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Abstract— Virtualization is being widely adopted in today’s
computing systems. Its unique security advantages in isdiag
and introspecting commodity OSes as virtual machines (VMs)
have enabled a wide spectrum of applications. However, a com
mon, fundamental assumption is the presence of a trustworth
hypervisor. Unfortunately, the large code base of commodit
hypervisors and recent successful hypervisor attacks (e, gvM
escape) seriously question the validity of this assumption

In this paper, we present HyperSafe, a lightweight approach
that endows existing Type-l bare-metal hypervisors with a
unigue self-protection capability to provide lifetime cortrol-
flow integrity. Specifically, we propose two key techniquesThe
first one — non-bypassable memory lockdown — reliably protects
the hypervisor's code and static data from being compromisg
even in the presence of exploitable memory corruption bugs
(e.g., buffer overflows), therefore successfully providig hyper-
visor code integrity. The second one +estricted pointer indexing
— introduces one layer of indirection to convert the controldata
into pointer indexes. These pointer indexes are restricteduch
that the corresponding call/return targets strictly follow the
hypervisor control flow graph, hence expanding protection ©
control-flow integrity. We have built a prototype and used itto
protect two open-source Type-I hypervisors: BitVisor and Xen.
The experimental results with synthetic hypervisor explais
and benchmarking programs show HyperSafe can reliably
enable the hypervisor self-protection and provide the intgrity
guarantee with a small performance overhead.

I. INTRODUCTION
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which is considered difficult or in some situations impoksib
to do with conventional approaches.

One fundamental assumption shared by all these research
efforts is the need for a trustworthy hypervisor (or virtual
machine monitor - VMM). A typical supporting argument
is that the hypervisor has a code base that is much smaller
than conventional OSes and thus can be better scrutinized to
remove software bugs. Unfortunately, contemporary hyper-
visors such as Xen [5] and VMware [52] still have a large,
complex code base (e.g., Xé8m.1 contains~230K source
lines of code or SLOC). A recent study of the National
Vulnerability Database [33] indicates that in the last ¢hre
years, there were@6 security vulnerabilities identified in
Xen, and18 in VMware ESX. Some of these vulnerabilities
can be directly exploited to execute arbitrary code in the
hypervisor. Furthermore, successful VM escape attacKs [14
[57] as well as the emerging hypervisor rootkits [7], [24]
greatly exacerbate the current situation. In light of these
attacks, there is a pressing need to investigate effectiyesw
to secure the hypervisor [38].

One natural but challenging approach is to formally verify
that the hypervisor is secure. For example, the L4.verified
[27] project aims to guarantee the functional correctndss o
a micro-kernel implementation, i.e., seL4 [26], by formall
proving that the C code implementation (witf8700 SLOC)
correctly and precisely follows the abstract specificatiod

Recent years have witnessed the wide adoption of virtueontains nothing more. This is very helpful as it can lead to
alization in today’s computing systems. The unique segurit strong security guarantees, especially in proving theratese
advantages from virtualization, especially in isolatingda of certain types of software bugs (e.g., buffer overflows and
introspecting commodity OSes as virtual machines (VMs)null pointer dereferences). However, to perform a formal
have prompted a wave of research [18], [23], [28], [34],proof, it imposes several stringent requirements on the

[36], [37], [40], [44], [53], [59]. For example, Livewire H]

micro-kernel design and implementation. For example, the

pioneers the concept of VM introspection and applies it forkernel should run with interrupts mostly disabled and no

system monitoring and malware detection. SecVisor [40]address-of operator (&) and function calls through functio
NICKLE [36], VMwatcher [23], Lares [34], HookSafe [53], pointers will be allowed. Also, the memory management
and SIM [44] leverage virtualization to protect the guest OScomponent is moved out of the kernel space and exempted
kernel integrity or enable reliable monitoring of OS kernelfrom being formally proved. Further, besides its inherent
behavior. Most recently, a number of virtualization-basedscalability constraint, we also notice that the proven func
system debugging and analysis tools such as K-Tracer [28}ional correctness from a manually-specified specification
PoKeR [37] and AfterSight [12] have been developed todoes not necessarily equal the actual safety properties of
examine system anomalies and study kernel-mode malwarthe system. As a result, though it is an attractive approach,



