyeglasses’
RGB values under baseline luminance to values under a specific luminance. In the forward pass of
Algorithm 1, before digitally attaching eyeglasses to an attacker’s image of certain luminance, we
mapped the eyeglasses’ colors to match the image’s luminance. In the backward pass, the errors
were back-propagated through the polynomials before being back-propagated through the gener-
ator to adjust its weights. In this way, the texture-map polynomials enabled us to digitally estimate
the effect of lighting on the eyeglasses.

Experiment Setup. To evaluate the physically realized attacks, three subjects from our team acted
as attackers: SA (the first author), a Middle-Eastern male in his mid-20s; SB (the third author), a
white male in his 40s; and SC (the second author), a South-Asian female in her mid-20s. Each
subject attempted both dodging and impersonation against each of the four DNNs (which were
trained to recognize them, among others). The data used for training and evaluating the physically
realized attacks were collected from a room on Carnegie Mellon University’s Pittsburgh campus
using a Canon T4i camera. To control the illumination more accurately, we selected a room with
a ceiling light but no windows on exterior walls.

In a first set of experiments, we evaluated the attacks under varied poses. To train the adversarial
generators, we collected 45 images of each attacker (the setX in Algorithm 1) while he or she stood
a fixed distance from the camera, kept a neutral expression, and moved his or her head up-down,
left-right, and in a circle. Each generator was trained for at most one epoch, and training stopped
earlier if the generator could emit eyeglasses that, for dodging, led the mean probability of the
correct class to fall below 0.005, or, for impersonation, led the mean probability of the target class
to exceed 0.990. For impersonation, we picked the target at random per attack.
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To physically realize the attacks, we printed selected eyeglass patterns created by the generator
on Epson Ultra Premium Glossy paper, using a commodity Epson XP-830 printer, and affixed them
to the 3D-printed eyeglasses. Since each generator can emit a diverse set of eyeglasses, we (dig-
itally) sampled 48 outputs (qualitatively, this amount seemed to capture the majority of patterns
that the generators could emit) and kept the most successful one for dodging or impersonation in
the digital environment (i.e., the one that led to the lowest mean probability assigned the attacker
or the highest mean probability assigned to the target, respectively).

We evaluated the attacks by collecting videos of the attackers wearing the 3D-printed eyeglasses
with the adversarial patterns affixed to their front. Again, the attackers were asked to stand a fixed
distance from the camera, keep a neutral expression, and move their heads up-down, left-right, and
in a circle. We extracted every third frame from each video. This resulted in 75 frames, on average,
per attack. We then classified the extracted images using the DNNs targeted by the attacks. For
dodging, we measured success by the fraction of frames that were classified as anybody but the
attacker, and for impersonation by the fraction of frames that were classified as the target. In
some cases, impersonation failed—mainly due to the generated eyeglasses not being realizable, as
many of the pixels had extreme values (close to RGB = [0,0,0] or RGB = [1,1,1]). In such cases, we
attempted to impersonate another (randomly picked) target.

We measured the head poses (i.e., pitch, yaw, and roll angles) of the attackers in training images
using a state-of-the-art tool [7]. On average, head poses covered 13.01◦ of pitch (up-down direc-
tion), 17.11◦ of yaw (left-right direction), and 4.42◦ of roll (diagonal direction). This is similar to the
mean difference in head pose between pairs of images randomly picked from the PubFig dataset
(11.64◦ of pitch, 15.01◦ of yaw, and 6.51◦ of roll).

As a baseline to compare to, we repeated the dodging and impersonation attempts using our
prior attack [68], referred to by CCS16. Unlike experiments in the digital domain, we did not eval-
uate variants of the CCS16 attack where additional clipping is performed, as our experience in the
digital domain showed that clipping harms the success rate of attacks and fails to improve their
inconspicuousness (see Section 5.5).

