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Abstract

The monitoring of virtual machines has many applica-
tions in areas such as security and systems management. A
monitoring technique known as introspection has received
significant discussion in the research literature, but these
prior works have focused on the applications of introspec-
tion rather than how to properly build a monitoring archi-
tecture. In this paper we propose a set of requirements that
should guide the development of virtual machine monitor-
ing solutions. To illustrate the viability of these require-
ments, we describe the design of XenAccess, a monitoring
library for operating systems running on Xen. XenAccess
incorporates virtual memory introspection and virtual disk
monitoring capabilities, allowing monitor applications to
safely and efficiently access the memory state and disk ac-
tivity of a target operating system. XenAccess’ efficiency
and functionality are illustrated through a series of perfor-
mance tests and practical examples.

1 Introduction
On the wave of its renewed popularity, researchers are

identifying many new applications that leverage the abstrac-
tions and isolation provided by virtualization. One area that
has received significant attention is security. Security ap-
plications benefit from virtualization by running in isolated
virtual machines (VMs) and building smaller trusted com-
puting bases (TCBs). This technique has been used in a
variety of research projects [21, 9, 10, 18, 7, 15, 2].

Among the security research that uses virtualization, an
increasingly common practice is to setup a secure VM that
is used to monitor the other VMs running on the same vir-
tual machine monitor (VMM)1. These monitors are used in
intrusion detection systems (IDS), integrity checking, hon-
eypot systems and forensic analysis, among others. We be-
lieve that this idea is sound, yet many previous efforts in
this space have focused more on the applications of intro-

1Throughout this paper, the term VMM refers to the virtual machine
monitor on top of which VM’s run, whereas the term monitor refers to the
actual VM monitoring applications that we focus on in this work.

spection than building a proper architecture to support the
technique.

In this paper, we present the XenAccess monitoring li-
brary and our lessons learned from the implementation pro-
cess. XenAccess provides virtual memory introspection and
virtual disk monitoring capabilities. Our experience de-
signing and implementing this library has shown that im-
plementing introspection in a secure and efficient manner
is non-trivial. However, our architecture demonstrates how
one can achieve these goals without losing monitoring func-
tionality. Monitoring with XenAccess requires no changes
to the VMM or to the VM being monitored. In addition,
no changes are required to the OS being monitored, so Xe-
nAccess is not restricted to monitoring open source OSes.
While our current implementation focuses on monitoring
XenoLinux the XenAccess Library can be extended to mon-
itor any OS that runs on the VMM. XenAccess incurs a
negligible performance penalty for typical monitor appli-
cations.

We designed the XenAccess architecture based on six
high-level requirements. In a general sense, these require-
ments can be seen as typical good programming guidelines,
or good security guidelines. For example, some of our re-
quirements could be seen as specialized versions of Saltzer
and Schroeder’s classic security design principles [28]. This
is intentional, as our goal was to leverage known design
principles in order to build a robust monitoring architec-
ture. With this in mind, we identify the following six re-
quirements for monitoring VMs:

1. No superfluous modifications to the VMM. The
VMM should remain as small and simple as possible
since it is part of the TCB. If a VMM includes the nec-
essary primitives to support the monitoring architec-
ture, then it should not be modified. If a VMM lacks
the necessary primitives, then the modifications made
should be what is minimally required to support the
monitoring architecture.

2. No modifications to the VM or the target OS. Mod-
ifications to the target OS (i.e., the OS being moni-
tored), are problematic. The target OS can tamper with



this code, and changes to the target OS may require ac-
cess to the target OS source code, which is not always
available. One of the key reasons why virtualization is
attractive for monitoring is the isolation between VMs.
Placing monitoring code within the same OS that is
being monitored bypasses this isolation, negating this
key benefit. Therefore, this requirement encourages all
monitoring code to remain in an isolated VM unless
such a restriction makes it impossible for a monitor to
gather the necessary information.

3. Small performance impact. An excessive perfor-
mance impact can render a monitoring architecture
worthless. This requirement ensures that the monitor-
ing architecture does not prevent the target OS from
performing its intended functions. The performance
impact is measured as any reduction in performance of
an application caused by the monitoring software. Ide-
ally this impact is both small and consistent, but some
initialization costs may be required.

4. Rapid development of new monitors. New monitors
may be needed to address new types of attacks. Fur-
thermore, it is advantageous to keep the monitor code
simple to limit the opportunity for introducing errors
into the monitors. The monitoring architecture should
provide APIs that are used to develop new monitors.
Therefore, satisfaction of this requirement means that
the APIs should be designed in a way that simplifies
the job of the monitor developer.

5. Ability to monitor any data on target OS. Monitors
should have a full view into the target OS. The moni-
toring architecture should not be limited to providing
information about a small part of the target OS. For
example, an ideal memory monitor should be able to
view all memory on the target OS. Likewise, an ideal
disk monitor should be able to view all data going to
and from the disk device. While this ideal may not al-
ways be possible, the more information a monitor can
view, the harder it is for an attacker to evade detection.

6. Target OS cannot tamper with monitors. If the tar-
get OS can tamper with the monitors, then the pos-
sibility exists for malicious code to tamper with the
monitors. For this reason, all of the monitors should
be isolated or protected from the target OS. This is re-
lated to requirement (2), above. However, here we re-
quire that all monitor code, regardless of its location,
be protected from attack. If all monitor code is in an
isolated VM, then this is not difficult. If some moni-
tor code must be placed outside of the TCB, then addi-
tional measures must be taken to protect that code. The
extent of these measures will depend on the nature of
the code being protected.