significant efforts are still needed to make it suitable forthe page tables) and prevents them from being changed at
commodity hypervisors as their designs are not constraineduntime, thus effectively achieving hypervisor code imiigg
by these restrictions. We highlight that the enforcement cannot be bypassed even
From another perspective, we can tackle this hard problerim the presence of potentially exploitable memory corrmupti
by guaranteeing runtime hypervisor integrity despite thebugs such as buffer overflows.
presence of exploitable software bugs. Common wisdom The second key technique isstricted pointer indexing
holds that to secure a running application, one runs monwhich essentially leverages the memory lockdown technique
itoring software a layer below the application. However,to expand the protection coverage from hypervisor code
this is not applicable here, simply because the hypervisoto control data. Notice that when used in related control
already runs at the lowest level of the software stack. Itransfer instructions (e.gcall/jmp/ref), the control data can
may be argued that a nested hypervisor can be developetirectly impact the control-flow of hypervisor execution.
to run underneath and protect another hypervisor runningheir security implications become evident, especiallyhwi
above. However, a fundamental question of the same natutle recent exposure agturn-oriented programming20],
still remains: “how to protect the hypervisor running at the[43]. Unfortunately, we cannot directly apply the memory
lowest-level?” lockdown technique to protect all the control data, as some
Existing hardware-based technologies including TPM [48]of them (e.g., return addresses in the stack) will be dynam-
and measured late launch [21] are capable of effectivelycally generated. To address that, we observe the potential
establishing static/dynamic root of trust by guaranted¢iiregy  control flow always follows the control-flow graph, which
loading of a hypervisor in a trustworthy manner. In othercan be predetermined ahead of time. With that, we can
words, they can guarantee the load-time integrity of theconvert the control data (also call@dintersin this paper)
hypervisor. However, the main challengehisw to maintain  into pointer indexes and restrict them to be conformant to
the same level of integrity continuously throughout thethe control-flow graph. In other words, we can pre-compute
lifetime of the hypervisobue to the fact that we cannot rule possible control flow targets, save them in the target tables
out the presence of software vulnerabilities in the hypemi  and restrict the accesses from pointer indexes to themeSinc
we have to address the threat that after the hypervisor ithese target tables are static, we can directly leverage the
securely loaded, these vulnerabilities may be immediatelynemory lockdown technique to protect them. Consequently,
exploited to sabotage its integrity. the protection of the hypervisor integrity is expanded from
In this paper, we present the design, implementation, anthe code to the control data for control-flow integrity.
evaluation of HyperSafe, a system that reliably estabdishe To the best of our knowledge, HyperSafe is the first
the continuous integrity of the lowest-level software on asystem that is capable of providing hypervisor control-flow
system, i.e., the hypervisor. Specifically, continuousgnty  integrity. To validate our approach, we have implemented
in this paper is enforced in the form of lifetime control-flow a proof-of-concept prototype and applied it to the protec-
integrity [1]. Our system is lightweight and can be integthat tion of two open source Type-l hypervisors, i.e., BitVisor
into commodity hypervisofswithout requiring specialized [46] and Xen [5]. Specifically, the first key technique is
hardware support. And unlike the previously mentionedimplemented by directly modifying the hypervisor source
common wisdom, even though HyperSafe is a natural part ofode while the second key technique is implemented as a
the hypervisor, it preserves via a self-protection medrani compiler extension to the re-targetable LLVM framework
the lifetime hypervisor integrity. [30], which is thus hypervisor-transparent. As a resulg th
In particular, HyperSafe implements two key techniquesBitVisor/HyperSafe prototype is a full implementation kit
The first one isnon-bypassable memory lockdawshich  both key techniques. For the Xen port, since the current
essentially serves as the cornerstone for the entire schem@&VvM release does not support compiling Xen yet, our
and enables the unique hypervisor self-protection. Specificurrent prototype only enables the non-bypassable memory
cally, once a memory page is locked down, this techniqugockdown, which still guarantees the nontrivial code imiigg
guarantees that the page needs to be unlocked first — evefi Xen. Our prototyping experience indicates that Hyper-
for legitimate hypervisor code — in order to modify the page.Safe’s code size is small and its integration with commodity
And by design, the unlocking logic will simply disallow hypervisors is straightforward. Evaluation with synthéty-
any attempts that will either modify existing hypervisor pervisor attacks as well as a number of performance micro-
code or bring external (malicious) code for execution in thebenchmarks and user applications show that the integrity
hypervisor space. In other words, this technique locks dowprotection can be effectively enabled with less thifi
those write-protected memory pages (containing hypervisoperformance overhead.
code and read-only data) as well as their attributes (in The rest of the paper is structured as follows. We first
1 o . o _ _ show the overall system design, discuss the threat model,
Considering the various flavors of hypervisor implementsti (Section