In a second set of experiments, we evaluated the effects of changes to luminance. To this end, we
placed a lamp (with a 150W incandescent light bulb) about 45◦ to the left of the attacker, and used
a dimmer to vary the overall illuminance between ∼110lx and ∼850lx (comparable to difference
between a dim corridor and a bright chain store interior [6]). We crafted the attacks by training
the generator on 20 images of the attacker collected over five equally spaced luminance levels. In
training the generator, we used the polynomial texture models as discussed above. For imperson-
ation, we used the same targets as in the first set of experiments. We implemented the eyeglasses
following the same procedure as before, then collected 40 video frames per attack, split evenly
among the five luminance levels. In these experiments, the attackers again stood a fixed distance
from the camera but did not vary their pose. For this set of experiments, we do not compare with
our previous algorithm, as it was not designed to achieve robustness to changing luminance, and
informal experiments showed that it performed poorly when varying the luminance levels.

Experiment Results. Table 4 summarizes our results and Figure 6 shows examples of attacks in
the physical environment.

In the first set of experiments we varied the attackers’ pose. Most dodging attempts succeeded
with all video frames misclassified. Even in the worst attempt, 81% of video frames were misclas-
sified. Overall, the mean probability assigned to the correct class was at most 0.40, much below
the thresholds discussed in Section 4.3. For impersonation, one to four subjects had to be tar-
geted before impersonations succeeded, with an average of 68% of video frames (mis)classified as
the targets in successful impersonations. In two thirds of these attempts, >20% of frames were
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Table 4. Summary of Physical Realizability Experiments

Dodging results Impersonation results

DNN Subject AGNs p (sub.) CCS16 AGNs-L Target Attempts AGNs HC p (tar.) CCS16 AGNs-L

VGG10 SA 100% 0.06 0% 93% SD 1 100% 74% 0.93 0% 80%

SB 97% 0.09 98% 100% Milla Jovovich 2 88% 0% 0.70 63% 100%

SC 96% 0.10 100% 100% Brad Pitt 1 100% 96% 0.98 100% 100%

VGG143 SA 98% 0.17 0% 100% Alicia Keys 2 89% 41% 0.73 0% 70%

SB 100% <0.01 87% 100% Ashton Kutcher 2 28% 0% 0.22 0% 0%

SC 100% 0.03 82% 100% Daniel Radcliffe 2 3% 0% 0.04 0% 16%

OF10 SA 81% 0.40 0% 83% Brad Pitt 2 28% 23% 0.25 0% 50%

SB 100% 0.01 100% 100% Brad Pitt 2 65% 55% 0.58 43% 100%

SC 100% 0.01 100% 100% SD 1 98% 95% 0.83 67% 38%

OF143 SA 100% 0.09 36% 75% Carson Daly 1 60% 0% 0.41 0% 73%

SB 97% 0.05 97% 100% Aaron Eckhart 4 99% 25% 0.83 92% 100%

SC 100% <0.01 99% 100% Eva Mendes 2 53% 39% 0.67 3% 9%

For dodging, we report the success rate of AGNs (percentage of misclassified video frames), the mean probability assigned to
the correct class (lower is better), the success rate of the CCS16 attack [68], and the success rate of AGNs under luminance
levels higher than the baseline luminance level (AGNs-L). For impersonation, we report the target (SD is a member of
our group, an Asian female in the early 20s), the number of targets attempted until succeeding, the success rate of AGNs
(percentage of video frames classified as the target), the fraction of frames classified as the target with high confidence (HC;
above the threshold which strikes a good balance between the true and the false positive rate), the mean probability assigned
to the target (higher is better), the success rate of the CCS16 attack [68], and the success rate under varied luminance levels
excluding the baseline level (AGNs-L). Non-adversarial images of the attackers were assigned to the correct class.

Fig. 6. Examples of physically realized attacks. (a) SB (top) and SC (bottom) dodging against OF143. (b) SA

impersonating SD against VGG10. (c) SC impersonating actor Brad Pitt (by Marvin Lynchard / CC BY 2.0 /
cropped from https://goo.gl/Qnhe2X) against VGG10.
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misclassified with high confidence (again, using the thresholds from Section 4.3). This suggests
that even a conservatively tuned system would likely be fooled by some attacks.