Our main contribution is the XenAccess monitoring ar-
chitecture that satisfies the above requirements. It is im-
portant to emphasize that this paper addresses an architec-
ture for security and not actual security techniques (such as
IDS algorithms). These are topics for future papers. The
remainder of this paper focuses on the XenAccess archi-
tecture, its implementation, and some example applications
that demonstrate the performance and flexibility of XenAc-
cess. Section 2 discusses the related work. Section 3 pro-
vides background information on the components in Xen
used to build XenAccess. Section 4 presents the architec-
ture and implementation details for XenAccess. Section
5 shows the results of our performance testing along with
some example applications. Section 6 discusses future di-
rections in this research space and we conclude with Section
7.

2 Related Work
VMMs first came into use over 35 years ago [11]. While

Madnick and Donovan identified the security benefits of
VMMs in the early 70s [20], research that explicitly lever-
aged these benefits did not take place until nearly 20 years
later [17, 16]. More recently, virtualization is being used in
different ways to address a variety of systems management,
and security problems. In the security space, we have seen
innovative work in intrusion detection systems [10, 18, 15],
workload isolation [21, 9], attack investigation and debug-
ging [7], and system monitoring [13, 2]. Each of these ap-
plications have one thing in common: they each require the
ability to monitor data from a target OS. However, the me-
chanics of how to properly do such monitoring have not
been adequately addressed in the literature. Through the
details provided in this paper, and by making XenAccess an
open source project, we are exposing these mechanics for
the benefit of future work in this space.

The technique of virtual memory introspection was in-
troduced by Garfinkel and Rosenblum [10]. While this
work laid out how introspection could be used to build an
intrusion detection system, the underlying mechanics of in-
trospection were not discussed. Joshi et al presented a sys-
tem called IntroVirt [15] that uses introspection and replay
to test if a system was previously attacked through a known
vulnerability. Similar to the first effort, only limited details
were given regarding the introspection mechanism. More
recently, several projects have provided details about their
introspection techniques, only to reveal suboptimal security
decisions in their architecture. The Hyperspector project
[18] is a virtual distributed monitoring environment used
for intrusion detection. The Hyperspector approach to in-
trospection is to provide access to a few specific pieces of
information (processes, sockets, etc). This limited view into
the target OS violates property (5) of our requirements for a
robust monitoring solution, and Hyperspector also violates



property (1) by extensively modifying the VMM, and (6) by
sharing OS kernels between VMs. Asrigo et al presented a
system for monitoring honeypots [2], but they violate prop-
erty (2) by requiring hooks in the target OS kernel, property
(3) by causing a substantial performance impact, and prop-
erty (4) by incorporating kernel code in new monitor hooks.
Finally, the Antfarm system [13] tracks only OS-level pro-
cesses, violating property (5), and performs the monitor-
ing from within the VMM, violating property (1). Each of
these virtual memory introspection systems were built to
provide monitoring capabilities for a security system. How-
ever, none of these systems meet our six requirements for a
monitoring solution, making it much more likely for an in-
truder to compromise, evade or disable the monitors.

Monitoring in a virtualized environment is not the only
approach. Petroni et al developed Copilot [23], a secure co-
processor used to monitor the memory of a host. In practice,
this approach is very similar to virtual memory introspec-
tion from a VM, but it requires extra hardware and cannot
be generalized to monitoring other data such as disk I/O.
Looking into the commercial world, many monitoring ap-
plications sold today simply run within the target OS. For
example, anti-virus software typically runs in the same OS
that it is protecting. However, this architecture is flawed be-
cause malicious software can simply disable the anti-virus
software [3].

Monitoring at the disk level has traditionally taken place
as part of a research trend focused on creating smarter,
more semantically-aware devices. This has applications in
both systems optimization and security. Sivathanu et al
has shown how smart disks can employ gray-boxing tech-
niques [1] to infer the semantics of the underlying filesys-
tem and use this knowledge to enable various performance
improvements and features like secure file deletion [29].
Researchers at Carnegie-Mellon University have leveraged
the physical isolation of such systems to enable intrusion
detection [22, 12] and recovery capabilities [30]. These sys-
tems are able to perform their functions in a tamper-resistant
manner, regardless of an OS compromise. This approach,
however, has the obvious downside of requiring additional
hardware support and the need for a special infrastructure
for communication between the management tools inside
the OS and the disk IDS. XenAccess leverages virtualiza-
tion to provide the same level of monitoring functionality
without either of these limitations.

More recently, disk monitoring has started to receive
attention in the context of virtual machines. Hyper-
Spector’s approach is to mount a shadow version of the
monitored filesystem and execute integrity checkers (e.g.,
tripwire). Not only does this require significant modifi-
cations to the VMM, violating property (1) and increasing
the chances of a VMM compromise; it also limits access to
the disk data by providing an exclusively static and high-

level view of it, violating property (5) and making it very
easy to evade the monitor. Elango et al [8] and Jones et al
[14] have applied some of the principles of semantically-
smart disk systems and gray-boxing [29, 1] to the perfor-
mance improvement of Xen virtual machines. Their results
show how monitoring and active control of virtual machines
can have a wide variety of applications outside the security
area.

XenAccess is designed to work with Xen [4], but the
ideas of virtual memory introspection and disk monitoring
are not unique to Xen. Our architecture could be ported to
any of today’s virtualization solutions. In the past, many
researchers choose to work with User Mode Linux (UML)
[6], a virtualization solution that allows you to boot a Linux
kernel as a process in a running version of Linux. The ear-
liest work with introspection used VMWare [31], a full fea-
tured commercial virtualization product. Looking forward,
interest is now growing in the kernel-based virtualization
driver (KVM) [24] that is built into the Linux kernel starting
with version 2.6.20. While our techniques are viable on any
of these platforms, a virtualization solution designed as an
independent and lightweight software layer running directly
on the hardware, such as Xen, offers a solid foundation to a
security-oriented solution.

3 Xen Hypervisor Background
The XenAccess monitoring library is based on Xen [4], a

popular open-source virtual machine monitor (VMM). This
section gives an overview of Xen’s architecture, followed
by a discussion of its memory management and block de-
vice I/O subsystems. The discussion of these subsystems
is central to the understanding of XenAccess’ monitoring
components.