II), we focus on those Type-l hypervisors. Some examples hefse and present the _tWO key_ te_Chmqu_eS in Section Il. We
hypervisors are Xen [5], VMware ESX [52], and BitVisor [46]. show implementation details in Section Il and present our



. . trusted booti . .
------------- " . oot any location in memory. However, to successfully launch

an attack, attackers will have to either inject and execute
their own code or leverage and misuse existing code. Note
] this represents a powerful adversary model as attackers can
attempt to inject code, modify existing code, and exercise
more sophisticated attacks such as return-oriented ofgs [2
In the meantime, we do assume trustworthy hardware,
especially the TPM [48]-assisted static/dynamic root oétr
[49], which can be leveraged to guarantee load-time hyper-
non-bypassable memory lockdowrestricted pointer indexing visor integrity. Due to the unsafe programming language
(Secll®) (Sec Q) used in the implementation, we do assume the presence of
Figure 1. A break-down of hypervisor integrity guarantees dhe vulnerabilities in the hypervisor. However, the attackers
corresponding key techniques in HyperSafe restricted in their attempts to subvert the hypervisorgritg
. ) , ) by only exploiting these vulnerabilities, not by out-ofdsh
evaluation results in Section IV. We discuss the supportii, s (e.g., TLB cache or SMM exploitation [55], [56])
of Type-Il hypervisors as well as possible limitations and ,, layer-below attacks (including physical-level attgcks
impro.vemenFs in Section V. After that, we d_escribg relateq\/lalicious DMAs [57] are not considered as they can be
work in Section VI and conclude our paper in Section VII. readily blocked with hardware-based IOMMUSs [21]. Notice
II. HYPERSAFE DESIGN that our attack model is similar to that used in SecVisor
[40]; however, one key distinction is that HyperSafe is
_ o ) ~designed to protect the hypervisor itself while SecVisonsi
In order to provide lifetime hypervisor control-flow in- {4 protect the guest kernel code integrity using a small
tegrity, we have three main design godisst, the proposed {,sted hypervisor.
techniques should enable the self-protection of commodity gased on this threat model, we propose two key tech-

hypervisors. As the name indicates, self-protection may NOhiques, i.e.non-bypassable memory lockdoamdrestricted

introduce new lower level mechanisms. Further, the Self'pointer indexingto enable the self-protection of commodity

protection mechanism needs toreéable in the presence of  py nervisors. Figure 1 shows a break-down of the required
exploitable memory corruption bugs (e.g., buffer OVerﬂo"Vshypervisor integrity guarantees as well as the correspandi

or format string bugs) anelffectivein proactively preventing key techniques we propose to achieve them. Next, we will
attacks from gaining execution control over the hypervisor yascribe in detail these two key techniques.

Second the proposed techniques should not require re-
structuring or impacting the original hypervisor designileh g, Key Technique I: Non-Bypassable Memory Lockdown
still providing the desired integrity guarantee. In other . . . .
words, the proposed techniques need to be generic and As mentioned earlier, this technlqge SEIVes as the cor-
amenable to commodity hypervisors without limiting the de-nerstone for the pTOpOS.ed hypgrwsor mtegnty protectllnn
sign choices or imposing implementation restrictions. (éng the following, we first give a brief overview of the available

disabling certain programming language features). We m?}pemory protection mechanisms in the Inid6 architec-

need to tolerate some minor modifications to commodity™" ¢ 2" .Wh'Ch our system is developed. In essence, th.e
hypervisors, but the modifications should be minimal. Also,x86 archﬂepture supports FWO typ_es of memory protection:
based on the traditional classification between Type_lbaresegmentatmrand paging With the introduction of the new

) . 64-bit mode of thex86 processor, segmentation has been
metal and Type-II hosted hypervisors and the fact that Type ostly disabled in favor of paginBecause of that, our

Il hypervisors require a hosted OS kernel, our focus in thig(?_ _ il be f . ; d ‘ i
paper is the support of Type-I hypervisors. iscussion will be focusing on paging and our system relies

