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Abstract

Federated learning distributes model training among a multitude of agents, who, guided by privacy
concerns, perform training using their local data but share only model parameter updates, for iterative
aggregation at the server. In this work, we explore the threat of model poisoning attacks on federated
learning initiated by a single, non-colluding malicious agent where the adversarial objective is to cause
the model to mis-classify a set of chosen inputs with high confidence. We explore a number of strate-
gies to carry out this attack, starting with simple boosting of the malicious agent’s update to overcome
the effects of other agents’ updates. To increase attack stealth, we propose an alternating minimization
strategy, which alternately optimizes for the training loss and the adversarial objective. We follow up by
using parameter estimation for the benign agents’ updates to improve on attack success. Finally, we use a
suite of interpretability techniques to generate visual explanations of model decisions for both benign and
malicious models, and show that the explanations are nearly visually indistinguishable. Our results indi-
cate that even a highly constrained adversary can carry out model poisoning attacks while simultaneously
maintaining stealth, thus highlighting the vulnerability of the federated learning setting and the need to
develop effective defense strategies.

1 Introduction

Federated learning [16] has recently emerged as a popular implementation of distributed stochastic opti-
mization for large-scale deep neural network training. It is formulated as a multi-round strategy in which
the training of a neural network model is distributed between multiple agents. In each round, a random
subset of agents, with local data and computational resources, is selected for training. The selected agents
perform model training and share only the parameter updates with a centralized parameter server, that
facilitates aggregation of the updates. Motivated by privacy concerns, the server is designed to have no vis-
ibility into an agents’ local data and training process. The aggregation algorithm used is usually weighted
averaging.

In this work, we exploit this lack of transparency in the agent updates, and explore the possibility of
an adversary controlling a small number of malicious agents (usually just 1) performing a model poisoning
attack. The adversary’s objective is to cause the jointly trained global model to misclassify a set of chosen
inputs with high confidence, i.e., it seeks to poison the global model in a targeted manner. Since the
attack is targeted, the adversary also attempts to ensure that the global model converges to a point with
good performance on the test or validation data We note that these inputs are not modified to induce
misclassification as in the phenomenon of adversarial examples [5} 26]. Rather, their misclassification is a
product of the adversarial manipulations of the training process. We focus on an adversary which directly
performs model poisoning instead of data poisoning [3],21},[17},27,[17,[13}[7,11] as the agents’ data is never
shared with the server. In fact, model poisoning subsumes dirty-label data poisoning in the federated
learning setting (see Section[6.1]for a detailed quantitative comparison).

Model poisoning also has a connection to a line of work on defending against Byzantine adversaries
which consider a threat model where the malicious agents can send arbitrary gradient updates [4} [8] [18]
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6} [29]] to the server. However, the adversarial goal in these cases is to ensure a distributed implementa-
tion of the Stochastic Gradient Descent (SGD) algorithm converges to ‘sub-optimal to utterly ineffective
models’[18] while the aim of the defenses is to ensure convergence. On the other hand, we consider adver-
saries aiming to only cause targeted poisoning. In fact, we show that targeted model poisoning is effective
even with the use of Byzantine resilient aggregation mechanisms in Section [4, Concurrent and indepen-
dent work [2] considers both single and multiple agents performing poisoning via model replacement at
convergence time. In contrast, our goal is to induce targeted misclassification in the global model even
when it is far from convergence while maintaining its accuracy for most tasks.

1.1 Contributions

We design attacks on federated learning that ensure targeted poisoning of the global model while ensuring
convergence. Our realistic threat model considers adversaries which only control a small number of mali-
cious agents (usually 1) and have no visibility into the updates that will be provided by the other agents.
All of our experiments are on deep neural networks trained on the Fashion-MNIST [28]] and Adult Censusﬂ
datasets.

Targeted model poisoning: In each round, the malicious agent generates its update by optimizing for a
malicious objective designed to cause targeted misclassification. However, the presence of a multitude of
other agents which are simultaneously providing updates makes this challenging. We thus use explicit
boosting of the malicious agent’s which is designed to negate the combined effect of the benign agents. Our
evaluation demonstrates that this attack enables an adversary controlling a single malicious agent to achieve
targeted misclassification at the global model with 100% confidence while ensuring convergence of the
global model for deep neural networks trained on both datasets.

