Cloud Security Overview

Murat Kantarcioglu

Outline

- Current cloud security techniques
 - Amazon Web services
 - Microsoft Azure
- Cloud Security Challengers

Amazon Security Overview

- AWS is compliant with various security certifications
 - E.g., FISMA (Federal Information Security Management Act)- Low Level
 - Internal information, communication and employee lifecycle management to increase security

AWS Physical Security

- Data centers are protected by many security features and safe guards
 - Two factor authentication, security force etc.
 - Fire Detection and suppression
 - Power
 - Climate and Temperature safeguards

AWS Configuration and Continuity Management

- Changes are reviewed, tested, and approved before rolled out.
- Different availability zones to separate faults
 - Different regions could be selected for regulatory compliance or increasing reliability.
- 24x7 incident response team
- Backups for stored data
- Physical devices are erased using DoD or NIST media sanitization techniques

AWS Identity and Access Management

- For each AWS account, you can create multiple users with different credentials
- For each user, you can give different rights
 - More details on this when we cover Identity management and cloud.
- Multi-factor authentication based on hardware tokens
- Key and Certificate Rotation for increased security

AWS Network Security Features

- Increased reliability against DDOS
- SSL based access to almost all resources to prevent man in the middle attacks
- All EC2 instances needs to use their actual IPs and MAC addresses.
- Packet Sniffing by other tenants are prevented by Hypervisor
 We will talk about Hypervisor's in detail later.
- You can create Virtual Private Clouds that are distinct, isolated network within cloud.

EC2 Security

- Host operating systems are protected
 - Two factor authentication
 - Auditing
- Guest operating systems must be controlled by users
- Firewalls

EC2 Firewall

EC2 Firewall Features

- Firewall is not controlled through Guest operating system
 - X.509 certificates and keys are needed to authenticate with the firewall
- Guest OS level firewalls could be added for additional security

Hypervisor based Isolation and Security

- Hypervisors are used to limit access to resources and to maintain isolation between instances
- Prevents access to raw hard disks

Storage Systems (EBS, S3 etc.)

- SSL based secure APIs
- Authentication based on HMAC or public key crypto
- Security groups
- Possible Access logging
- Data can be encrypted by the customer

Microsoft Azure Overview

Figure 2: More granular illustration of Windows Azure components and relationships.

Azure Structure

- Each role instance is a new VM
- VMs run on Microsoft Azure Hypervisor
- One VM is special
 - Runs "hardened" root OS
 - Hosts Fabric Agent (FA)
- FAs manage Guest agents within Guest OSes on customer VMs.
- FAs manage storage nodes
- The collection of Hypervisor, VMs, FA and customer VMs comprises compute node.

Microsoft Azure Authentication

- SMAPI is a REST protocol for web services
 - Runs over SSL using self-signed certificates
- Certificates and keys store separately by Azure
 - Encrypts the keys and stores some secret location
- Fabric Controller keeps separate master key and authentication keys to authenticate with hardware devices

Table 1 - A summary	of Windows	Azure	authentication	mechanisms.
---------------------	------------	-------	----------------	-------------

Subjects	Objects	Authentication Mechanism
Customers	Subscription (Compute & Storage)	Windows Live ID
Developers & Operators	Windows Azure Portal/API	Live ID (Windows Azure Portal) or Self-signed certificate (SMAPI)
Role Instances	Storage	Storage account key
External Applications	Storage	Storage account key
External Applications	Applications	Customer-defined

Access Control In Azure Storage

- User can create multiple accounts
- Each account has a storage key
- Given a storage key, you can access all the data related to storage key.
 - No fine grained access control !
- Data can be made publicly readable
- User can sign query templates using storage account key
 - Container lever access policies are also possible
- Two keys could be valid at any given time to allow key updates

Azure Isolation

- Hypervisors used for isolation
- Isolation of FC are achieved by limiting communication with FA
 - Unidirectional communication to FAs
 - FAs reply requests
 - All incoming messages assume to be untrusted
 - If possible some FCs are put on separate VLANs

Azure Packet Filtering

- Root OS and Hypervisor filters packets to prevent spoofed and unauthorized traffic.
- Customer access to VMs is limited
 - E.g., no remote terminal connection
- Connection between different applications is considered internet connection.

lacksquare

Other Azure Security and Reliability Features

- Cryptographic tools for data encryption
- Data deletion for disposed hardware
- Integrity checks for data
- Backups to increase availability
- Monitoring agents gather data from FCs and root OSs to create audit logs
- Personnel policies, physical security similar to Amazon

Main Cloud Security Problems

- VM- level attacks
 - Exploit potential vulnerabilities in hypervisor
- Cloud provider vulnerabilities
 - E.g. cross-site scripting vulnerability in Salesforce.com
 - Phishing
- Integrating cloud authentication with company authentication mechanisms
- Availability
- Single point of Failure
- Assurance of computational integrity by cloud provider

Issues with moving data to cloud providers

- Will cloud provider fight against a subpoena?
- Do you trust Azure logs to show gross negligence on Microsoft part?
- Contractual obligations?
- If you can hack one place for espionage Gmail could be a good starting point?
- Data lock-in

What is new in cloud computing security?

- Too big to fail?
 - What if Amazon hardware is confiscated?
 - What if Amazon fails?
- Hiding activity patterns
- Using cloud for crime?
- Secure cloud auditing
 - Mutual auditability

 In Microsoft Azure Storage, for a given storage account, how would you enable fine grained access control? Your answer should be less than 30 words.

