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FEARLESS engineering

Big data and Cyber Security
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Already many start-ups in the field.



FEARLESS engineering

More data is available for cyber security

• Malware samples
• System Logs 
• Firewall Logs
• Sensor data
• …
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Cyber Security is Different

• Many adversarial learning problems in 
practice
– Intrusion Detection
– Fraud Detection
– Spam Detection
– Malware Detection

• Adversary adapts to avoid being detected.

• New solutions are explored to address this 
problem
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The Problem 

• Violation of standard i.i.d. assumption
• Adversary modifies data to defeat learning algorithms 
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Example: Spam Filtering

• Millions way to write Viagra
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Understanding Adversarial Learning

• It is not concept drift
• It is not online learning
• Adversary adapts to avoid being detected

– During training time (i.e., data poisoning)
– During test time (i.e., modifying features when 

data mining is deployed)

• There is game between the data miner and 
the adversary
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Solution Ideas

• Constantly adapt your classifier to changing
adversary behavior.

• Questions??
– How to model this game?
– Does this game ever end?
– Is there an equilibrium point in the game?
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Agenda

• Summary of foundational results/models to 
reason about learning in the presence of an 
active adversary
– No proofs/ Summary of the models 
– Not all the good work could be covered �

• Modified techniques resistant to adversarial 
behavior

• Some applications of data mining for cyber 
security/practical attacks

• Summary/Suggestions
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Foundations
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The machine learning framework

y = f(x)

• Training: given a training set of labeled examples {(x1,y1), 
…, (xN,yN)}, estimate the prediction function f by minimizing 
some criteria on the training set

• Testing: apply f to a test example x and output the 
predicted value y = f(x)

Output:
Attack
No-Attack

prediction 
function

Samples:
Malware

Network Packets

Slide credit: L. Lazebnik
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Prediction

Steps

Training 
Labels

Training
Samples

Training

Training

Extract 
Features: 

E.g., 
Packet 
Traces

Extracted 
Features

Testing

Test Image

Learned 
model

Learned 
model

Slide credit: D. Hoiem and L. Lazebnik

Testings
Samples
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Threat Models

• Training Time Attacks: 
– Poison/ modify the training data
– Some attacks are tailored for specific f()

• Test time/ Deployment Time Attacks
– Attacker modifies x to x’

• E.g., modify packet length by adding dummy bytes
• Add good word to spam e-mail
• Add noise to an image

– Could be specific to f() 
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Learning in the Presence of Malicious Errors [1]

• Training data contains malicious noise.
• The adversary has 

– unbounded computational resource
– knowledge of target concept, target distributions, 

internal states of the learning algorithm

• With probability β (0≤ β<1/2), the adversary 
gets to generate malicious errors.

• The adversary’s goal is to foil the learning 
algorithm.
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Optimal Malicious Error Rates

• Optimal malicious error rates for a class C:
– EM(C): 

• the largest value of β that can be tolerated by any 
learning algorithm for C

• Upper bound

– EM
P(C): 

• the largest rate of malicious error that can be 
tolerated by a polynomial-time learning algorithm 
for C

• Lower bound
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Upper Bound of Malicious Error Rate

Theorem 1 For a distinct concept class C,

– To learn an �-good hypothesis (type 1 and type 2 
error rates are less than �), a learning algorithm 
can only handle β < �/(1+ �).

– The bound holds regardless of the time or sample 
complexity of the learning algorithms for C.

– The bound holds even for algorithms with 
unbounded computational resources.
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Lower Bound of Malicious Error Rate for 
Polynomial-time Learning Algorithms

Theorem 2. Let C be a polynomial time learnable concept 
class in the error-free model by algorithm A with sample 
complexity sA(�,�) (learns a � –hypothesis with prob. at  1-�
using sA(�,�) samples ) and let s = sA(�/8, ½). We can learn 
C in polynomial time with an error rate of 

– A is a β-tolerant Occam algorithm for C if it is 
consistent with at least 1-ε/2 of the samples 
received from the faulty oracles. 
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Summary of [1]

• Error tolerance  against data poisoning need 
not come at the expense of efficiency or 
simplicity if you have large enough data and 
attacker capabilities are bounded.