3.1 Overview

Xen has traditionally used a paravirtualized approach to
implement virtualization. This technique consists of alter-
ing the guest OSes by replacing sensitive instructions that
cannot be virtualized with special hypercalls, that is, calls
that are made directly to the VMM. This approach has the
advantage of providing good performance, since no trap-
ping is done, and also allowing virtual machines to run on
top of non-virtualizable architectures (such as x86) [25].
Nevertheless, one drawback of paravirtualization is that the
guest OSes must be modified. Recent versions of Xen have
the capability to run unmodified OSes by using the new Intel
VT-x and AMD-V technologies. XenAccess uses paravir-
tualized domains without violating property (2) because the
changes required for paravirtualization are not strictly part
of the XenAccess architecture and do not make it any easier
for the target OS to tamper with the monitoring code.

Xen uses a split domain architecture, meaning that reg-



Figure 1: Blktap disk I/O architecture.

ular guest OSes are kept in unprivileged domains (domU),
whereas a single administrative domain exists as Domain
0 (dom0). Dom0 can be seen as a domain-level extension
of Xen in which all of the management functionalities are
located. It has complete access rights to all virtual ma-
chines being run and also works as a device driver proxy
for domU’s virtual devices.

The VMM itself is a simple and thin software layer
whose main job is to guarantee proper isolation between
virtual machines, performing minimal resource manage-
ment. This isolation is quite robust, since Xen relies di-
rectly on hardware-level protection mechanisms and has a
much narrower interface than a standard operation system
(e.g., Linux).

3.2 Memory Management

One of the key tasks for a VMM is to partition the sys-
tem memory between each VM. Xen achieves this using
three levels of memory: machine, physical, and virtual ad-
dresses. The machine addresses are the actual addresses
used by the hardware and managed by the VMM. The phys-
ical addresses are what each paravirtualized OS uses. This
first abstraction allows the VMM to assign non-contiguous
memory regions to a paravirtualized VM. As far as the VM
is concerned, the physical addresses are the addresses used
by the hardware. In reality, these addresses are translated
by a lookup table in the VMM into machine addresses. The
third type of address is a virtual address, which is used the
same way in the paravirtualized OS as traditionally used in
OSes.

Both machine and physical addresses are often referred
to in terms of a machine frame number (MFN) and a phys-
ical frame number (PFN). These numbers refer to a single
page of memory, which are 4k bytes each2. A complete ad-
dress is given as both an MFN or PFN and an offset into

2Here we refer to the x86 architecture where memory pages are usually
4k, but can also be 4M.

that page of memory. Using this scheme, Xen provides ta-
bles to convert from MFN to PFN and PFN to MFN. These
tables are called M2P and P2M, respectively. Similarly, the
running OSes use a page table (PT) to convert between vir-
tual addresses and machine addresses. Xen protects these
PTs in order to ensure the memory isolation between VMs.
A paravirtualized OS must invoke a hypercall to modify its
PT.

3.3 Device I/O

Xen’s device I/O architecture is based on a split driver
model. In this model, there is a frontend driver inside
domU’s kernel that communicates with a backend driver in-
side dom0’s kernel. Inter-domain communication relies on
shared asynchronous I/O rings, shared memory pages and a
control framework called XenBus. This architecture is cur-
rently used for block and network devices.

For block devices, system calls are issued by domU ap-
plications, which are translated into block-level operation
requests by the kernel. Traditionally, the backend driver in
dom0’s kernel receives the request from the frontend, and
sends them directly to the disk. Xen 3.0.3 introduced a
new architecture for block device I/O, illustrated in Fig-
ure 1, with some interesting new properties. A block tap
was introduced, allowing disk drivers to be implemented as
userspace applications. These userspace drivers tap into the
backend driver (blktap) and can directly manage disk activ-
ity with relatively small performance costs [32]. This archi-
tectural change added substantial flexibility to disk driver
development, greatly simplifying it and at the same time
allowing more powerful functionalities to be implemented.
The fact that tapdisk drivers are regular userspace applica-
tions allows virtual disk I/O to be implemented with simple
file-manipulation system calls and/or library calls.

4 XenAccess Monitoring Library
4.1 Architecture

The primary goal for the XenAccess architecture is to
satisfy the six requirements stated in the Introduction. We
chose Xen as a virtualization solution because it is a Type
I VMM; it runs directly on the hardware, allowing for a
solid foundation to the TCB. It also already includes an in-
frastructure suitable to satisfy our monitoring needs, so that
changes to the VMM are unnecessary (property (1)). Like-
wise, by building on top of Xen’s infrastructure, we were
able to design the monitoring architecture to work without
changes to the target OS, allowing us to satisfy property (2).
To prevent the target OS from tampering with the monitors
and satisfy property (6), we place the monitors in a differ-
ent VM than the target OS. Xen provides sufficient isola-
tion between VMs for this to be a viable solution. And, for



Figure 2: The XenAccess architecture leverages existing ca-
pabilities in Xen to reduce complexity and improve overall
performance.

environments that require more explicit isolation, manda-
tory access control is built into the Xen VMM [27]. Fi-
nally, we desire an architecture that can monitor any data
on the target OS in order to satisfy property (5). XenAccess
currently provides monitoring capabilities for both memory
and disk I/O. However, the architecture can easily be ex-
tended to monitor additional information such as network
traffic, CPU context, and static disk contents. We examine
XenAccess’ adherence to properties (3) and (4) in Section
5.

Figure 2 shows the overall software architecture from
two perspectives. On the right, we show the location of the
critical components in relation to the VMM and VMs. Cur-
rently, XenAccess runs in Domain 0 as this simplifies ac-
cess to the Blktap Architecture and the XenControl Library.
XenAccess could also run in a user domain after sufficient
privileges are given for that domain to perform the monitor-
ing. The left side of Figure 2 shows how XenAccess fits into
the Xen software stack. Here we emphasize that XenAccess
is a library intended for use by monitor applications. Some
simple example applications are discussed in Section 5.2.