Third, the proposed techniques can be efficiently im-O" pag|.n.g-based memory protection. . .
plemented on commodity hardware, i.e., without relying Spgcmcally, the paglng-k_)ased memory protecpon divides
on sophisticated hardware support to achieve the integriﬁﬁe \fnrtual ao:chess space Into hpages, Ian_d ppysmat\: n\1/|<_emory
guarantee or obtain reasonable performance for deployme pto frames of the same size. The translation from the virtua

Given this requirement, the challenge is to ensure thaPage to the physical frame is facilitated by the page tables.

the proposed techniques can be implemented on top c!':faCh page table has a number of page table enthits (

commodity hardware, have a small footprint, and remairl? #86_64). Each entry contains certain bits to specify the
lightweight with respect to performance impact. corresponding page protection attributes, such as whtther

) , page is writable (thdR/W bit), executable (the\X bit), or
Threat model and system assumption In this work,

we as_sume an adversary_r_n_()de_l where attackers are able @some specific segments such as FS and GS may still be retained t
exploit software vulnerabilities in an attempt to overarit facilitate the addressing of local data or certain OS datzcstres.

[ hypervisor control-data integrity

hypervisor code integrity
A
run-time control-flow integrity|

e il

[ lifetime hypervisor control-flow imegmy]

A. Goals and Assumptions



requires privileged access (th#S bit). Different from the either. This is a strong guarantee that serves as the basis to
virtual page’s privilege levels, the CPU has four privilege establish and sustain hypervisor runtime integrity.
levels (or rings) from0 to 3 with 0 being the highest The above strong guarantee is desirable for hypervisor
privilege. The code running in privilege levél can only  protection as it can effectively prevent malicious updates
access user pages while the code running in privilege levelsage tables. Unfortunately it will also trap and block all
0, 1 and2 is considered to be supervisor code and can accedsnign updates. Again, the reason is that once paging is
both user pages and supervisor pages. enabled, the hypervisor can only access its memory through
With these protection attributes, paging-based memoryirtual addresses, which will be translated and subjected
protection allows for flexible customization to each andto protection checks by the page tableds a result, the
every individual page. For example, one common usage ofreation of read-only page tables immediately leads to an
these attributes in commodity OS kernels (e.g., Windowsunsolvable paradox: read-only page tables can detect and
Linux, and OpenBSD) is to write-protect their code anddeny any malicious manipulation but they also make the
read-only data. Another similar one is to establish theXV  benign changes impossible.
property of the OS kernel to ensure its code integrity as To accommodate benign page table updates, we need to
demonstrated in a few recent systems [36], [40]. design a secure way to temporarily bypass the enforcement
Similarly, we are motivated to enforce the X for  without being misused (e.g., by return-oriented attackisis
hypervisor integrity protection. However, there are saler is how our technique — non-bypassable memory lockdown —
notable pitfalls. First, for historical reasons [36], coodlity = comes into play. Specifically, our technique uses a hardware
OS kernels may allow the presence of mixed memory pageteature called theV P bit (i.e., the Write Protect bit in
that contain both code and data. Certainly, the presence tfie machine control register CRO [58]), which has existed
such pageslirectly violates thelW’ & X property and should in all x86 CPUs since the Intel Pentium. Thid P bit
be avoided in the hypervisor. Second, for performance andontrols how the supervisor code interacts with the write
efficient resource sharing purposes, existing OS kernelprotection bits in page tables: If the WP bit is turned ofg th
typically allow the mapping of several virtual pages to thesupervisor code has unfettered access to any virtual memory
same physical frame and different virtual pages may possibl(i.e., the write-protection is ignored). Otherwise, thater
have conflicting protection attributes. Such double magpin protection attributes in page table entries will decide thbe
indirectly breaks the WX property and should not be the supervisor code can write to the memory page or not.
allowed in the hypervisor either. Third, most importantly, Note theW P bit was originally introduced to facilitate the
the W X-based integrity enforcement largely relies on the Copy-On-Write (COW) implementation of forking a new
integrity of page tables. For a write-protected page to berocess. More specifically, in Linux, when a process forks,
modifiable, the corresponding page table entries will need tmemory pages are COW-shared (or marked as read-only)
setin a way to allow it. Unfortunately, in current hyperviso between parent and child processes. Therefore, any write to
(e.g., Xen and KVM) and OS kernels (e.g., Windows anda COW-shared page leads to the creation of a new copy of
Linux), their page tables are aliritable! This implies that the page and the sharing can then be removed. As a result,
even if a hypervisor ideally sets these memory protectiorOS kernel can simply set tH& P bit to trap its own writes
attributes, the enforcement can be easily bypassed siece tho these pages, which greatly simplifies the COW design
page tables are writable. Our experience indicates that thend implementation. (Otherwise, OS kernel must check for
ability to modify even one bit in a page table entry could COW every time it writes to user space.)
well be enough to subvert the entire protection. With that, we can initially mark the page tables read-
From another perspective, if we assume the proper initialonly and turn on theW P bit to lock down any page
ization of the hypervisor page tables (i.e., no mixed pagedable updates, regardless of their intent being benign or
no double mapping, and a correctd setup for each malicious. To allow benign ones to proceed, we can instead
memory page), the attacker will be forced to first manipulateescort them by temporarily clearing the WP bit right before
the page tables in order to bypass thebW protection. each update and re-enabling the bit right after. Naturally,
This observation motivates us to also write-protect theepagthe entire escort operation needs to be atomic (e.g., with
tables. By doing so, we can ensure that code including interrupts disabled). Otherwise the attackers may pattti
legitimate code will be able to modify the write-protectedinterrupt the operation and leave the WP protection off.
hypervisor code (and related control data — Section 1I-&  Within the escort operation, HyperSafe can further vaéidat
mentioned earlier, in order to proceed with any modification that the new page table entries conform to the securitypolic
the page tables need to be changed to allow it. But thevhich can be specified by the hypervisor developer. In our
write-protection of page tables disallows such a change.