Stealthy model poisoning: We introduce notions of stealth for the adversary based on accuracy checking
on the test/validation data and weight update statistics and empirically shoe that targeted model poisoning
with explicit boosting can be detected in all rounds with the use of these stealth metrics. Accordingly, we
modify the malicious objective to account for these stealth metrics to carry out stealthy model poisoning
which allows the malicious weight update to avoid detection for a majority of the rounds. Finally, we
propose an alternating minimization formulation that accounts for both model poisoning and stealth, and
enables the malicious weight update to avoid detection in almost all rounds.

Attacking Byzantine-resilient aggregation: We investigate the possibility of model poisoning when the
server uses Byzantine-resilient aggregation mechanisms such as Krum [4] and coordinate-wise median [29]]
instead of weighted averaging. We show that targeted model poisoning of deep neural networks with high
confidence is effective even with the use of these aggregation mechanisms.

Connections to data poisoning and interpretability: We show that standard dirty-label data poisoning
attacks [7]] are not effective in the federated learning setting, even when the number of incorrectly labeled
examples is on the order of the local training data held by each agent. Finally, we use a suite of interpretabil-
ity techniques to generate visual explanations of the decisions made by a global model with and without
a targeted backdoor. Interestingly, we observe that the explanations are nearly visually indistinguishable,
exposing the fragility of these techniques.

2 Federated Learning and Model Poisoning

In this section, we formulate both the learning paradigm and the threat model that we consider throughout
the paper. Operating in the federated learning paradigm, where model weights are shared instead of data,
gives rise to the model poisoning attacks that we investigate.

2.1 Federated Learning

The federated learning setup consists of K agents, each with access to data D;, where |D;| = [;. The total
number of samples is } ;/; = I. Each agent keeps its share of the data (referred to as a shard) private, i.e.
D; = {x}---x, } is not shared with the server S. The server is attempting to train a classifier f with global
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parameter vector wg € R”, where # is the dimensionality of the parameter space. This parameter vector is
obtained by distributed training and aggregation over the K agents with the aim of generalizing well over
Diest, the test data. Federated learning can handle btoh i.i.d. and non-i.i.d partitioning of training data.

At each time step t, a random subset of k agents is chosen for synchronous aggregation [16]. Every
agent i € [k], minimizes E] the empirical loss over its own data shard D;, by starting from the global weight

vector wi; and running an algorithm such as SGD for E epochs with a batch size of B. At the end of its

t+1 | . 2 | t ;

! 51‘ =w; —wg, which

is sent back to the server. To obtain the global weight vector th“ for the next iteration, any aggregation

mechanism can be used. In Section (3| we use weighted averagi based aggregation for our experiments:
4

run, each agent obtains a local weight vector w:"" and computes its local update

wil=wl + Yic[k] a;6!*!, where ZT’ =a;and Y ; a; = 1. In Section |4} we study the effect of our attacks on the

Byzantine-resilient aggregation mechanisms ‘Krum’ [4] and coordinate-wise median [29].

2.2 Threat Model: Model Poisoning

Traditional poisoning attacks deal with a malicious agent who poisons some fraction of the data in order to
ensure that the learned model satisfies some adversarial goal. We consider instead an agent who poisons
the model updates it sends back to the server.

Attack Model: We make the following assumptions regarding the adversary: (i) they control exactly one
non-colluding, malicious agent with index m (limited effect of malicious updates on the global model); (ii)
the data is distributed among the agents in an i.i.d fashion (making it easier to discriminate between benign
and possible malicious updates and harder to achieve attack stealth); (iii) the malicious agent has access
to a subset of the training data D,, as well as to auxiliary data D,,, drawn from the same distribution as
the training and test data that are part of its adversarial objective. Our aim is to explore the possibility of a
successful model poisoning attack even for a highly constrained adversary.

Adversarial Goals: The adversary’s goal is to ensure the targeted misclassification of the auxiliary data by the
classifier learned at the server. The auxiliary data consists of samples {x;};_; with true labels {y;};_, that
have to be classified as desired target classes {7;};_,, implying that the adversarial objective is

A(Dyy U Do W) =max ) 1[f(xi;wg) = 73] (1)

wh, £
G i=1

We note that in contrast to previous threat models considered for Byzantine-resilient learning, the ad-
versary’s aim is not to prevent convergence of the global model [29] or to cause it to converge to a bad
minimum [18]. Thus, any attack strategy used by the adversary must ensure that the global model converges
to a point with good performance on the test set. Going beyond the standard federated learning setting, it is
plausible that the server may implement measures to detect aberrant models. To bypass such measures,
the adversary must also conform to notions of stealth that we define and justify next.