Virtual memory introspection requires accessing the
memory of one VM from another. Xen provides a func-
tion in the XenControl Library that is used for this pur-
pose and this functionality could be added to other VMMs
using a small amount of additional code. In Xen, the
function xc map foreign range(), maps the memory
from one VM into another. After the memory is mapped, it
can be treated as local memory, providing for fast monitor-
ing capabilities. In order to convert a XenAccess API call
into a call to xc map foreign range(), XenAccess
must perform several memory address translations. This
requires additional information about the target OS which
can be obtained from the XenStore, a database of informa-
tion about each VM, and interpreted using some knowledge
of the target operating system’s implementation. The steps

needed to convert a kernel symbol or virtual address into a
memory mapped page are discussed in Section 4.2.1.

Whereas virtual memory introspection monitors the cur-
rent state of memory pages, the virtual disk monitoring cap-
tures data traveling to and from the disk. This data is cap-
tured by placing code that directly intercepts the data path
between the target OS and the hard drive it uses for data
storage. We chose the Blktap Architecture for this capabil-
ity due to its good performance [32] and its ability to de-
liver low-level information to user-space software such as
the XenAccess Library.

The XenAccess architecture utilizes functionality in-
cluded with Xen in order to reduce the implementation over-
head and adhere to property (1). At this point it is important
to emphasize that while we acknowledge that XenAccess’
functionality and its adherence to the principles established
in the Introduction are significantly based on the infrastruc-
ture already provided by Xen, the XenAccess architecture
and the principles supporting it could be implemented on
other VMMs as well. The core functionality needed in
the VMM includes mapping memory between virtual ma-
chines, viewing VM-specific metadata (e.g., running kernel
version), and tapping into the data between a device (e.g.,
the hard disk drive) and the associated device driver. This
functionality could be added to any modern virtualization
environment, if it is not already there, allowing for sup-
port of the XenAccess monitoring architecture. The only
caution that must be taken is to implement at the VMM
level only that which is strictly necessary, and do it very
carefully, so as to minimize the probability of introducing
bugs in the TCB. All the remaining functionality should be
implemented in a special security or management domain
(such as Xen’s dom0) taking the appropriate performance
considerations.

4.2 Implementation

XenAccess is implemented in C as a shared library with
1935 source lines of code (SLOC). XenAccess makes use
of libxc, libxenstore, and the Blktap Architecture.
The current version is built to monitor a paravirtualized ver-
sion of Linux 2.6.16 running on Xen 3.0.4 1, however the
techniques here can be extended to work with other OSes.
The two primary monitoring functionalities in XenAccess
are virtual memory introspection and virtual disk monitor-
ing. Implementation details for each of these techniques are
discussed in the sections below.

4.2.1 Virtual Memory Introspection

XenAccess uses the xc map foreign range() func-
tion, provided through the XenControl Library (libxc),
to view the memory of another VM. Using this function



eliminates the need to modify the VMM or the target OS,
satisfying properties (1) and (2). This function can be used
to map a memory page from the target OS using its MFN.
XenAccess uses this function for raw memory access and
then builds up from there using address translation tables in
the VMM and the target OS. For example, to convert a PFN
to a MFN, XenAccess uses lookup tables that are provided
by Xen. Similarly, to convert a virtual address to a MFN,
XenAccess uses the PTs.

Memory Introspection API

• xa init(): Initializes access to a specific domU
given a domain ID. This function takes a domain ID
and returns a structure that holds cached informa-
tion related to accessing that domain. All calls to
xa init() must eventually call xa destroy().

• xa destroy(): Destroys an instance by freeing
memory and closing any open handles.

• xa access kernel symbol(): Memory maps
one page from domU to a local address range. The
memory to be mapped is specified with a kernel sym-
bol (e.g., from System.map). This memory must be
unmapped manually with munmap().

• xa access virtual address(): Memory
maps one page from domU to a local address range.
The memory to be mapped is specified with a kernel
virtual address. This memory must be unmapped
manually with munmap().

• xa access user virtual address(): Mem-
ory maps one page from domU to a local address
range. The memory to be mapped is specified with
a virtual address inside a process address range. This
function also requires a process ID. This memory must
be unmapped manually with munmap().

We provide an overview of the implementation of each of
these functions.

All users of the introspection library must begin with
a call to xa init(). This function initializes the
xa instance struct which holds information that is
used throughout the introspection process. Any work that
can be done “up front” and cached is held in this structure.
This includes locating the address of the kernel page direc-
tory, initializing a handle to libxc, initializing a pointer
to a PFN to MFN lookup table, determining if the domain
is paravirtualized or fully virtualized, and more. Once a
user is done with the library, a call should be made to
xa destroy() to free any memory associated with the
xa instance struct.

After initializing the xa instance struct,
one can use any of the three access functions

Figure 3: The steps needed to map a kernel memory page
based on a kernel symbol using virtual memory introspec-
tion.

listed above. Starting with the simplest, the
xa access virtual address() takes a kernel
virtual address and returns a pointer to the memory page
holding that address along with the offset to the specified
address within the memory page. This address translation
requires a PT lookup, which requires XenAccess to load
three memory pages. First, the page directory is loaded
to find the location of the PT. Next, the PT is loaded to
find the location of the address. Finally, the memory page
holding the address is loaded and this page, along with
an offset to the address, is returned to the user. Returning
a shared memory page contributes to the good inter-VM
memory copy performance shown in Section 5.1, which is
a requirement for property (3).