. . . 3 P : :
Consequently, any write attempt to them (including the page Note that although the CPU’s hardware translates virtudfesses with
q y y P ( 9 pag page tables, the hardware's accesses are not translatée &PtJ uses

tab_les) will be hardwa_r_e-trapped int_o the page fault _handle physical addresses directly. Therefore the CPU has noleailall to read
which, as a part of legitimate code, is unable to modify themand update them, e.g., to sdt(accessed) and (dirty) bits.



Writeable page tables Read-only page tables

. : WP wpP
Benign —_—] — Benign —_— —_— e
Y 9 OFF ON
Malicious = — = — ] L - - - Malicious - —X— -] L - — —
\
Page Fault )’

(a) Traditional page table updates (b) New page table updates
Figure 2. Traditional page table updates vs. new page tgidates in HyperSafe (Note th&P bit is ON by default)

implementation, we enforce a simple invariant that deniesnstructions (where the destinations may be specified in
page table updates that attempt to change the protecticegisters or memory) and thet instructions. Eachiet has
attributes of hypervisor’s code and data or introduce a oub an implicit destination on the top of the current stack. Cor-
mapping. Though it may appear that this security checkespondingly, there are two types of control data: function
is redundant once the hypervisor's control-flow integriy i pointers and return addresses. For simplicity, we also call
protected, we show that this is not the case in Section IV-Athem pointers Due to the dependence of indirect control
Figure 2 shows the comparison between traditional pagélow on these pointers, we need to protect their integrity to
table updates and the new page table updates in HyperSafareserve indirect control flow integrity.

It is worth mentioning that to protect the hypervisor page  ynfortunately, we face three main challengEsst, con-
tables, we also need to protect related machine contr@lq| data can be widely scattered in memory and can co-
registers and data structures. For example, the hypels/isoreyist together with other dynamic data on the same pages
page table base address is contained'f3, which should  [53]. Naive page level protection will likely lead to huge
not change after the initialization. The same also appbes f performance overhead®econd some control data can be
the entries in the GDT (Global Descriptor Table) and thegynamically generated and thus their locations cannot be
IDT (Interrupt Descriptor Table). In addition, the hypesoi  getermined a priori. A representative example is the return
virtualizes the guest’s memory by using either shadow paggddress. This implies any protection scheme that requires
tables (SPTs) or nested page tables (NPTs). The updatgseir |ocations to be static will failThird, some control data
to them need to be protected in a similar way to preventych as return addresses can be updated at a high frequency.
the attacker from gaining the control over the hypervisor'stis invalidates any approach that requires write-pratect
memory (e.g., by mapping it to a compromised guest).  frequently updated control data. Our experience with alloca