• Better tolerable error rates (upper bound) can 
be achieved using both types (+/-) of 
examples than positive-only or negative-only 
learning.  

• Strong ties exist between learning with errors 
and data poisoning attacks.
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Adversarial Classification [2]

• Data is manipulated by an adversary to 
increase false negatives.
– Spam detection
– Intrusion detection
– Fraud detection

• Classification is considered as a game 
between the classifier and the adversary.
– Both are cost-sensitive
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Cost and Utility for Classifier & Adversary

• Given a training set Sand a test set T,
– CLASSIFIER

• learn from Sa classification function yC = C(x)

• Vi: cost of measuring the ith feature Xi

• UC(yC, y): utility of classifying an instance as yC with true 
class y

– UC(+, -) < 0, UC(-, +) < 0, UC(+,+) > 0, UC(-,-) > 0

– ADVERSARY
• modify a positiveinstance in T from x to x’ = A(x)

• Wi(xi, x′i): cost of changing the ith feature from xi to x′i
• UA(yC, y): ADVERSARY’s utility when the classifier 

classifies an instance as yC with true class y
• UA(-,+) > 0, UA(+,+) < 0and UA(-,-) = UA(+,-) = 0
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A Single-step Two Players’ Game

• For computational tractability, the adversarial 
classification game only considers one move 
by each of the players. 

• It also assumes that all parameters of both 
players are known to each other.

• Classifier is Naïve Bayes: 
– an instance x is classified positive if the expected 

utility of doing so exceeds that of classifying it as 
negative 
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Adversary’s Strategy

• Adversary’s optimal strategy:
– Two assumptions: 

• complete Information 
• CLASSIFIER is unaware of its presence.

– Modify features such that
• The transformation cost is less than the 

expected utility.
• The new instances is classified as negative. 

– Solve an integer LP
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Classifier’s Strategy

• Classifier’s optimal strategy:
– Three assumptions: 

• Adversary uses optimal strategy. 
• Training set is not tampered by Adversary.
• The transformation cost Wi(xi, x′i) is a semi-metric.

– Make prediction yC that Maximizes conditional 
utility:

with a post-adversary conditional probability
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Classifier Evaluation and Attribute Selection 
against Active Adversaries [3]

• Consider cases where the classifier is modified after 
observing adversaries action.
– Spam filter rules.

• Stackelberg Games
– Adversary chooses an action a1

– After observing a1 , data miner chooses action a2

– Game ends with payoffs to each player 

( ) ( )212211 ,,, aauaau
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• Two class problem
– Good class, Bad class

• Mixture model

• Adversary applies a transformation T to modify
bad class (i.e                                        )
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• After observing transformation, data miner chooses an updated 
classifier h

• We define the payoff function for the data miner

• Cij is the cost for classifying x to class i to given that it is in class j
• Data miner tries to minimize c(T,h)
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• Transformation has a cost for the adversary
– Reduced effectiveness for spam e-mails

• Let                   be the gain of an element after 
transformation

• Adversary gains for the “bad” instances that are classified 
as “good”
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Adversarial Stackelberg Game Formulation Cont.
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• Given the transformation T, we can find the best 
response classifier( R(T)) h that minimizes the c(T,h)

• For Adversarial Stackelberg game, subgame perfect 
equilibrium is:
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• If the game is repeated finitely many times, after an 
equilibrium is reached, each party does not have 
incentive change their actions.

Adversarial Stackelberg Game Formulation Cont.
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Summary [3]: 
Attribute Selection for Adversarial Learning

• How to choose attributes for Adversarial Learning?
– Choose the most predictive attribute
– Choose the attribute that is hardest to change

• Example:

• Not so good ideas!!

Attribute �1 �2 Penalty

X1 N(1,1) N(3,1) a = 1

X2 N(1,1) N(3.5,1) a = 0.45

X3 N(1,1) N(4,1) a = 0

Equilibrium Bayes Error

0.16

0.13

0.23
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Stackelberg Games for Adversarial Prediction 
Problems [4]

• Unlike the previous research, Bruckner & Scheffer 
consider Stackelberg games where the classifieris 
the leader and the adversaryis the follower.
– Data miner chooses an action a1

– After observing a1 , the adversary chooses action a2

– Game ends with payoffs to each player 

( ) ( )212211 ,,, aauaau
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Cost Definition

• Two-players game between learner (-1) and 
adversary (+1).