The xa access kernel symbol() function,
shown in Figure 3, requires one extra step beyond the
virtual address translation described above. This step is
to convert a kernel symbol to a virtual address. XenAc-
cess performs this conversion using the System.map
file associated with the kernel from domU. If this
file is not available, then this function will fail. The
System.map file is essentially a large table of symbols
and addresses. XenAccess scans this file until it finds
the symbol provided. It then proceeds with a virtual
address access using the address associated with the kernel
symbol. Since this operation requires performing a lookup
from a file on disk, it is considerably slower than the
xa access virtual address() function, but the
results are cached so the average case is fast as discussed in
Section 5.1. Further performance improvements could be
achieved by memory mapping the file, moving the costly
file read operations into the xa init function. However,
most monitoring applications will repeatedly view the same
memory location, using the cached information.



The final function in the virtual memory introspection
API is xa access user virtual address(). This
function provides access to user space memory. Page table
lookups for a virtual address in user space are essentially
the same as kernel space. The main difference is that we
must lookup the location of the page directory associated
with the process. Recall that for kernel space, the location
of the page directory is cached during library initialization,
but the page directory locations for each process can change
as processes come and go. To lookup the page directory for
a process, XenAccess scans the kernel task list looking for
a process with the given process ID. Upon finding a match,
the page directory can be obtained from the task struct
in kernel memory. Using this page directory, the remainder
of the virtual address translation is the same as previously
described for the kernel.

HVM Support XenAccess has preliminary support to
perform memory introspection on fully virtualized (HVM)
VMs. In HVM VMs, physical addresses and machine ad-
dresses are the same. Therefore, XenAccess will automati-
cally detect HVM domains and not attempt to perform this
translation in those cases. In practice, the P2M translation
is a simple table lookup, so omitting this step does not mea-
surably improve performance. Since memory introspection
support for HVM VMs is in its early stages, there is some
reduced functionality. This reduced functionality is the rea-
son why there is no HVM performance data available for
the user address function in Figure 5.

Improving Performance Since XenAccess must use
memory from the target OS and the VMM to perform ad-
dress translations, these operations can be costly. Therefore,
XenAccess uses a least recently used (LRU) cache to store
the results of the address translations. This is similar to a
translation lookaside buffer (TLB). However, in the case of
XenAccess, we also cache kernel symbol names since disk
access is always a slow operation. This caching is critical to
achieving acceptable performance and satisfying property
(3), as discussed in Section 5.1.

Use of OS-specific Information A virtual memory ad-
dress can be converted to a MFN without any knowledge
of the OS in domU. This is because the address conversion
is specific to the processor architecture and not to the OS. A
PT lookup, which is required to perform this address con-
version, starts by obtaining the address of the page direc-
tory. This information is stored in one of the control reg-
isters, CR3, of the domU CPU context. Starting with the
page directory, one can complete a PT lookup and, there-
fore, find the MFN associated with any virtual address on a
host. However, it can be difficult to determine what virtual
address to access.

Identifying virtual addresses that are interesting requires
some knowledge about the OS. One artifact of compiling a
Linux kernel is the System.map file. This file is a listing
of symbols exported from the kernel along with the virtual
address of each symbol. Using this file, combined with the
ability to access arbitrary virtual addresses, one can view
and modify data such as the system call table, interrupt de-
scriptor table, Linux kernel module (LKM) list, task list,
and more. In Microsoft Windows, exported symbols are
available in debugging libraries and in ntdll.dll. Of
course, making use of these data structures requires knowl-
edge of the data layout inside each structure. In Linux, this
is determined by inspecting the source code and using tech-
nical references such as the kernel books by Bovet and Ce-
sati [5] or Love [19]. In Windows, much of this information
is available in technical references as well [26].

The memory introspection implementation in XenAc-
cess provides logical separations between the OS-specific
code and the general code that is OS-neutral. This is done
to permit rapid integration of new target OSes. For example,
the current code is only designed to monitor a Linux 2.6 OS,
but extending XenAccess to monitor Windows or FreeBSD
would only require adding the specific knowledge for each
OS.

4.2.2 Virtual Disk Monitoring

XenAccess introspects into low-level disk traffic, just as it is
able to map raw memory pages. It therefore satisfies prop-
erty (5) by providing full and complete access to data. Xe-
nAccess also includes an inference engine which is able to
dynamically infer the high-level filesystem operations ex-
ecuted inside a domain based on the intercepted low-level
disk traffic. To this end, we have decided to leverage the
Blktap architecture described earlier since it simplifies the
implementation of the interception mechanism and avoids
making modifications to the VMM, which is encouraged by
property (1). The biggest challenge, however, is faced by
the inference engine which must somehow overcome the
semantic gap between the low-level view and the desired
higher-level, filesystem-oriented view that will be given as
output. It does this combining pre-programmed filesystem
structure knowledge with dynamic inference techniques.

Whereas the interception mechanism (which is roughly
equivalent to the introspection memory-mapping) is inde-
pendent of the current OS and filesystem by only providing
raw access to disk traffic, the inference engine is dependant
on knowledge of the filesystem in use. So far, knowledge
has been included in the inference engine to be able to deter-
mine only file/directory creation/removal operations under
the ext2 filesystem, although knowledge about other filesys-
tems can be incorporated.



Figure 4: The XenAccess disk monitoring functionality. (1)
A mkdir() system call is executed by an application inside
the user VM. This call is translated into low-level operations
by the kernel and sent to the backend driver at the monitoring
VM. (2) The block data flow is intercepted by the wrapper
driver before it is processed by the tapdisk driver and sent
through the tap FIFO. (3) Blocks are read from the FIFO and
hashed into the table. (4) If a record is found for a block X
(which holds part of /tmp contents), it is parsed and sorted.
If not, it is discarded. (5) The new and old version of block
X are compared, its differences are translated into a directory
creation.