We found that physical-domain evasion attempts using AGNs were significantly more success-
ful than attempts using the CCS16 algorithm. The mean success rate of dodging attempts was 45%
higher when using AGNs compared to prior work (97% vs. 67%; a paired t-test shows that the dif-
ference is statistically significant with p = 0.03). The difference in success rates for impersonation
was even larger. The mean success rate of impersonation attempts was 126% higher using AGNs
compared to prior work (70% vs. 31%; paired t-test shows that the difference is statistically signif-
icant with p < 0.01). Given these results, we believe that AGNs provide a better approach to test
the robustness of DNNs against physical-domain attacks than the CCS16 algorithm.

The second set of experiments shows that AGNs can generate attacks that are robust to changes
in luminance. On average, the dodging success rate was 96% (with most attempts achieving 100%
success rate), and the impersonation success rate was 61%. Both are comparable to success rates
under changing pose and fixed luminance. To evaluate the importance of modeling luminance to
achieve robustness, we measured the success rate of SA dodging against the four DNNs without

modeling luminance effects. This caused the average success rate of attacks to drop from 88% (the
average success rate of SA at dodging when modeling luminance) to 40% (marginally significant
according to a t-test, with p = 0.06). This suggests that modeling the effect of luminance when
training AGNs is essential to achieve robustness to luminance changes.

Last, we built a mixed-effects logistic regression model [60] to analyze how different factors, and
especially head pose and luminance, affect the success of physical-domain attacks. In the model,
the dependent variable was whether an image was misclassified, and the independent variables
accounted for the absolute value of pitch (up-down), yaw (left-right), and roll (tilt) angles of the
head in the image (measured with Baltrušaitis et al.’s tool [7]); the luminance level (normalized to
a [0,4] range); how close are the colors of the eyeglasses printed for the attack to colors that can
be produced by our printer (measured via the non-printability score defined in our prior work [68],
and normalized to a [0,1] range); the architecture of the DNN attacked (VGG or OpenFace); and
the size of the DNN (10 or 143 subjects). The model also accounted for the interaction between
angles and architecture, as well as the luminance and architecture.

To train the model, we used all the images we collected to test the attack in the physical domain.
The model’s R2 is 0.70 (i.e., it explains 70% of the variance in the data), indicating a good fit. The
parameter estimates are shown in Table 5. Luminance is not a statistically significant factor—i.e.,
the DNNs were equally likely to misclassify the images under the different luminance levels we
considered. In contrast, the face’s pose has a significant effect on misclassification. For the VGG
networks, each degree of pitch or yaw away from 0◦ reduced the likelihood of success by 0.94, on
average. Thus, an attacker who faced the camera at a pitch or yaw of ±10◦ was about 0.53 times
less likely to succeed than when directly facing the camera. Differently from the VGG networks,
for the OpenFace networks each degree of pitch away from 0◦ increased the likelihood of success
by 1.12, on average. Thus, an attacker facing the camera at a pitch of ±10◦ was about 3.10 times
more likely to succeed than when directly facing the camera. Overall, these results highlight the
attacks’ robustness to changes in luminance, as well as to small changes in pose away from frontal.

5.3 Universal Dodging Attacks

We next show that a small number of adversarial eyeglasses can allow successful dodging for the
majority of subjects, even when images of those subjects are not used in training the adversarial
generator.

We created the universal attacks by training the generator in Algorithm 1 on a set of images
of different people. Consequently, the generator learned to emit eyeglasses that caused multiple
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Table 5. Parameter Estimates for the Logistic Regression Model

Factor lg(odds) odds p-value

(intercept) <0.01 1.00 0.96
is.143.subjects.dnn −0.48 0.62 <0.01
is.openface.dnn 6.34 568.78 <0.01
abs(pitch) −0.06 0.94 <0.01
abs(yaw) −0.06 0.94 <0.01
abs(roll) 0.01 1.01 0.80
luminance 0.04 1.04 0.12
non-printability −1.09 0.34 <0.01
is.openface.dnn:luminance 0.38 1.48 0.14
is.openface.dnn:abs(pitch) 0.18 1.19 <0.01
is.openface.dnn:abs(yaw) −0.08 0.92 0.06
is.openface.dnn:abs(roll) −0.62 0.54 <0.01

Statistically significant factors are in bold.