• The costs of the two players are defined as 
follows:
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1. Learner decides on w.

2. Adversary observes w and changes the data 
distribution.

3. Adversary minimizes its loss given w by 
searching for a sample Dw that leads to the 
global minimum of the loss

Stackelberg Games
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• Assuming that the adversary will decide for any D ∈

Dw, the learner has to choose model parameters w*
that minimize the learner’s cost function θ−1 for any of 
the possible reactions D ∈ Dw that are optimal for the 
adversary: 

• An action w* that minimizes the learner’s costs and a 
corresponding optimal action D ∈ Dw* of the 
adversary are called a Stackelberg equilibrium. 

Stackelberg Equilibrium
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Finding Stackelberg Equilibrium

Find Stackelberg Equilibrium [4]

Stackelberg equilibrium is applicable when 
(1.) the adversary is rational;
(2.) the predictive model is known to 
the adversary.
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TECHNIQUES
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Adversarial support vector machine learning [5]

• Support Vector 
machines try to find the 
hyperplane that has the 
highest possible 
separation margin.
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• Free-range attack
– Adversary can move malicious data anywhere in 

the domain

• Targeted attack
– Adversary can move malicious data closer to a 

target point
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SVM risk minimization model: free-range attack

Adversarial SVM Risk Minimization Model
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SVM risk minimization model: targeted attack

Adversarial SVM Risk Minimization Model cont.
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AD-SVM Example:

black dashed line is the standard SVM classification boundary, and 
the blue line is the Adversarial SVM (ADV-SVM) classification boundary
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Summary of [5]

• AD-SVM solves a convex optimization 
problem where the constraints are tied to 
adversarial attack models

• AD-SVM is more resilient to modest attacks 
than other SVM learning algorithms
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• Goal: devising classifiers which are robust to 
classification phase noise
– Instances drawn i.i.d. from some

– Linear margin-based classifiers
– A clean, uncorrupted training data is available for 

learning a classifier <w,b>

Learning to Classify with Missing and Corrupted 
Features [7]

,
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Problem Setting

w1 w2 … wi … … …

Trained Classifier

b

Test Dataset

x11 x12 … x1i … … …

x21 x22 … x2i … … …

xN1 xN2 … xNi … … …

…

x1

x2

xN
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Problem Setting cont.

• Adversary’s power must be reasonably 
bounded for learning to be possible.

• Suppose each feature j has a fixed feature 
value vj ≥ 0.

• Assumption: the adversary must leave intact 
a subset J in {1 , …, n} of features such that

where P specifies noise tolerance.
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LP Formulation

Problem: exponential growth of the constraint set

• Worst-case “empirical risk” on training set:

• An SVM-like formulation:
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A Compact LP Formulation

• With a duality transform, a compact O(mn)
constraint set is obtained:

An online-to-batch algorithm is developed to learn the 
average hypothesis.
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Adversarial Learning: Practice and Theory [8]

Problem : Content-based spam filtering

•Practice: good word attacks
– Passive attacks
– Active attacks

•Theory: ACRE learning
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Passive Attacks

• Common heuristics
– Random dictionary words 
– Most frequent English words 
– Highest ratio: English frequency/spam frequency
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Active Attacks

• Learn which words are best by querying the 
spam filter.

• First-N: Find n good words using as few
queries as possible

• Best-N: Find the best n words
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Adversarial Classifier Reverse Engineering 
(ACRE)

• ACRE k-learnable algo.: minimize a(x) subject to c(x) = -1 within 
a factor of k, given:

X1

X2

x xx

x
x

x

x
x

–the adversarial cost function a(x)
–One positive and one negative example, x+ and x−

–A polynomial number of membership queries

-

+
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ACRE k-learnability of Linear Classifiers

• Linear classifiers with continuousfeatures are 
ACRE (1+ε)-learnable under linear cost 
functions.