Disk Monitoring API

• xadisk init(): Opens the FS image file and ini-
tializes the library’s main data structures;

• xadisk destroy(): Closes the image file and
deallocates all global structures;

• xadisk set watch(): Sets a watch-point in one
of the filesystem’s directories;

• xadisk unset watch(): Removes the watch as-
sociated with a directory;

• xadisk activate(): Creates a thread that runs
the main monitoring and inference engine;

• xadisk deactivate(): Finishes the monitoring
thread associated with a monitoring instance.

Wrapper drivers As illustrated in Figure 4, wrapper
drivers intercept the disk data flow before it is processed by
the tapdisk driver, sending all the data received to the infer-
ence engine. Their functionality is simple: disk block data
and metadata received from kernel space are marshalled
into a buffer and sent to the inference engine through a
FIFO. This architecture allows the inference routines to ex-
ecute asynchronously with the actual disk reads and writes,
which reduces performance impact.

Initialization and Watchpoints The disk monitoring li-
brary is initialized by the xadisk init() function. It
creates and initializes all relevant data structures, and opens
all FIFO and file descriptors that will be used. It also reads
and parses important filesystem metadata contained in the
filesystems’s superblock and the group descriptors. It gath-
ers all the essential information to bootstrap the monitor-
ing instance, allowing watchpoints to be set and the in-
ference engine to start. This information is stored in a
xadisk t struct, which is returned by the function.
The xadisk destroy() function ends a monitoring in-
stance, closing the image file descriptor and deallocating all
associated data structures.

Watchpoints are set by the xadisk set watch()
function. It receives as an argument the full path of a
directory that is to be monitored for file/directory cre-
ation/removal. This function initially performs a recursive
search through the filesystems’s structures (inodes and di-
rectory entries) with the goal of finding the disk block(s)
which store the directory’s content. The corresponding
blocks are then read from disk, parsed, and have their en-
tries sorted. Finally, they are inserted into a global hash
table. Watchpoints are erased by removing the correspond-
ing block records from the hash table. This is done by the
xadisk unset watch() function.

Inference Engine The inference engine constitutes the
core of the virtual disk monitoring library and its opera-
tion is illustrated in Figure 4. It is activated by the API
function xadisk activate(), which subsequently cre-
ates a new thread running the engine itself. At each iter-
ation, the engine reads a new record from the tap FIFO,
sent by the wrapper driver. Next, the record’s block num-
ber is hashed into the global hash table and the existence
of an older version is checked. If it is found, file/directory
creations/removals are inferred by determining the differ-
ences between the old and new versions of the block. The
name and type of the object created or removed can be de-
termined by looking at the type field in the corresponding
entry. Results are written to a per-application FIFO that is
accessible by a program using XenAccess. The function
xadisk deactivate() stops the inference engine by
killing the thread executing it and closing all associated de-
scriptors.

Limitations The current implementation has some limita-
tions. Although it has access to all data sent to the disk, for
now the inference engine is only able to infer file/directory
creation/deletion. It is certainly possible, nevertheless, to
implement the inference of more intricate operations like
file read/write, object renaming and file truncating. More
elaborate algorithms will be required, but the same moni-
toring architecture can be used.



Since we directly rely on the Blktap Architecture which
is exclusive to paravirtualized environments, disk monitor-
ing of fully-virtualized guests (and therefore, OSes other
than Linux) is not supported for now. However, we feel that
implementing this support would not require major effort,
since the inference engine would not require any structural
changes. It would be a matter of finding out at which point
of the disk data flow a tap must be introduced and a new
wrapper driver implemented. And of course, the inclusion
of specific knowledge of the filesystem being used is also
necessary.

Similarly, although the current implementation of the
inference engine is dependant on detailed knowledge of
the ext2 filesystem, its architecture could be used without
changes to monitor other filesystems that adhere to the same
general design principles as ext2 (such as the use of direc-
tory structures). Besides, we were careful enough through-
out its design and implementation to compartmentalize al-
most all filesystem-specific implementation, making it easy
for the integration of new ones.

5 Experimental Results
This section focuses on the performance and qualita-

tive evaluation of our prototype. We evaluate the perfor-
mance of each technique separately through a series of
micro-benchmarks. This is followed by example applica-
tions of each monitoring technique, showing their useful-
ness in monitoring an OS’s internal structures and disk ac-
tivity.

5.1 Performance Results

The performance figures show that XenAccess intro-
duces minimal overhead. We performed the testing on Xen
3.0.4 1 running Fedora Core 6 in both dom0 and domU.
This software was run on a 2.33 GHz Intel Core Duo pro-
cessor with 2 MB L2 cache, 2 GB RAM, and an 80 GB
7200 RPM disk. Dom0 was assigned 2 processor cores and
domU was assigned one processor core.

5.1.1 Virtual Memory Introspection

Each of the performance measurements shown in this sec-
tion were done using the gettimeofday() function,
which has a micro-second granularity. Times were mea-
sured by recording the time immediately before and after
the function being measured. The difference between the
two times was recorded. This measurement was repeated
for 1000 times for each test. We choose 1000 measure-
ments because this was sufficient to minimize the standard
deviation for a given set of measurements under this setup.
Additional measurements did not improve the precision.

The data in Figure 5 show the average time to com-
plete the specified function call. The cache hit columns
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in XenAccess for a paravirtualized target domain.
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Figure 6: Time for monitor to read memory through intro-
spection.

represent the results with the LRU cache enabled. The
cache miss columns represent the results with LRU cache
disabled. The simplest case is shown on the left of this
graph. The xa access virtual address() func-
tion must map three memory pages on a cache miss
and one on a cache hit. This difference explains the
improvement seen with the LRU cache. The time for
xa access kernel symbol() is dominated by the op-
eration to lookup the kernel symbol. This operation is
a lookup inside a file on disk, which is costly. With
a cache hit, the symbol to machine address mapping is
stored in the cache, making the performance similar to
xa access virtual address(). The last access
function is xa access user virtual address().
This function must traverse the task list in the domU
kernel to locate the page directory for the process vir-
tual address. This explains the slower performance
for the cache miss. On a cache hit, this traversal
is not needed, performance is essentially the same as
xa access virtual address().