To summarize, our technique effectively locks downpyilg of the Xen hypervisor (versios.4.1) for the x86-
hypervisor memory pages to strictly specify and managg architecture indicates that there iscall instruction on
memory protection attributes. Most importantly, the enéer  ayerage for everg3 machine instructions in the binary and a
ment of these memory attributes such aspM/is non-  retinstruction for everyr9 instructions. At runtime, eaatall
bypassable (Section IV-A). As a result, we can reliablyinstryction will push a return address onto the stack, which
provide hypervisor code integrity. Next, we will present | then be popped off by the correspondireg instruction.
another key technique that essentially expands the protect From another perspective, we notice that though the

coverage to control-data and enables control-flow intggrit control data may be dynamically generated or frequently
C. Key Technique IlI: Restricted Pointer Indexing updated, their contents always fall in a data set that can

Control flow integrity (CFl) is a powerful security mea- be determined offline. As such, we can aggregate them into
sure, which strictly dictates the software’s runtime exiecu  individual target tables and, by introducing one layer of in
paths. If the software’s runtime paths follow the statigall direction, replace each control data with a restricted»rtde
determined control flow graph, attackers can be preventetie target table (hence the namestricted pointer indexing
from arbitrarily controlling the execution flow of the syste ~ More specifically, the target table contains all the legatien
Based on how control is transferred, there are two typeglestinations for an indirect control flow instruction alkedv
of control flow transfer instructions: direct and indireét. ~ PY the hypervisor program’s control flow graph (CFG). For
direct control transferis initiated by a direct function call €ach indirectcall/jmp, its table contains the function entry
where the destination is encoded in the machine code iROINts it may enter. Similarly, the target table forret
the form of an absolute address or a relative offset. Accordincludes all the return addresses it may return to.
ingly, control-flow integrity from direct control transfeiis Based on the target tables, HyperSafe can essentially
maintained as long as the code integrity is guaranteed. replace all the runtime control data in the hypervisor pro-

An indirect control transfer which is our main focus, gram with their indexes in the target tables. To perform a
can be caused by two sets of instructions: indidt/j/mp  control transfer, the indirect control flow instruction lnble



Call Site i Callee j Call Site i Callee j

Target Table i

eax
eax func_j |—™ func_j:

call  *%eax § call  *%eax Target Table j

Ri: ...
(esp] [esp]

(a) Traditional indirection call (b) New indirection call

Figure 3. Traditional indirect call vs. new indirect call ityperSafe (NoteRi is the return address of the indirezll)

instrumented to convert the index back to the destinatiorinstructions will touch return addresses on the stack.df/th
address (e.g., by looking up the index in the table). For, thatdo, most likely they are implemented in assembly and thus
we need to take the following two steps: we can instrument them manually. For function pointers,
First, the instructions that introduce the control data intomost accessing instructions aneov or cmp. In this case,
the hypervisor program must be converted to use the indexale contents of the function pointers are not examined and
instead. For simplicity, we call these instructioesurce we can safely keep these instructions as is.
instructions The source instruction for a return address is In Figure 3, we show the control flow for an instrumented
the relatectall that pushes the return address onto the stackcall/ret pair in HyperSafe when compared to the original
As a result, the call instruction will be instrumented into pair. In the figure, the originatall has been instrumented
two instructions: onepustes the index onto the stack and to fetch the index fromeax, convert it to a function entry
anotherjmps to the function entry point. For an indirect point by indexing into its target table, and then jump
call, its source instruction is an earlier instruction that lwad to the function. By substituting indexes for control data,
the function address to the register or memory. Unlike theHyperSafe limits the destination of a runtime control tfens
return address case, the function pointer can possiblyaappeto only those explicitly specified in the target table. In
in the data section (e.g., as a member of an initialized globaother words, indirect instructions can only transfer cohtr
object or variable). As a result, we can leverage the compileto the targets allowed by the CFG. Moreover, because all
to identify and convert them. the destination addresses are known beforehand from the
Second the instructions that consume the control datahypervisor program binary, these target tables can be pre-
from the hypervisor program must be converted to translateomputed offline. At runtime, they are protected by directly
the indexes back to their destination addresses. Similarhapplying the memory lockdown technique.
we call these instructiorsink instructionsReturn addresses  Furthermore, with the help of the target tables, HyperSafe
will be used by theret instructions while function pointers can flexibly control the precision of control-flow integrity
will be consumed by indireatall/jmp instructions. During In one extreme case, we can simply use two big tables:
instrumentation, aet will be converted to a sequence of one is for all theret instructions (with all valid return
instructions to pop the index off the stack, convertitirtet addresses) and the other one is for all the indiredi

return address, and then return to it. An indireat/jmp will instructions (with all possible indirectly-called funatis’
be converted to use the index to locate the function entrnentry points). This scheme provides the least precision,
point and then continue execution there. resulting in coarse protection: namelyret can return to