• Linear classifiers with booleanfeatures are 
ACRE 2-learnable under uniform linear cost 
functions
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• Existing adversarial learning approaches
– A two-player game

• Zero-sum, Nash, Stackelberg

– AD-SVM, AD-RVM, AD-HME
– handle a single adversary of one type

• A more challenging problem:
– Multiple adversaries of various types 

Modeling Adversarial Learning as Nested 
Stackelberg Games [6]
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Adversarial Learning: 
Multiple Adversaries of Various Types 

Training data Learning Model

Test Data

random x+ only x+ and x- …

Single Leader 
Single Follower

Single Leader 
Multiple Followers
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Nested Stackelberg Game Framework

Component 
Strategies

Leader:
Learning 
Model

Follower:
Adversary 
corrupting data

SLSF

Leader : 
learning model 
playing a mixed 
strategy

Followers:
Adversaries of 
various types

SLMF
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Single Leader Single Follower Stackelberg Game

• Learner commits its strategy that is 
observable to the adversary

• Adversary plays its optimal strategy 
– Maximize learner’s loss
– Minimize adversary’s loss

argmin
w*

argmax
δx

*

  L
l
(w,x,δ

x
)

s.t.                     δ
x

* ∈ arg min
δx

L
f
(w,x,δ

x
)
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SLMF Bayesian Stackelberg Game

Given the payoff matrices Rl and Rf of the leader and 
the m followers of n different types, find the leader’s 
optimal mixed strategy.

•All followers know the leader’s strategy when 
optimizing their rewards.

•The leader’s pure strategies consist of a set of 
generalized linear learning models ⟨φ(x),w⟩. 
•The followers’ pure strategies include a set of vectors 
performing data transformation x→ x + ∆x. 

Problem Definition:
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SLMF Bayesian Stackelberg Game

• The leader makes its decision prior to the followers’ 
decisions.

• The leader does not know the exact type of the 
adversary while solving its optimization problem.

• The followers play their optimal responses to 
maximize the payoffs given the leader’s strategy. 
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Mixed Strategy Classification

X:input

C1
C2

Cn

p1 p2

pn

…

X

C2(X) = Y
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APPLICATIONS
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Malicious PDF Detection using Metadata and 
Structural Features [10]

• PDF Basics
– Tree structure
– Root note: /Catalog 
– Other valid elements are 

In the downward path of 
/Catalog

Header
%PDF-1.1

Body
Sequence of 

objects

Cross Reference Table
xref

Trailer
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Malicious PDF Exploitation

• PDF Document Exploitation 
– Malicious PDFs may contain the complete malware 

payload or small size code for downloading other 
malware components

– Suspicious elements
• Javascript
• Embedded PDFs
• Malformed objects
• Malicious patterns
• Encryption
• Suspicious actions: /Actions, /OpenAction, /Names, et. al.
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Feature Extraction

• Static analysis on features based on 
document structure and metadata.
– works well even on encrypted documents each 

object/stream is encrypted individually in PDF, 
leaving structure and metadata to be extracted the 
same as normal documents. 
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Dual Classifier

• Dual classifier
– One differentiates 

benignfrom malicious.

– The other classifier 
differentiates 
opportunisticfrom 
targetedmalicious 
documents.
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Data & Classifier Performance

• Contagio& Operationaldatasets 
– Subsample of Contagiofor training
– Test classifier on Operational

• 10-fold cross-validation on training data
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Classification & Detection Performance

ROC for Training Set (opp/tar) ROC for Training Set (ben/mal) 
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Practical Evasion of a Learning -Based 
Classifier: A Case Study [11]

Attack on previous work!

•Investigate a real learning-based system—
PDFRATE 

– Random Forest classifier
• Not resilient to malicious noise
• Periodic retraining is not implemented in the system.

– The attacker modifies the submitted PDF file, with  
its malicious functionality intact, and decrease the 
probabilistic score returned by PDFRATE. 

• Insert dummy content into PDF files
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Modification of PDF Docs

PDF readers jump from Trailer directly to the Cross-
reference table, skipping injected content completely.
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Attacks

• Mimicry Attack
– transform a malicious sample so that it mimics a 

chosen benign sample as much as possible.