After the memory is accessed, the next step is to read
from or write to that memory. As seen in Figure 6, this op-
eration is fast compared to mapping the memory. These per-
formance results show the time required to memcpy() data
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Figure 7: Performance of three different scenarios run-
ning a disk benchmark. Mode 1: Disk monitoring enabled
and watchpoints set on each benchmarking directory; Mode
2: Disk monitoring enabled and no watchpoints set on the
benchmarking directories; Mode 3: Standard block-aio
tapdisk driver being used (no monitoring).

from kernel memory in the target OS. In general, we found
that data is copied into a data monitor at a rate of approxi-
mately 1kB / µsec. Figure 6 shows that memcpy() perfor-
mance for PV and HVM VMs is essentially the same. The
variance in these measurements can be attributed to exper-
imental noise given the precision of our timing mechanism
and the small measurement times. Looking at the cache
hit values in Figure 5 and the memory copy performance,
the memory introspection capabilities in XenAccess per-
form well enough to have a negligible impact on the overall
system performance, satisfying property (3) from the Intro-
duction.

5.1.2 Virtual Disk Monitoring

XenAccess’ disk monitoring performance was evaluated
through the execution of a benchmarking shell script. This
script tests exhaustively one of the operations monitored by
XenAccess: file creation. It works by measuring the time it
takes to create a variable number of files inside ten different
directories. The total number of files created is equally dis-
tributed throughout the ten directories. The timing measure-
ments include both the execution of the file creation com-
mands and the manual flushing of the changes to the disk
(through the sync command). Manual flushing was nec-
essary so that the actual performance impact would not be
hidden by the operating system’s buffer cache.

The script was executed in three different modes and the
results were compared. A sample size of 50 was used for
each mode, which was enough to minimize the standard de-
viation. Measurements were made using the Linux time
command, which has millisecond precision. A description
of the modes is included in Figure 7 caption.

Figure 7 shows that the difference between the different

timing measurements for each test case is negligible. Even
in the case where 2000 files were created, the differences
between the measurements were not statistically significant.
The conclusion is that the performance overhead added by
XenAccess’ disk monitoring capabilities are minimal, and
therefore obeys property (3) as defined in the Introduction.

The explanation for this negligible overhead lies in the
design of the Blktap architecture, as well as XenAccess’
own design. Most of XenAccess’ disk monitoring engine
code is executed asynchronously with regard to the actual
disk I/O. The wrapper driver is basically the only extra code
added by XenAccess to the disk I/O critical path. It does a
simple data marshaling followed by a memory copy oper-
ation to the tap FIFO. These are not expensive operations.
The asynchronism created by the use of a FIFO allows the
inference engine, which is the most performance-intensive
component of the architecture, to execute in parallel with
the actual disk operations. In addition, we ran our bench-
marks on a dual-core platform, enabling real parallelization
of the tasks.

5.2 Example Applications

XenAccess is straight forward to use, allowing for rapid
development of new monitors to satisfy property (4) from
the Introduction. In this section we show several exam-
ple applications to demonstrate our monitoring capabilities.
While reading through these examples, keep in mind that
we are deliberately showing simple use cases as an intro-
duction to the library. However, XenAccess provides com-
plete read/write access to a VM’s memory space and has
complete access to the disk I/O. With this level of power, the
potential applications are only limited by the user’s imagi-
nation.

5.2.1 Virtual Memory Introspection

Using introspection, XenAccess can view and modify data
in memory of a running OS. The example below shows how
to use XenAccess to view the LKMs. Additional examples
in the open source release show how to list running pro-
cesses and view memory pages of a particular process on
the target OS. These examples utilize information directly
from a running Linux kernel.

List Linux Kernel Modules This example uses the
xa access kernel symbol() function to list the
LKMs installed into the domU kernel and is 44 SLOC. Pro-
gram 5.1 shows the code for this example. The code follows
a linked list in the domU kernel memory using introspec-
tion. It starts by loading the memory page containing the
head of the list, which is found using the modules kernel
symbol. This address points to a module struct. This



structure contains a circular doubly linked list that points to
the rest of the modules. Therefore, the code proceeds by
loading the memory page addressed by the next pointer all
the way down the list. For each structure, the module name
is accessed by creating a pointer to its offset, and then it
is printed to stdout. Since the linked list is circular, the
code ends when it finds a pointer back to the head of the list.

Program 5.1 Source code for an example that lists all run-
ning LKMs in the domU kernel. All error checking code
has been removed for clarity.
xa_init(dom, &xai);
memory = xa_access_kernel_symbol(&xai,

"modules", &offset);
memcpy(&next_module, memory + offset, 4);
list_head = next_module;
munmap(memory, XA_PAGE_SIZE);
while (1){

memory = xa_access_virtual_address(&xai,
next_module, &offset);

memcpy(&next_module, memory + offset, 4);
if (list_head == next_module){

break;
}
name = (char *) (memory + offset + 8);
printf("%s\n", name);
munmap(memory, XA_PAGE_SIZE);

}
xa_destroy(&xai);
if (memory) munmap(memory, XA_PAGE_SIZE);

Since this example is accessing and displaying OS-
specific information, it requires OS-specific knowledge. In
this case, the knowledge falls into two categories. First, we
must know that the modules symbol points to the begin-
ning of a linked list that will provide the information that we
need. Second, we must know the offsets within the module
struct needed to access information such as the next
pointer and the module name. Requiring this type of infor-
mation is common for introspection applications. For this
example, the information needed was available in both the
Linux source code, and Bovet and Cesati’s kernel book [5].