Based on the above instrumentation, an indigadt acts  any valid return address in the hypervisor program; and an
as a sink instruction for the consumed function pointerindirect call can call any indirectly-called function. On the
and a source instruction for the dynamically-pushed returrother extreme, each indirectll has its own target table,
address. Therefore, it will be instrumented twice. Therg ma and all ret instructions inside the same function share one
also exist other instructions that access the control data btarget table. In other words, each function has a dedicated
are not the source and sink instructions. Among them, somtble for all of its returns. By doing so, we can provide
instructions can be left intact if the contents of the contro the finest control over what targets indirect instructioas c
data are not explicitly examined by them. One examplédransfer control to. Note that there is no need to use one
is the mov instruction that copies the index to and from target table per return instruction since all teeinstructions
registers or memory. Instructions that compare two fumctio in a function always have the same set of return addresses.
addresses do not need instrumentation either if we assggn th As pointed out in [1], the major factor that impairs the
pointer indexes in the order of their addresses. On the othearecision of control-flow integrity is the so calleéstination
hand, instructions that examine the contents of contr@ datequivalenceeffect. That is, two destinations are considered
must be expanded to convert indexes into original controto be equivalent if they connect to a common source in
data. A general solution is to discover and convert all suclthe CFG. Further, the equivalence relation is transitive. |
instructions, ideally by the compiler. Fortunately, veewf  Figure 4, we show an example of the destination equivalence



func_i:

______

enable it by simply re-compiling the hypervisor code with

it I § the modified compiler. Our development environment is a
standards4 bit Ubuntu9.10 desktop. As mentioned earlier,
the BitVisor port is a full implementation, while the Xen por

ret

R fune “yfunc_J: only contains the non-bypassable memory lockdown feature,

§ which nevertheless guarantees the nontrivial code integri
call func_j of Xen. Meanwhile, our current prototype integrates the
RS ret trusted booting software, i.e., tboot [49], to protect thad-

time integrity. After the hypervisor is successfully lodde
HyperSafe will then ensure its runtime integrity. In the

_ ) o following, we focus on the BitVisor port as an example to
effect on theret instructions. In this figure, there are one present our implementation details.

indirect call instruction and two directall instructions.
The indirectcall may invoke both functionsfunc_i and  A. Non-Bypassable Memory Lockdown