2.3 Stealth metrics

Given an update from an agent, there are two critical properties that the server can check. First, the server
can verify whether the update, in isolation, would improve or worsen the global model’s performance on a
validation set. Second, the server can check if that update is very different statistically from other updates.
We note that neither of these properties is checked as a part of standard federated learning but we use these
to raise the bar for a successful attack.

Accuracy checking: The server checks the validation accuracy of w! = wgl + 6!, the model obtained by
adding the update from agent i to the current state of the global model. If the resulting model has a
validation accuracy much lower than that of the model obtained by aggregating all the other updates,
th\ ;= th_l +)_; 6!, the server can flag the update as being anomalous. For the malicious agent, this implies
that it must satisfy the following in order to be chosen at time step t:

Y LWl =pil - 1 f(xwhy) =9l < (2)

{Xjryj}EDtest

2approximately for non-convex loss functions since global minima cannot be guaranteed



where y; is a threshold the server defines to reject updates. This threshold determines how much perfor-
mance variation the server can tolerate and can be varied over time. A large threshold will be less effective
at identifying anomalous updates but an overly small one could identify benign updates as anomalous, due
to natural variation in the data and training process.

Weight update statistics: The range of pairwise distances between a particular update and the rest pro-
vides an indication of how different that update is from the rest when using an appropriate distance metric
d(-,-). In previous work, pairwise distances were used to define ‘Krum’ [4] but as we show in Section |4} its
reliance on absolute, instead of relative distance values, makes it vulnerable to our attacks. Thus, we rely
on the full range which can be computed for all agent updates and for an agent to be flagged as anomalous,
their range of distances must differ from the others by a server defined, time-dependent threshold «;. In
particular, for the malicious agent, we compute the range as R, = [min;e[x}\m d(ét,, 65),max,-€[k]\m d(st, 6;)]
Let Rin in, [\ ] and Rfmx,[k\m] be the minimum lower bound and maximum upper bound of the distance
ranges for the other benign agents among themselves. Then, for the malicious agent to not be flagged as
anomalous, we need that

1 1
max{|R}, — Rmin,[k\m]|’ IR, — anax’[k\mﬂ} < K. (3)

This condition ensures that the range of distances for the malicious agent and any other agent is not too
different from that for any two benign agents, and also controls the length of R,,. We find that it is also
instructive to compare the histogram of weight updates for benign and malicious agents, as these can be
very different depending on the attack strategy used. These provide a useful qualitative notion of stealth,
which can be used to understand attack behavior.

2.4 Experimental setup

We evaluate our attack strategies using two qualitatively different datasets. The first is an image dataset,
Fashion-MNIST [28]] which serves as a drop-in replacement for the commonly used MNIST dataset [14],
which is not representative of modern computer vision tasks. It consists of 28 x 28 grayscale images of
clothing and footwear items and has 10 output classes. The training set contains 60,000 data samples
while the test/validation set has 10,000 samples. For this dataset, we use a 3-layer Convolutional Neural
Network (CNN) with dropout as the model architecture. With centralized training, this model achieves
91.7% accuracy on the test set.

The second dataset is the UCI Adult Census datasetE] which has over 40,000 samples containing infor-
mation about adults from the 1994 US Census. The classification problem is to determine if the income for
a particular individual is greater (class ‘0’) or less (class ‘1’) than $50,000 a year. For this dataset, we use a
fully connected neural network achieving 84.8% accuracy on the test set [9] for the model architecture.

For both datasets, we study the case with the number of agents K set to 10 and 100. When k =10, all the
agents are chosen at every iteration, while with K =100, a tenth of the agents are chosen at random every
iteration. We run federated learning till a pre-specified test accuracy (91% for Fashion MNIST and 84% for
the Adult Census data) is reached or the maximum number of time steps have elapsed (40 for k = 10 and
50 for k = 100). In Section |3} for illustrative purposes, we mostly consider the case where the malicious
agent aims to mis-classify a single example in a desired target class (r = 1). For the Fashion-MNIST dataset,
the example belongs to class ‘5" (sandal) with the aim of misclassifying it in class ‘7’ (sneaker) and for the
Adult dataset it belongs to class ‘0" with the aim of misclassifying it in class ‘1’. We also consider the case
with r =10 (Appendix)

3 Strategies for Model Poisoning attacks
In this section, we use the adversarial goals laid out in the previous section to formulate the adversarial

optimization problem. We then show how explicit boosting can achieve targeted model poisoning. We
further explore attack strategies that add stealth and improve convergence.
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Figure 1: Targeted model poisoning attack for CNN on Fashion MNIST data. The total number of agents
is K = 10, including the malicious agents. All agents train their local models for 5 epochs with the appro-
priate objective.