• Gradient Descent and Kernel Density 
Estimation (GD- KDE) Attack 
– require the knowledge of a specific learned model 

and a set of benign samples 
– only applicable to differentiable classifiers, such as 

SVM, artificial neural network 
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Results

• Baseline: results before attacks, all but 3 receives 
100% PDF Score.

• Except for mimicry F, 75% of the attacks would be 
classified as benign if a 50% threshold over 
classification scores were used for decision making.
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Defensive Measures

• Vaccination defense 
– modify a fraction of malicious samples in the 

training dataset in such a way that they are more 
similar to expectedattack samples. 

– Only effective against correctly anticipatedattacks 
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Automatically Evading Classifiers [15]
A Case Study on PDF Malware Classifiers

• The key idea of this work is to find an evasive variant of a 
malicious sample that preserves the malicious behavior but is 
classified as benign by the classifier.
– Do not assume the adversary has any detailed knowledge of 

the classifier or the features it uses, or can use targeted 
expert knowledge to manually direct the search for an 
evasive sample.

– Query classifiers to get the classification score for variants, 
assuming the classifiers do not adapt to submitted variants.

• Results are reported from experiments against two PDF 
malware classifiers, PDFrate (random forest based) and Hidost
(SVM specifically targeting evasive attacks). 
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Finding Evasive Samples

Insertion, deletion, or replacement of an object
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Evaluation

• 500 malicious samples and 179 benign samples. 

• After approximately one week of execution, the algorithm 
found 72 effective mutation traces that generated 16,985 
total evasive variants for the 500 malware seeds (34.0 
evasive variants per seed in average), achieving 100% 
evasion rate in attacking PDFrate.

• The experiment of evading Hidost took around two days to 
execute. Although Hidost was designed specifically to 
resist evasion attempts, 100% evasion rate was achieved,
generating 2,859 evasive samples in total for 500 seeds 
(5.7 evasive samples per seed in average).
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Evaluation (cont.)
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Defenses

• Information Hiding and Randomization
– hide the classification scores from the users or 

adding random noise to the scores

• Adapting to Evasive Variants
• Defeating Overfitting
• Selecting Robust Features
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Practical Adversarial Detection of Malicious 
Crowdsourcing Workers [14]

• Investigating robustness of machine learning 
based approaches to detecting adversaries in 
crowdsourcing
– Envision attack
– Poisoning attack
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Experimental Setup 

• Datasets
– Extract from Sina Weibo, China’s microblogging 

network
• 28,947 crowdturfing workers
• 71890 authenticated users 
• 371,588 active users with at least 50 followers and 10 

tweets

– Classify these accounts using SVMs, Bayesian, 
Decision Trees and Random Forests. 
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Classifier Performance

• Authenticated+Turfing Dataset: 
– 28K turfing accounts, 28K randomly sampled “authenticated” 

users. 

• Active+Turfing Dataset: 
– 28K turfing accounts, 28K randomly sampled “active” users.
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Impact of Evasion Attacks

• Optimal Evasion Attack:
– Per-worker optimal evasion: exhaustive search for 

optimal data modification 
– Global evasion: exhaustive search for global 

optimal strategy 
– Feature-aware evasion: alter the (known) most 

important features 
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Impact of Evasion Attacks (cont.)

• Practical Evasion Attack:
– Random evasion
– Value distance-aware evasion
– Distribution distance-aware evasion
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Impact of Poisoning Attacks

• Training data used to build ML classifiers is 
contaminated.
– Poisoning training dataset by injecting random 

normal user samples to the turfing class. 
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Impact of Poisoning Attacks (cont.)

• Training data used to build ML classifiers is 
contaminated.
– Adversaries inject specific type of normal users to 

the turfing class (all workers). 



FEARLESS engineering

Impact of Poisoning Attacks (cont.)

• Training data used to build ML classifiers is 
contaminated.
– Poisoning training dataset by adding turfing 

samples to normal class . 
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Impact of Poisoning Attacks (cont.) 

• Instead of adding data to the training set, 
data in the training set is altered.
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DNN: Attacks and Defenses [16]
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Attacks against Deep Neural Networks

• Recent work in the machine learning and 
security communities have shown that 
adversaries can force DNNs to produce 
adversary-selected outputs using carefully 
crafted input.
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Szagedy et al. [18]
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Goodfellow et al. Example [17]
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Adversarial Sample Crafting
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Adversarial Crafting

• Crafting consists of two steps: direction 
sensitivity estimation and perturbation 
selection . 