ALGORITHM 2: Universal attacks (given many subjects)

Input: X , G, D, F (·), dataset, Z , Ne , sb ,κ, sc
Output: Gens // a set of generators

1 Gens← {};
2 clusters← clusters of size sc via k-means++;

3 for cluster ∈ clusters do

4 G ← Alg1(cluster,G,D, F , dataset,Z ,Ne , sb ,κ);

5 Gens ← Gens ∪ {G};
6 return Gens;

people’s images to be misclassified, not only one person’s. We found that when the number of
subjects was large, the generator started emitting conspicuous patterns that did not resemble real
eyeglasses. For such cases, we used Algorithm 2, which builds on Algorithm 1 to train several
adversarial generators, one per cluster of similar subjects. Algorithm 2 uses k-means++ [3] to create
clusters of size sc . Clustering was performed in Euclidian space using the features extracted from
the base DNNs (4,096-dimensional features for VGG, and 128-dimensional features for OpenFace;
see Section 4.3). The result was a set of generators that create eyeglasses that, cumulatively, (1) led
to the misclassification of a large fraction of subjects and (2) appeared more inconspicuous (as
judged by members of our team) than when training on all subjects combined. The key insight
behind the algorithm is that it may be easier to find inconspicuous universal adversarial eyeglasses
for similar subjects than for vastly different subjects.

Experiment Setup. We tested the universal attacks against VGG143 and OF143 only, as the other
DNNs were trained with too few subjects to make meaningful conclusions. To train and evaluate
the generators, we selected two images for each of the subjects the DNNs were trained on—one
image for training and one image for testing. To make dodging more challenging, we selected
the two images that were classified correctly with the highest confidence by the two networks.
Specifically, we selected images such that the product of the probabilities both DNNs assigned to
the correct class was the highest among all the available images.

To explore how the number of subjects used to create the universal attacks affected performance,
we varied the number of (randomly picked) subjects with whose images we trained the adversarial
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Fig. 7. Universal dodging against VGG143 and OF143. The x-axis shows the number of subjects used to
train the adversarial generators. When the number of subjects is zero, a non-adversarial generator was used.
The y-axis shows the mean fraction of images misclassified (i.e., the dodging success rate). The whiskers
on the bars show the standard deviation of the success rate, computed by repeating each experiment five
times, each time with a different set of randomly picked subjects. The color of the bars denotes the number of
eyeglasses used, as shown in the legend. We evaluated each attack using 1, 2, 5, or 10 eyeglasses. For example,
the rightmost bar in Figure 7(b) indicates that an AGN trained with images of 100 subjects will generate
eyeglasses such that 10 pairs of eyeglasses will allow approximately 94% of subjects to evade recognition.
For ≤10 subjects, Algorithm 1 was used to create the attacks. For 50 and 100 subjects, Algorithm 2 was used.

generators. We averaged the success rate after repeating the process five times (each time selecting
a random set of subjects for training). When using ≥50 subjects for the universal attacks, we used
Algorithm 2 and set the cluster size to 10.

Additionally, we explored how the number of adversarial eyeglasses affected the success of the
attack. We did so by generating 100 eyeglasses from each trained generator or set of generators
and identifying the subsets (of varying size) that led the largest fraction of images in the test set to
be misclassified. Finding the optimal subsets is NP-hard, and so we used an algorithm that provides
a (1 − 1

e
)-approximation of the optimal success rate [55].