3.1 Adversarial optimization setup

From Eq. [1} two challenges for the adversary are immediately clear. First, the objective represents a dif-
ficult combinatorial optimization problem so we relax Eq. [1|in terms of the cross-entropy loss for which
automatic differentiation can be used. Second, the adversary does not have access to the global parameter
vector wi, for the current iteration and can only influence it though the weight update &}, it provides to
the server S. So, it performs the optimization over Wtc;, which is an estimate of the value of wg based on all
the information Z}, available to the adversary. The objective function for the adversary to achieve targeted
model poisoning on the " iteration is

argmin L({x;, Ti};:l’th)’
5 (4)
st wh=g(Zh),

where g(-) is an estimator. For the rest of this section, we use the estimate Wi, = th_1 +a,,8!,, implying that
the malicious agent ignores the updates from the other agents but accounts for scaling at aggregation. This
assumption is enough to ensure the attack works in practice.

3.2 Targeted model poisoning for standard federated learning

The adversary can directly optimize the adversarial objective L({x;, 7;}/_,, W(;) with W, = wgl +a,,56%,. How-
ever, this setup implies that the optimizer has to account for the scaling factor «,, implicitly. In practice, we
find that when using a gradient-based optimizer such as SGD, explicit boosting is much more effective. The
rest of the section focuses on explicit boosting and an analysis of implicit boosting is deferred to Section [A]
of the Appendix.

Explicit Boosting: Mimicking a benign agent, the malicious agent can run E,, steps of a gradient-based op-

timizer starting from th_I to obtain W}, which minimizes the loss over {x;, 7;}/_,. The malicious agent then

obtains an initial update &, = W', —wtc_l. However, since the malicious agent’s update tries to ensure that

the model learns labels different from the true labels for the data of its choice (D,,y), it has to overcome the
effect of scaling, which would otherwise mostly nullify the desired classification outcomes. This happens
because the learning objective for all the other agents is very different from that of the malicious agent, es-
pecially in the i.i.d. case. The final weight update sent back by the malicious agent is then &/, = 15!, where
A is the factor by which the malicious agent boosts the initial update. Note that with W(, = th_1 +a,8!,

and A = ﬁ, then Wi, = w!,, implying that if the estimation was exact, the global weight vector should now

satisfy the malicious agent’s objective.
Results: In the attack with explicit boosting, the malicious agent runs E,, = 5 steps of the Adam optimizer
[12] to obtain é!,, and then boosts it by 0% = K. The results for the case with K = 10 for the Fashion MNIST
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Figure 2: Stealthy model poisoning for CNN on Fashion MNIST. We use A = 10 and p = le~* for the
malicious agent’s objective.

data are shown in Figure The attack is clearly successful at causing the global model to classify the
chosen example in the target class. In fact, after ¢ = 3, the global model is highly confident in its (incorrect)
prediction. Further, the global model converges with good performance on the validation set in spite of the
targeted poisoning for 1 example. Results for the Adult Census dataset (Section [B.1) demonstrate targeted
model poisoning is possible across datasets and models. Thus, the explicit boosting attack is able to achieve
targeted poisoning in the federated learning setting.

Performance on stealth metrics: While the targeted model poisoning attack using explicit boosting does
not take stealth metrics into account, it is instructive to study properties of the model update it generates.
Compared to the weight update from a benign agent, the update from the malicious agent is much sparser
and has a smaller range (Figure[Ib). In Figure[4} the spread of L, distances between all benign updates
and between the malicious update and the benign updates is plotted. For targeted model poisoning, both
the minimum and maximum distance away from any of the benign updates keeps decreasing over time
steps, while it remains relatively constant for the other agents. In Figure |2althe accuracy of the malicious
model on the validation data (Val. Acc. Mal (targeted poison)) is shown, which is much lower than the global
model’s accuracy. Thus, both accuracy checking and weight update statistics based detection is possible for
the targeted model poisoning attack.