Additional Examples The example above is straightfor-
ward and provides a quick understanding of XenAccess’s
introspection capabilities in operation. Other monitors are
not much more complex. For example, we developed an
application that monitors for changes in the system call ta-
ble (110 SLOC) and an application that monitors the in-
tegrity of an installed LKM (172 SLOC). The security ap-
plications of these types of monitoring are clear in areas like
intrusion detection and integrity checking, and have been
well explored in literature. XenAccess makes these types
of applications possible by providing memory access at the
proper levels of abstraction. Compared to other virtualiza-
tion monitoring architectures, such as the work by Asrigo

et al [2], XenAccess allows for rapid monitor development
since monitors are small user-space applications rather than
kernel hooks. Based on our experience building XenAccess
introspection monitors, we feel that our architecture satis-
fies property (4).

5.2.2 Virtual Disk Monitoring

In this example, three file/directory creation/deletion com-
mands are executed inside domU followed by the sync
command, which flushes the changes to disk. In the man-
agement VM, a monitoring program is run which catches
changes to the /root directory in domU for 30 seconds
using XenAccess disk monitoring capabilities. This is done
by first initializing the engine and setting a watchpoint in
/root by using the xadisk set watch() function.
Next, the engine is activated and its output is directed to
the standard output. The monitor’s source code is shown
in Program 5.2 and a sample execution is shown below for
both domU (left) and dom0 (right).

domU ˜ # mkdir foo dom0 ˜ # ./monitor /root
domU ˜ # touch dummy MKDIR: /root/foo
domU ˜ # rm bar MKFILE: /root/dummy
domU ˜ # sync RMFILE: /root/bar

Program 5.2 This disk monitoring application outputs to
the standard output all file/directory creation/removals hap-
pening in domU’s /root directory as soon as they are com-
mitted to disk.
xadisk_t *x;
xadisk_obj_t *obj;
x = xadisk_init(1, FILE_IMAGE);
obj = xadisk_set_watch(x, argv[1]);
xadisk_activate(x, "/dev/xen/tapfifo0\0");
dup2(1, x->fifo_fd);
sleep(30);
xadisk_unset_watch(x, obj);
xadisk_destroy(x);

The simplicity of this example shows how XenAccess
can be used to enable rapid development of similar moni-
toring applications, satisfying property (4).

From a security perspective, one application of this
engine is a disk-based intrusion detection system [22,
12] whose goal is to detect suspicious file/directory cre-
ation/deletion commonly done by rootkits. In this case,
the watchpoints would most likely be set in privileged sys-
tem directories such as /bin and /usr/bin. An IDS de-
ployed in this fashion has the obvious advantage of not re-
quiring additional hardware in the hard drive, as done by
traditional disk-based IDSes to achieve isolation. In our
case, the isolation is provided by the VMM.

The need to manually perform a disk flush through the
sync command in the example above illustrates one of the



problems involved in this type of monitoring: the fact that
changes made to the filesystem are not immediately com-
mitted to the disk in modern OSes. This can have serious
implications for real-time disk-based IDSes, as it opens a
window for evasion attacks. One way of addressing this
problem is to use disk monitoring together with memory
introspection: disk flushes could be externally enforced by
actively manipulating the flushing timers in the guest OS
memory through introspection. This approach is currently
being investigated, along with others in which memory in-
trospection and disk monitoring can be associated.

6 Discussion and Future Work
Stepping back to look at the six requirements given for

a robust monitoring solution, we note that XenAccess sat-
isfies each of these requirements. (1) The XenAccess Li-
brary uses an unmodified version of Xen as a VMM plat-
form. (2) Using the capabilities provided by Xen, no spe-
cial code needs to be inserted into the target OS. This is
especially useful as it allows XenAccess monitors to work
with both open and closed source target OSes. (3) Our per-
formance testing shows that our address translation, mem-
ory copying, and disk I/O monitoring functions have small
overheads, making these capabilities effective for a variety
of monitoring applications. (4) Our example applications
show that developing monitors with XenAccess is straight-
forward, with a minimal learning curve. (5) While our exist-
ing library implementation can view memory and disk I/O,
the XenAccess architecture is easily extensible to collect
any type of data from the target OS. (6) Finally, leveraging
the protections provided by the VMM, XenAccess is suf-
ficiently isolated from the target OS and any possibility of
tampering by malicious software.

XenAccess currently provides a solid foundation for
monitoring in a virtualized environment. Yet, our experi-
ences working with virtual memory introspection and vir-
tual disk monitoring highlighted some areas that would ben-
efit from additional research. Introspection requires use
of OS-specific information, as discussed in Section 4.2.1.
This means that it is possible for an OS upgrade, hotfix, or
patch to break the monitors. Ideally, XenAccess should pro-
vide an abstraction layer that dynamically adapts to these
changes and provides a consistent interface to monitor ap-
plications. Finding techniques to enable this approach is
still an open research problem.

For reasons of backwards compatibility, changes in
filesystem structure and layout are very rare. So disk moni-
toring is not prone to the types of problems discussed above
for introspection. Instead, we envision the future work in
this space to focus on scalability, functionality, and HVM
support. The current issues with scalability and function-
ality were discussed in Section 4.2.2. HVM support will
require changes to tap into the QEMU device driver mech-

anism used by Xen.

7 Conclusion
This paper described XenAccess, a monitoring library

for Xen virtual machines. XenAccess’ development was
guided by a set of design principles aimed at providing
a solid foundation for secure and flexible virtual machine
monitoring. XenAccess implements virtual memory intro-
spection and virtual disk monitoring capabilities by leverag-
ing Xen’s existing infrastructure. By using it to access the
target VM’s raw memory pages and disk I/O, XenAccess is
able to infer OS data structures and filesystem operations at
a useful abstraction level.

Our evaluation revealed that XenAccess imposes a min-
imal performance overhead to the target OS memory and
disk operation. We also showed practical examples of the
type of information that memory introspection and disk
monitoring can gather, illustrating the potential of each
technique.
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