• Step 1 evaluates the sensitivity of model F at 
the input point corresponding to sample X. 

• Step 2 uses this knowledge to select a 
perturbation affecting sample X’s 
classification.

• If the resulting sample X +δX is misclassified by 
model F in the adversarial target class, an 
adversarial sample X* has been found.

• If not, the steps can be repeated on updated input 
X +δX .
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Direction Sensitivity Estimation 

• The goal is to find the dimensions of X that will 
produce the expected adversarial behavior with the 
smallest perturbation.

• Goodfellow et al. propose the fast sign gradient 
method
– Computes the gradient of the cost function with 

respect to the input of the neural network
• Papernot et al. propose the forward derivative, which 

is the Jacobian of F

– Directly compute the gradients of the output 
components with respect to each input 
component.
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Perturbation Selection

• Goodfellow et al. choose to perturb all input 
dimensions by a small quantity in the direction of the 
sign of the gradient they computed.

• Papernot et al. follow a more complex process 
involving saliency maps to only select a limited 
number of input dimensions to perturb. 
– Saliency maps assign values to combinations of 

input dimensions indicating whether they will 
contribute to the adversarial goal or not if 
perturbed.
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Defending DNNs Using Distillation

• The robustness of a trained DNN model F is:
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Defense Requirements

• Low impact on the architecture
• Maintain accuracy
• Maintain speed of network
• Defenses should work for adversarial 

samples relatively close to points in the 
training dataset
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Distillation

• Distillation is a training procedure initially designed to train 
a DNN using knowledge transferred from a different DNN. 
– extract class probability vectors produced by a first 

DNN or an ensemble of DNNs to train a second DNN 
of reduced dimensionality without loss of accuracy.

– label inputs in the training dataset of the second DNN 
using their classification predictions according to the 
first DNN. 

• Use defensive distillation to smooth the model learned by 
a DNN architecture during training by helping the model 
generalize better to samples outside of its training dataset.
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Distillation as a Defense
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Evaluation

• Question : Does defensive distillation improve 
resilience against adversarial samples while retaining 
classification accuracy?

• Result : 
– Distillation reduces the success rate of adversarial crafting 

from 95.89% to 0.45% on their first DNN and dataset, and 
from 87.89% to 5.11% on the second DNN and dataset. 

– Distillation has negligible or non existent degradation in 
model classification accuracy in these settings
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DNN Architectures

• 9 layer convolutional neural networks, T = 20
• The resulting Distilled DNN achieves a 99.05% 

accuracy on the MNIST data set, and 81.39% on 
the CIFAR10 data set.

• Applying attacks proposed by Papernot et al.
– Construct an adversarial sample X* from a benign 

sample X by adding a perturbation vector δX solving
the following optimization problem
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Evaluation (cont.)

• Question : Does defensive distillation reduce 
DNN sensitivity to inputs?

• Result : 
– Defensive distillation reduces DNN sensitivity to 

input perturbations, where experiments show that 
performing distillation at high temperatures can 
lead to decreases in the amplitude of adversarial 
gradients by factors up to 1030.
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Evaluation (cont.)

• Question : Does defensive distillation lead to 
more robust DNNs?

• Result : 
– Defensive distillation impacts the average minimum 

percentage of input features to be perturbed to achieve 
adversarial targets (i.e., robustness). 

– In their DNNs, distillation increases robustness by 
790% for the first DNN and 556% for the second DNN.
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Datasets

• MNIST
– 70,000 black and white images of handwritten digits in 

10 classes
– training set of 60,000 samples, test on 10,000 samples

• CIFAR10 
– a collection of 60,000 color images in 10 classes
– 50,000 for training, and 10,000 for testing
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Still this can be attacked 

• New work on showing that distillation can be 
easily attacked (See Oakland ‘17)
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Behavioral Detection of Malware on Mobile 
Handsets [12]

• Mobile Malware Detection
– signature-based solutions are not efficient for 

resource-constrained mobile devices 
– behavioral detection solution to detecting mobile 

worms, viruses and Trojans
• Monitor the run-time behavior of an application (e.g., file 

accesses, API calls) 
• More resilient to polymorphic worms and code 

obfuscation 
• Database of behavior profiles is much smaller than that 

needed for storing payload signatures 
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Challenges

• Behavior specification 
– temporal logic of causal knowledge

• Online reconstruction of suspicious behavior
– Train a SVM to differentiate partial signatures for 

malicious behavior from those of normal 
applications. 