3.3 Stealthy model poisoning

As discussed in Section [2.3] there are two properties which the server can use to detect anomalous updates:
accuracy on validation data and weight update statistics. In order to maintain stealth with respect to both
of these properties, the adversary can add loss terms corresponding to both of those metrics to the model
poisoning objective function from Eq. [4land improve targeted model poisoning. First, in order to improve
the accuracy on validation data, the adversary adds the training loss over the malicious agent’s local data
shard D,, (L(Dm,wg)) to the objective. Since the training data is i.i.d. with the validation data, this will
ensure that the malicious agent’s update is similar to that of a benign agent in terms of validation loss and
will make it challenging for the server to flag the malicious update as anomalous.

Second, the adversary needs to ensure that its update is as close as possible to the benign agents’ updates
in the appropriate distance metric. For our experiments, we use the £, norm with p = 2. Since the adversary
does not have access to the updates for the current time step ¢ that are generated by the other agents, it

constrains 8!, with respect to Sf)_erll = Liclk\m aiéf_l, which is the average update from all the other agents
t—

for the previous iteration, which the malicious agent has access to. Thus, the adversary adds p||&!, - 5ber11||2
to its objective as well. We note that the addition of the training loss term is not sufficient to ensure that
the malicious weight update is close to that of the benign agents since there could be multiple local minima
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Figure 3: Alternating minimization attack with distance constraints for CNN on Fashion MNIST data.
We use A = 10 and p = 1le~*. The number of epochs used by the malicious agent is E,, = 10 and it runs 10
steps of the stealth objective for every step of the malicious objective.

with similar loss values. Overall, the adversarial objective then becomes:

argmin /\L({Xi»’fi};zlfwt@) + L(Drwwfﬂ) + plléin - 5]2;%1“2 (5)

t
6 m

Note that for the training loss, the optimization is just performed with respect to w!, = th_1 +6!, asa

benign agent would do. Using explicit boosting, Wy, is replaced by w', as well so that only the portion of
the loss corresponding to the malicious objective gets boosted by a factor 1.
Results and effect on stealth: From Figure |24} it is clear that the stealthy model poisoning attack is able
to cause targeted poisoning of the global model. We set the accuracy threshold y; to be 10% which implies
that the malicious model is chosen for 10 iterations out of 15. This is in contrast to the targeted model
poisoning attack which never has validation accuracy within 10% of the global model. Further, the weight
update distribution for the stealthy poisoning attack (Figure is similar to that of a benign agent, owing
to the additional terms in the loss function. Finally, in Figure [4, we see that the range of ¢, distances for the
malicious agent R, is close, according to Eq. [3} to that between benign agents.

Concurrent work on model poisoning boosts the entire update (instead of just the malicious loss compo-
nent as we do) when the global model is close to convergence in an attempt to perform model replacement
(2] but this strategy is ineffective when the model has not converged.

3.4 Alternating minimization for improved model poisoning

While the stealthy model poisoning attack ensures
targeted poisoning of the global model while main-
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vector wy; for the next epoch. The malicious agent

can run this alternating minimization until both

the adversarial and stealth objectives have suffi-

ciently low values. Further, the independent mini-

mization allows for each objective to be optimized for a different number of steps, depending on which is
more difficult in achieve. In particular, we find that optimizing the stealth objective for a larger number of
steps each epoch compared to the malicious objective leads to better stealth performance while maintaining
targeted poisoning.

Results and effect on stealth: The adversarial objective is achieved at the global model with high confi-
dence starting from time step ¢ = 2 and the global model converges to a point with good performance on the
validation set. This attack can bypass the accuracy checking method as the accuracy on validation data of
the malicious model is close to that of the global model.In Figure [4} we can see that the distance spread for
this attack closely follows and even overlaps that of benign updates throughout, thus achieving complete
stealth with respect to both properties.

4 Attacking Byzantine-resilient aggregation

There has been considerable recent work that has
proposed gradient aggregation mechanisms for dis-
tributed learning that ensure convergence of the
global model [4} 8} (18} [6, [29]. However, the aim of
the Byzantine adversaries considered in this line of
work is to ensure convergence to ineffective mod-
els, i.e. models with poor classification perfor-
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these Byzantine-resilient aggregation mechanisms
against our attacks. We consider the aggregation
mechanisms Krum [4] and coordinate-wise median
[29] for our evaluation, both of which are provably
Byzantine-resilient and converge under appropri-
ate conditions on the loss function. Both aggregation mechanisms are also efficient. Note that in general,
these conditions do not hold for neural networks so the guarantees are only empirical.

Figure 5: Model poisoning attacks with Byzantine
resilient aggregation mechanisms. We use targeted
model poisoning for coomed and alternating mini-
mization for Krum.