Experiment Results. Figure 7 summarizes the results. Universal attacks are indeed possible: gen-
erators trained to achieve dodging using a subset of subjects produced eyeglasses that led to dodg-
ing when added to images of subjects not used in training. The effectiveness of dodging depends
chiefly on the number of subjects used in training and, secondarily, the number of eyeglasses gen-
erated. In particular, training a generator (set) on 100 subjects and using it to create 10 eyeglasses
was sufficient to allow 92% of remaining subjects to dodge against VGG143 and 94% of remain-
ing subjects to dodge against OF143. Even training on five subjects and generating five eyeglasses
was sufficient to allow more than 50% of the remaining users to dodge against either network.
OF143 was particularly more susceptible to universal attacks than VGG143 when a small number
of subjects was used for training, likely due to its overall lower accuracy.

5.4 Transferability of Dodging Attacks

Transferability of attacks has been shown to be effective in fooling models to which adversaries
do not have access (e.g., Reference [58]). In our case, although this is not an explicit goal of our
attacks, attackers with access to one DNN but not another may attempt to rely on transferability
to dodge against the second DNN. In this section, we explore whether dodging against DNNs of
one architecture leads to successful dodging against DNNs of a different architecture.

Using the data from Section 5.1, we first tested whether dodging in the digital environment
successfully transferred between architectures (see Table 6). We found that attacks against the
OpenFace architecture successfully fooled the VGG architecture in only a limited number of
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Table 6. Transferability of Dodging in the Digital Domain

�����From
To

VGG10 OF10
VGG10 — 63.33%
OF10 10.00% —

�����From
To

VGG143 OF143
VGG143 — 88.33%
OF143 11.67% —

Each table shows how likely it is for a generator used for dodging against one network (rows) to
succeed against another network (columns).

Table 7. Transferability of Dodging in the Physical Domain

�����From
To

VGG10 OF10
VGG10 — 43.84%
OF10 27.77% —

�����From
To

VGG143 OF143
VGG143 — 51.78%
OF143 19.86% —

We classified the frames from the physically realized attacks using DNNs different from the ones for
which the attacks were crafted. Each table shows how likely it is for frames that successfully dodged
against one network (rows) to succeed against another network (columns).

attempts (10–12%). In contrast, dodging against VGG led to successful dodging against OpenFace
in at least 63% of attempts.

Universal attacks seemed to transfer between architectures with similar success. Using attacks
created with 100 subjects and 10 eyeglasses from Section 5.3, we found that 82% (±3% standard
deviation) of attacks transferred from VGG143 to OF143, and 26% (±4% standard deviation) trans-
ferred in the other direction.

The transferability of dodging attacks in the physical environment between architectures fol-
lowed a similar trend (see Table 7). Successful attacks transferred less successfully from the Open-
Face networks to the VGG networks (20–28%) than in the other direction (44–52%).

5.5 A Study to Measure Inconspicuousness

Methodology. To evaluate inconspicuousness of eyeglasses generated by AGNs we carried out
an online user study. Participants were told that we were developing an algorithm for designing
eyeglass patterns, shown a set of eyeglasses, and asked to label each pair as either algorithmically
generated or real. Each participant saw 15 “real” and 15 attack eyeglasses in random order. All
eyeglasses were the same shape and varied only in their coloring. The “real” eyeglasses were ones
used for pretraining the AGNs (see Section 4.1). The attack eyeglasses were generated using either
AGNs, the CCS16 attack, or the �CCS16 attack.

Neither “real” nor attack eyeglasses shown to participants were photo-realistically or three-
dimensionally rendered. So, we consider attack glasses to have been inconspicuous to participants
not if they were uniformly rated as real (which even “real” glasses were not, particularly when
attack glasses were inconspicuous), but rather if the rate at which participants deemed them as real
does not differ significantly regardless of whether they are “real” eyeglasses or attack eyeglasses.