– The resulting SVM model and the malicious 
signature database are preloaded onto the 
handset.
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System Overview



FEARLESS engineering

Behavior Signature of Commwarrior Worm
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Two-stage Runtime Behavior Signature 
Construction

• Stage 1: 
generation of 
dependency 
graph 
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Two-stage Runtime Behavior Signature 
Construction cont.

• Stage 2: graph 
pruning and 
aggregation
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Malware Detection on Mobile Devices using 
Distributed Machine Learning [13]

• The distributed SVM for detecting mobile 
malware: 
– lightweight in terms of bandwidth usage
– preserve the privacy of the participating users 
– automatically generate a general behavioral 

signature of malware
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Distributed SVM Learning

• Divide the quadratic SVM binary classification 
problem into multiple sub-problems by 
relaxing it using a penalty function.

• Next, distributed continuous- and discrete-
time gradient algorithms are applied to solve 
the relaxed problem iteratively. 
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Empirical Results

• MIT Reality Mining 
user data
– 897922 communication 

logs collected from 97 
users 

– Infect half of data set 
with malware 
symptoms 
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Computational Requirement 

avg. computation time/client avg. number of updates /client 
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Outside the closed world: On using machine 
learning for network intrusion detection [9]

• Network Intrusion Detection:
– Misuse detection – precise descriptions of known 

malicious behavior.
– Anomaly detection – flag deviations from normal 

activities.
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Machine Learning in Intrusion Detection

• Well-known problems:
– High false positive rate
– Lack of attack-free data for training

• Theoretical results indicate this is should not be an issue 
for big data

– Attackers can foil the system to evade detection
• More resistant techniques now available as we 

discussed before

– Difficulties with Evaluation



FEARLESS engineering

Machine Learning in Intrusion Detection

• Challenges of ML for NID
– Outlier Detection
– High Cost of Errors
– Semantic Gap (interpretation of results)
– Diversity of Network Traffic
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Understand what the system is doing!

•Recommendations:
– Understanding the Threat Model

• What kind of environment does the system target?
• What do missed attacks cost?
• What skills and resources will attackers have?
• What concern does evasion pose?

– Keep the Scope Narrow
– Reducing the Costs
– Evaluation

• Working with data
• Understanding results

Recommendations for Using Machine Learning
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Summary of [9]

• Domain-specific challenge:
– An extensive amount of research on machine 

learning-based anomaly detection, versus the lack 
of operational deployments of such systems. 

• Now start-ups are trying to change that.

• Follow a set of guidelines for applying ML to 
network intrusion detection
– obtain insight into the operation of an anomaly 

detection system from an operational point of view. 
– Semanticunderstanding of the gain on ROC curves 

is crucial. 
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CONCLUSIONS
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Lessons Learned

• Data Mining for Cyber Security requires 
better understanding of attacker.
– Game theory provides natural tools for such 

modeling

• Dynamic adaptation, cost of adaptation, utility 
of the attacker and defender needs to be 
considered.

• Other issues not discussed but important:
– Provenance of data
– Class Imbalance
– Adversarial Active Learning
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Main Take Away

• “If you know the enemy and know yourself, you 
need not fear the result of a hundred battles. If you 
know yourself but not the enemy, for every victory 
gained you will also suffer a defeat. If you know 
neither the enemy nor yourself, you will succumb in 
every battle.”  ― Sun Tzu, The Art of War

• Choose the features carefully.
– Understand attacker capabilities and potential adaptation

• Use robust machine learning techniques 
• Scale to large data
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Choosing right features for classification

• As game theoretical models indicate, good 
features are:
– Hard for attacker to manipulate; and
– Indicative of the attack