4.1 Krum

Given n agents of which f are Byzantine, Krum requires that n > 2f + 3. At any time step f, updates
(65,..., 6;) are received at the server. For each &!, the n— f — 2 closest (in terms of L, norm) other updates

are chosen to form a set C; and their distances added up to give a score S(éf) = Y sec ||6f —9||. Krum then

chooses Syrum = 6! with the lowest score to add to w! to give wi*! = w!+ 8y ym. In Figure we see the effect

of the alternating minimization attack on Krum with a boosting factor of A = 2 for a federated learning
setup with 10 agents. Since there is no need to overcome the constant scaling factor «,,, the attack can
use a much smaller boosting factor A than the number of agents to ensure model poisoning. The malicious
agent’s update is chosen by Krum for 26 of 40 time steps which leads to the malicious objective being met.
Further, the global model converges to a point with good performance as the malicious agent has added the
training loss to its stealth objective. We note that with the use of targeted model poisoning, we can cause
Krum to converge to a model with poor performance as well (see Appendix B.4).



4.2 Coordinate-wise median
k

i=
vector with its jth coordinate &'(j) = med{6f(j)}, where med is the 1-dimensional median. Using targeted
model poisoning with a boosting factor of A = 1, i.e. no boosting, the malicious objective is met with
confidence close to 0.9 for 11 of 14 time steps (Figure . We note that in this case, unlike with Krum,
there is convergence to an effective global model. We believe this occurs due to the fact that coordinate-
wise median does not simply pick one of the updates to apply to the global model and does indeed use
information from all the agents while computing the new update. Thus, model poisoning attacks are effective
against two completely different Byzantine-resilient aggregation mechanisms.

Given the set of updates {65}5-‘:1 at time step f, the aggregate update is &' := coomed{{éf} 1}, which is a

5 Improving attack performance through estimation

In this section, we look at how the malicious agent can choose a better estimate for the effect of the other
agents’ updates at each time step that it is chosen. In the case when the malicious agent is not chosen at
every time step, this estimation is made challenging by the fact that it may not have been chosen for many
iterations.

5.1 Estimation setup

The malicious agent’s goal is to choose an appropriate estimate for 6fk]\m = YLick)\m @6}, i.e. for the effects
of the other agents at time step t. When the malicious agent is chosen at time ¢, the following information is

available to them from the previous time steps they were chosen: i) Global parameter vectors wg .. .,wgl;

ii) Malicious weight updates 6;,0 .. .,6,’;1; and iii) Local training data shard D,,, where t is the first time step

at which the malicious agent is chosen. Given this information, the malicious agent computes an estimate

S[tk]\m which it can use to correct for the effect of other agents in two ways:

1. Post-optimization correction: In this method, once the malicious agent computes its weight update &/,

it subtracts Aéfk]\m from it before sending it to the server. If é[tk]\m = 6fk]\m and A = ai, this will negate the
m

effects of other agents.

2. Pre-optimization correction: Here, the malicious agent assumes that Wi, = th_1 + S[tk]\m +a,65*!. In
other words, the malicious agent optimizes for &, assuming it has an accurate estimate of the other agents’
updates. For attacks which use explicit boosting, this involves starting from wgl + 6[tk]\m instead of just

t—1
WG .

5.2 Estimation strategies and results

When the malicious agent is chosen at time step t information regarding the probable updates from the
other agents can be obtained from the previous time steps at which the malicious agent was chosen.

5.2.1 Previous step estimate

In this method, the malicious agent’s estimate S[tk]\m assumes that the other agents’ cumulative updates

were the same at each step since t’ (the last time step at which at the malicious agent was chosen), i.e.
R t_wt_st’ .. . . . 2
6[tk]\m = W In the case when the malicious agent is chosen at every time step, this reduces to 6[tk]\m =

6[7]1\% This estimate can be applied to both the pre- and post-optimization correction methods.

4If they are chosen at ¢t = 0 or ¢ is the first time they are chosen, there is no information available regarding the other agents’
updates



Targeted Alternating
Attack Model Poisoning Minimization
Estimation | None Previousstep | None Previous step
t=2 0.63 0.82 0.17 0.47
t=3 0.93 0.98 0.34 0.89
t=4 0.99 1.0 0.88 1.0

Table 1: Comparison of confidence of targeted misclassification with and without the use of previous step
estimation for the targeted model poisoning and alternating minimization attacks.