Given two sets of eyeglasses (e.g., a set of attack glasses and a set of “real” glasses), we tested
whether one is more inconspicuous via the χ 2 test of independence [47], and conservatively cor-
rected for multiple comparisons using the Bonferroni correction. We compared the magnitude of
differences using the odds-ratio measure: The odds of eyeglasses in the first group being marked
as real divided by the odds of eyeglasses in the second group being marked as real. The higher
(respectively, lower) the odds ratios are from 1, the higher (respectively, lower) was the likelihood
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Table 8. Relative Realism of Selected Sets of Eyeglasses

Odds

Comparison (group 1 vs. group 2) ratio p-value

Real (61%) All AGNs (47%) 1.71 <0.01
AGNs digital (49%) CCS16 digital [68] (31%) 2.19 <0.01

AGNs digital (49%) �CCS16 digital (30%) 2.24 <0.01
AGNs physical (45%) CCS16 physical [68] (34%) 1.59 <0.01
AGNs:
digital (49%) physical (45%) 1.19 0.26
digital (49%) digital with detector (43%) 1.28 0.02
digital dodging (52%) universal dodging (38%) 1.80 <0.01

For each two sets compared, we report in parentheses the fraction of eyeglasses per set
that were marked as real by study participants, the odds ratios between the groups, and
the p-value of the χ 2 test of independence; e.g., odds ratio of 1.71 means that eyeglasses
are ×1.71 as likely to be selected as real if they are in the first set than if they are in the
second.

Fig. 8. The percentage of times in which eyeglasses from different sets were marked as real. The horizontal
60% line is highlighted to mark that the top half of “real” eyeglasses were marked as real at least 60% of the
time.

that eyeglasses from the first group were selected as real compared to eyeglasses from the second
group.

We recruited 301 participants in the U.S. through the Prolific crowdsourcing service.5 Their
ages ranged from 18 to 73, with a median of 29. 51% of participants specified being female and
48% male (1% chose other or did not answer). Our study took 3 minutes to complete on average
and participants were compensated $1.50. The study design was approved by Carnegie Mellon
University’s ethics review board.

Results. Table 8 and Figure 8 show comparisons between various groups of eyeglasses, as well
as the percentage of time participants marked different eyeglasses as real. “Real” eyeglasses were
more realistic than AGN-generated ones (×1.71 odds ratio). This is expected, given the additional

5https://prolific.ac.
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objectives that attack eyeglasses are required to achieve. However, AGNs were superior to other
attacks. Both for digital and physical attacks, eyeglasses created by AGNs were more realistic than
those created by our previous CCS16 attack [68] (×2.19 and ×1.59 odds ratio, respectively). Even
limiting the max-norm of the perturbations did not help—AGNs generated eyeglasses that were
more likely to be selected as real than the �CCS16 attack (×2.24 odds ratio).

Perhaps most indicative of inconspicuousness in practice is that many AGN-generated eye-
glasses were as realistic as “real” eyeglasses. The most inconspicuous 26% of eyeglasses emitted by
AGNs for digital-environment attacks were on average deemed as real as the most inconspicuous
50% of “real” eyeglasses; in each case participants marked these eyeglasses as real >60% of the
time. Physical attacks led to less inconspicuous eyeglasses; however, the 14% most inconspicuous
were still marked as real at least 60% of the time (i.e., as real as the top 50% of “real” eyeglasses).

Other results match intuition—the more difficult the attack, the bigger the impact on conspic-
uousness. Digital attack glasses that do not try to fool a detector are less conspicuous than ones
that fool a detector (×1.28 odds ratio), and individual dodging is less conspicuous than univer-
sal dodging (×1.80 odds ratio). Digital attack glasses had higher odds of being selected as real
than physical attack glasses (×1.19 odds ratio), but the differences were not statistically significant
(p-value = 0.26).

5.6 AGNs against Digit Recognition

We next show that AGNs can be used in domains besides face recognition. Specifically, we use
AGNs to fool a state-of-the-art DNN for recognizing digits, trained on the MNIST dataset [43],
which contains 70,000 28 × 28-pixel images of digits.

Experiment Setup. First, we trained a DNN for digit recognition using the architecture and train-
ing code of Carlini and Wagner [13]. We trained the DNN on 55,000 digits and used 5,000 for
validation during training time. The trained DNN achieved 99.48% accuracy on the test set of
10,000 digits. Next, we pretrained 10 GANs to generate digits, one for each digit. Each generator
was trained to map inputs randomly sampled from [−1, 1]25 to 28 × 28-pixel images of digits. We
again used the Deep Convolutional GAN architecture [62]. Starting from the pretrained GANs,
we trained AGNs using a variant of Algorithm 1 to produce generators that emit images of digits
that simultaneously fool the discriminator to be real and are misclassified by the digit-recognition
DNN.