• Example: Malware detection
– Focus on more behavioral features than syntactic 

features extracted from binary ?
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Choosing the right machine learning tool

• Trying large set of tools are critical
– Random forest
– SVM
– Neural networks
– Deep belief networks etc.
– Ad-Svm
– Others ?? 
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Scaling to large data

• Efficient distributed processing systems
– Hadoop/MapReduce
– Spark
– Storm
– Others
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Apache Spark 

• high-level APIs in Java, Scala and Python, and an 
optimized engine that supports general execution graphs 
• supports a rich set of higher-level tools provides 

Spark SQL for SQL and structured data processing
MLlib for machine learning, 

Many algorithms..
GraphX for graph processing, and 
Spark Streaming
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Apache Spark (Recent addition DL)

BigDL is a distributed deep learning library for Spark
• Rich deep learning support. Modeled after Torch  

BigDL provides comprehensive support for deep 
learning, including numeric computing

• Efficient scale out. BigDL can efficiently scale out 
to perform data analytics at “big data scale” by 
using Spark.

• Extremely high performance. To achieve high 
performance, BigDL uses Intel® Math Kernel 
Library (Intel® MKL) and multithreaded 
programming in each Spark task.

• Our experience. For low dimensional data, 
standard techniques such as random forests, SVM 
works well enough. 



FEARLESS engineering

Acknowledgement

Our work on this topic has been supported by Army 
Research Office Grant 58345-CS.

More papers on the topic could be found on the 
data mining for cyber security course web page: 

http://www.utdallas.edu/~muratk/courses/dbmsec-15s.html



FEARLESS engineering

References

1. M. Kearns and M. Li. Learning in the presence of malicious 
errors. SIAM Journal on Computing, 22:807-837, 1993.

2. N. Dalvi, P. Domingos, Mausam, S. Sanghai, and D. Verma, 
Adversarial classification, KDD '04.

3. M. Kantarcioglu, B. Xi, and C. Clifton, Classifier evaluation and 
attribute selection against active adversaries, Data Min. Knowl. 
Discov., vol. 22, pp. 291-335, January 2011.

4. M. Bruckner and T. Scheffer. Stackelberg games for 
adversarial prediction problems, SIGKDD, 2011.

5. Y. Zhou, M. Kantarcioglu, B. Thuraisingham, and B. Xi, 
Adversarial support vector machine learning, SIGKDD '12.

6. Y. Zhou and M. Kantarcioglu, Modeling Adversarial Learning 
as Nested Stackelberg Games, PAKDD ’16.

7. Dekel, O., O. Shamir, Learning to classify with missing and 
corrupted features, ICML 2008.



FEARLESS engineering

References

8. D. Lowd and C. Meek., Adversarial learning, page 641-647, KDD 
2005.

9. Sommer et al., Outside the closed world: On using machine 
learning for network intrusion detection, IEEE S&P 2010.

10. C. Smutz and A. Stavrou, Malicious PDF detection using 
metadata and structural features, in Annual Computer Security 
Applications Conference (ACSAC), 2012, pp. 239-248.

11. Nedim Srndic and Pavel Laskov, Practical Evasion of a Learning-
Based Classifier: A Case Study, Proceedings of the 2014 IEEE 
Symposium on Security and Privacy, Pages 197-211.

12. Abhijit Bose, Xin Hu, Kang G. Shin, and Taejoon Park,  Behavioral 
detection of malware on mobile handsets, MobiSys '08. pp. 225-
238. 

13. A.S. Shamili, C. Bauckhage, and T. Alpcan, Malware Detection on 
Mobile Devices Using Distributed Machine Learning, ICPR ’10.



FEARLESS engineering

References

14. Wang et al. "Man vs. Machine: Practical Adversarial Detection of 
Malicious Crowdsourcing Workers", Usenix Security 2014

15. Weilin Xu, Yanjun Qi, and David Evans, Network and Distributed 
System Security Symposium (NDSS) 2016

16. Distillation as a defense to adversarial perturbations against deep 
neural networks, Papernot et al., 2016

17. Goodfellow et al. “Explaining and harnessing adversarial 
examples”, ICLR 2015

18. Szegedy et al. “Intriguing properties of neural networks”, ICLR 
2013