5.2.2 Results

Attacks using previous step estimation with the pre-optimization correction are more effective at achieving
the adversarial objective for both the targeted model poisoning and alternating minimization attacks. In
Table |1}, we can see that the global model misclassifies the desired sample with a higher confidence when
using previous step estimation in the first few iterations. We found that using post-optimization correction
was not effective, leading to both lower attack success and affecting global model convergence.

6 Discussion

6.1 Model poisoning vs. data poisoning

In this section, we elucidate the differences between model poisoning and data poisoning both qualitatively
and quantitatively. Data poisoning attacks largely fall in two categories: clean-label [20,[13] and dirty-label
(7,10, [15]. Clean-label attacks assume that the adversary cannot change the label of any training data as
there is a process by which data is certified as belonging to the correct class and the poisoning of data
samples has to be imperceptible. On the other hand, to carry out dirty-label poisoning, the adversary just
has to introduce a number of copies of the data sample it wishes to mis-classify with the desired target
label into the training set since there is no requirement that a data sample belong to the correct class.
Dirty-label data poisoning has been shown to achieve high-confidence targeted misclassification for deep
neural networks with the addition of around 50 poisoned samples to the training data [7].

6.1.1 Dirty-label data poisoning in federated learning

In our comparison with data poisoning, we use the dirty-label data poisoning framework for two reasons.
First, federated learning operates under the assumption that data is never shared, only learned models.
Thus, the adversary is not concerned with notions of imperceptibility for data certification. Second, clean-
label data poisoning assumes access at train time to the global parameter vector, which is absent in the
federated learning setting. Using the same experimental setup as before (CNN on Fashion MNIST data,
10 agents chosen every time step), we add copies of the sample that is to be misclassified to the training
set of the malicious agent with the appropriate target label. We experiment with two settings. In the first,
we add multiple copies of the same sample to the training set. In the second, we add a small amount of
random uniform noise to each pixel [7]] when generating copies. We observe that even when we add 1000
copies of the sample to the training set, the data poisoning attack is completely ineffective at causing targeted
poisoning in the global model. This occurs due to the fact that malicious agent’s update is scaled, which again
underlies the importance of boosting while performing model poisoning. We note also that if the update
generated using data poisoning is boosted, it affects the performance of the global model as the entire
update is boosted, not just the malicious part. Thus, model poisoning attacks are much more effective than
data poisoning in the federated learning setting.

6.2 Interpreting poisoned models

Neural networks are often treated as black boxes with little transparency into their internal representation
or understanding of the underlying basis for their decisions. Interpretability techniques are designed to
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Figure 6: Decision visualizations for benign and malicious models for a CNN on the Fashion MNIST
data.

alleviate these problems by analyzing various aspects of the network. These include (i) identifying the rel-
evant features in the input pixel space for a particular decision via Layerwise Relevance Propagation (LRP)
techniques ([19]]); (ii) visualizing the assoc1at10n between neuron activations and image features (Guided
Backprop ([24]), DeConvNet ([30]))); (iii) using gradients for attributing prediction scores to input features
(e.g., Integrated Gradients ([25])), or generating sensitivity and saliency maps (SmoothGrad ([23])), Gradi-
ent Saliency Maps ([22])) and so on. The semantic relevance of the generated visualization, relative to the
input, is then used to explain the model decision.

These interpretability techniques, in many ways, provide insights into the internal feature representa-
tions and working of a neural network. Therefore, we used a suite of these techniques to try and discrimi-
nate between the behavior of a benign global model and one that has been trained to satisfy the adversarial
objective of misclassifying a single example. Figure [6] compares the output of the various techniques for
both the benign and malicious models on a random auxiliary data sample. Targeted perturbation of the
model parameters coupled with tightly bounded noise ensures that the internal representations, and rel-
evant input features used by the two models, for the same input, are almost visually imperceptible. This
further exposes the fragility of interpretability methods [1J].
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A Implicit Boosting

While the loss is a function of a weight vector w,
we can use the chain rule to obtain the gradient of R A A A A

the loss with respect to the weight update 9, i.e. 0s ‘ 80
VsL = a,,Vy L. Then, initializing 6 to some appro-
priate d;y;, the malicious agent can directly mini-

s
0.6 7 < - 60

Confidence

~ ’
04 : S B AN . 4

Classification accuracy

mize with respect to 6. However, the baseline at- 02 a2
tack using implicit boosting (Figure [7) is much less , & . va“MT?flffhi =
successful than the explicit boosting baseline, with L. s s e . e e
the adversarial objective only being achieved in 4 of Time

10 iterations. Further, it is computationally more
expensive, taking an average of 2000 steps to con-
verge at each time step, which is about 4x longer
than a benign agent. Since consistently delayed up-
dates from the malicious agent might lead to it being dropped from the system in practice, we focused on
explicit boosting attacks throughout.