Unlike prior attacks, which typically attempted to minimally perturb specific benign inputs to
cause misclassification (e.g., References [13, 19, 27, 57, 61, 77]), the attack we propose does not
assume that a benign input is provided, nor does it attempt to produce an attack image minimally
different from a benign image. Hence, a comparison with prior attacks would not be meaningful.

Experiment Results. The AGNs were able to output arbitrarily many adversarial examples that
appear comprehensible to human observers, but are misclassified by the digit-recognition DNN
(examples are shown in Figure 9). As a test, we generated 5,004 adversarial examples that all get
misclassified by the digit-recognition DNN. The adversarial examples were produced by first gen-
erating 600,000 images using the adversarial generators (60,000 per generator). Out of all samples,
the ones that were misclassified by the DNN (8.34% of samples) were kept. Out of these, only the
digits that were likely to be comprehensible by humans were kept: the automatic filtering process
to identify these involved computing the product of the discriminator’s output (i.e., how realistic
the images were deemed by the discriminator) and the probability assigned by the digit-recognition
DNN to the correct class and keeping the 10% of digits with the highest product.

Differently from traditional attacks on digit recognition (e.g., Reference [13]), these attack im-
ages are not explicitly designed for minimal deviation from specific benign inputs; rather, their
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Fig. 9. An illustration of attacks generated via AGNs. Left: A random sample of digits from MNIST. Middle:
Digits generated by the pretrained generator. Right: Digits generated via AGNs that are misclassified by the
digit-recognition DNN.

advantage is that they can be substantially different (e.g., in Euclidean distance) from training im-
ages. We measured the diversity of images by computing the mean Euclidean distance between
pairs of digits of the same type; for attack images, the mean distance was 8.34, while for the training
set it was 9.25.

A potential way AGNs can be useful in this domain is adversarial training. For instance, by
augmenting the training set with the 5,004 samples, one can extend it by almost 10%. This approach
can also be useful for visualizing inputs that would be misclassified by a DNN, but are otherwise
not available in the training or testing sets.

6 DISCUSSION AND CONCLUSION

In this article, we contributed a methodology that we call AGNsto generate adversarial examples to
fool DNN-based classifiers while meeting additional objectives. We focused on objectives imposed
by the need to physically realize artifacts that, when captured in an image, result in misclassifica-
tion of the image. Using the physical realization of eyeglass frames to fool face recognition as our
driving example, we demonstrated the use of AGNs to improve robustness to changes in imaging
conditions (lighting, angle, etc.) and even to specific defenses; inconspicuousness to human on-
lookers; and scalability in terms of the number of adversarial objects (eyeglasses) needed to fool
DNNs in different contexts. AGNs generated adversarial examples that improved upon prior work
in all of these dimensions, and did so using a general methodology.

Our work highlights a number of features of AGNs. They are flexible in their ability to ac-
commodate a range of objectives, including ones that elude precise specification, such as incon-
spicuousness. In principle, given an objective that can be described through a set of examples,
AGNs can be trained to emit adversarial examples that satisfy this objective. Additionally, AGNs
are general in being applicable to various domains, which we demonstrated by training AGNs
to fool classifiers for face and (handwritten) digit recognition. We expect that they would gener-
alize to other applications, as well. For example, one may consider using AGNs to fool DNNs for
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street-sign recognition by training the generator to emit adversarial examples that resemble street-
sign images collected from the internet.

One advantage of AGNs over other attack methods (e.g., References [27, 73]) is that they can
generate multiple, diverse, adversarial examples for a given benign sample. A diverse set of adver-
sarial examples can be useful for evaluating the robustness of models. Moreover, such adversarial
examples may be used to defend against attacks (e.g., by incorporating them in adversarial train-
ing [41]).
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