Figure 7: Targeted model poisoning with implicit
boosting. The number of agents was k = 10 with a
CNN on Fashion MNIST data.

B Further results

B.1 Results on Adult Census dataset

Results for the 3 different attack strategies on the Adult Census dataset (Figure [8) confirm the broad con-
clusions we derived from the Fashion MNIST data. The baseline attack is able to induce high confidence
targeted misclassification for a random test example but affects performance on the benign objective, which
drops from 84.8% in the benign case to just around 80%. The alternating minimization attack is able to
ensure misclassification with a confidence of around 0.7 while maintaining 84% accuracy on the benign
objective.

B.2 Multiple instance poisoning

For completeness, we provide results for the case with r = 10, i.e. the case when the malicious agent wishes
to classify 10 different examples in specific target classes. These results are given Figures[9a|(targeted model
poisoning) and (Alternating minimization with stealth). While targeted model poisoning is able to
induce targeted misclassification, it has an adverse impact on the global model’s accuracy. This is countered
by the alternating minimization attack, which ensures that the global model converges while still meeting
the malicious objective.
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Figure 8: Attacks on a fully connected neural network on the Census dataset.
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Figure 9: Attacks with multiple targets (» = 10) for a CNN on the Fashion MNIST data.

B.3 Randomized agent selection

When the number of agents increases to k = 100, the malicious agent is not selected in every step. Further,
the size of |D,,| decreases, which makes the benign training step in the alternating minimization attack
more challenging. The challenges posed in this setting are reflected in Figure[T0a} where although targeted
model poisoning is able to introduce a targeted backdoor, it is not present for every step as there are steps
where only benign agents provide updates. Nevertheless, targeted model poisoning is effective overall, with
the malicious objective achieved along with convergence of the global model at the end of training. The
alternating minimization attack strategy with stealth (Figure[L0b) is also able to introduce the backdoor, as
well as increase the classification accuracy of the malicious model on test data. However, the improvement
in performance is limited by the paucity of data for the malicious agent. It is an open question if data
augmentation could help improve this accuracy.

B.4 Bypassing Byzantine-resilient aggregation mechanisms

In Section[4] we presented the results of successful attacks on two different Byzantine resilient aggregation
mechanisms: Krum [4] and coordinate-wise median (coomed) [[29]]. In this section, we present the results
for targeted model poisoning when Krum is used (Figure[I1a). The attack uses a boosting factor of A = 2
with k = 10. Since there is no need to overcome the constant scaling factor «,,, the attacks can use a much
smaller boosting factor A to ensure the global model has the targeted backdoor. With the targeted model
poisoning attack, the malicious agent’s update is the one chosen by Krum for 34 of 40 time steps but this
causes the validation accuracy on the global model to be extremely low. Thus, our attack causes Krum to
converge to an ineffective model, in contrast to its stated claims of being Byzantine-resilient. However,
our attack does not achieve its goal of ensuring that the global model converges to a point with good
performance on the test set due to Krum selecting just a single agent at each time step.

We also consider the effectiveness of the alternating minimization attack strategy when coomed is used
for aggregation. While we have shown targeted model poisoning to be effective even when coomed is used,
Figure demonstrates that alternating minimization, which ensures that the local model learned at the
malicious agent also has high validation accuracy, is not effective.

C Visualization of weight update distributions

Figure |C| shows the evolution of weight update distributions for the 4 different attack strategies on the
CNN trained on the Faishon MNIST dataset. Time slices of this evolution were shown in the main text of
the paper. The baseline and concatenated training attacks lead to weight update distributions that differ
widely for benign and malicious agents. The alternating minimization attack without distance constraints
reduces this qualitative difference somewhat but the closest weight update distributions are obtained with
the alternating minimization attack with distance constraints.
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dataset.

D Interpretability for benign inputs

We provide additional interpretability results for global models trained with and without the presence of

a malicious agent on benign data in Figures [13|and [T4] respectively. These show that the presence of the
malicious agent using targeted model poisoning does not significantly affect how the global model makes

decisions on benign data.
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