func_j while the two directcalls execute func_i anq The key novelty of our system is the non-bypassable
func_j, respectivelyR1, R2 and k3 are the corresponding  memory lockdown technique for hypervisor integrity protec
three return addresses. From the figure, the funcfienc_i  tjon, achieved purely based on commodity hardware support.
can return toR1 and k2, and the functionfunc_j can  gpecifically, HyperSafe write-protects the hypervisodge
return toR1 and R3. Because of the destination equivalencetgples and turns on the WP bit{R0 to initiate the memory
effect, 1, k2 and R3 are all equivalent in this example. |ockdown. Our system requires only minimal modifications
More specifically, since2 is equivalent tok1 and R1is {5 the supported hypervisors, therefore satisfying the sec
equivalent toR3, based on the transitivity of the equivalence gnq design goal (Section I1). Specifically, in our BitVisor
relation, R2 is equivalent taR3. The destination equivalence prototype, we only added or changg2l lines of C code
effect also indicates that a return address has the sane indgnq9 Jines of assembly code. To avoid potential pitfalls in
in each target table that contains it. This is obvious sinc&ysx enforcement (Section 1), we adjust the link script to
only one index can be assigned to a specific destinationyjign related sections to avoid mixed pages and at runtime
In our example,R1, R2 and R3 forms one equivalent {isallow double mappings.
group, and twaret instructions infunc_i and func_j can In our prototype, we reserved the tag8M B physical
return to them. If one table per function is used to enforcememory for BitVisor. This memory is mappet : 1 to
the control-flow integrity, we can use a tabl&ll, B2,  the virtual addres§z40200000. A 32\ B memory range,
error” for the ret instruction in func_i, and another table  starting at the virtual addre$s:40800000, is reserved as the
“R1, error, k3" for the ret instruction in func_j, where  ghared page table pool from which all the hypervisor's page
error denotes a special destination to trap an impossiblgaples are allocated. After secure booting from tboot, the
control transfer. Therefore, our one-table-per-functiased hypervisor properly initializes the page table data stret
control-flow integ_rity enforcemenF policy is more precise ,rns on thelV’ P protection in theC' RO register, and then
than the one originally proposed in [1], wheRd, R2 and  gpaples the paging mode. After entering the paging mode,
R3 will bear the same label ID and bottet instructions  eyery virtual memory access will be automatically trareat
can legitimately _transfer control to all of them. In parta through page tables. Because of that, all the page tables
in [1], the function func_i can legally return tok3 and  paye to be accessible and mapped in the hypervisor's virtual
func_j can legally return tdz2. In comparison, our scheme 5qdress space. In BitVisor, since all the page tables are
can flexibly handle the destination equivalence effect andyjgcated from and mapped in the page table pool, we simply
make these two paths simply impossible in HyperSafe. et the whole page table pool as read-only to lock the
. I MPLEMENTATION page tables. To accommodate benign_updates, our system
irst traverses through the page table hierarchy to locate th
ffected page table entries, and then escorts their uptiates
'guarantee that existing hypervisor code will not be modified
and no external code will be introduced for execution.
After the page tables have been write-protected, any
rite attempts to modify them at runtime (e.g., either by
(fégitimate hypervisor code or malicious code injected due
0 a successful exploitation) will be trapped. Inside thgepa
fault handler, we will enforce an unlocking logic that simpl

4In our prototype, we disabled the VPN support in BitVisor fisinot pr?serves the WX p“?PertY- In the meantime, there_ also
relevant. exist a number of legitimate reasons for the hypervisor to

Figure 4. Destination equivalence effect et instructions (a dashed line
represents an indirecall while a solid line stands for a direcall)

We have implemented a prototype of HyperSafe an
applied it to protect two open-source Type-l hypervisors
i.e., BitVisor [46] (with ~190K SLOC)* and Xen [5] (with
~230K SLOC). In particular, the first technique — non-
bypassable memory lockdown — is implemented by directlyW
extending their memory management modules. For the se
ond technique — restricted pointer indexing, we choose t
extend the open-source LLVM compiler so that we can



update its page tables without violating thepX property.  points and return targets) in a few read-only target talsled,

For example, the hypervisor may need to map part othen replaces the destination addresses used by the program
guest memory pages or device memory for its access. Thigith their indexes. By doing so, we can guarantee that an
mapping is typically temporary as it will be removed imme- indirect control flow transfer instruction that utilizeseof
diately after the hypervisor has accessed it. For thatedst these protected pointers will transfer the contioly to the

of triggering a page fault, the hypervisor first turns off the addresses specified in the target tables. As discussedrearli
WP protection, updates related page table entries, and turmve can also flexibly control the precision by adjusting these
it back on. The BitVisor implementation provides severaltarget tables to handle the destination equivalence effect
helper routines, i.e.pmapwr64 and pmapwr32, that are  In our prototype, we implemented a scheme that uses one
used to update page table entries. Our prototype wrapmble for each indirectall/jmp instruction and one table
these routines by adding additional inline assembly code téor each function (applicable for all theet instructions
turn WP protection on and off. To ensure that such escortontained in the function). The table per indireetl/jmp
operations are atomic, our prototype disables the inté&srup instruction contains all the function entry points it mayi.ca
when an escort operation is in progress. Further, in ordeBimilarly, the table per function has all the valid return
to prevent the misuse of these routines, HyperSafe vadateaddresses for this function. As such, the target tablesctefle
whether the change is benign. Our current prototype simplyhe hypervisor’'s control flow graph.

denies any change to the permission of the hypervisor’s code Our technique is implemented as a compiler extension to
and data sections after initial setup. Also, it disallows th the re-targetable LLVM framework. We choose it because it
double mapping of the hypervisor's code and data sectionss a production-quality open source compiler infrastruetu
This check can be implemented efficiently by verifying that has a modular design and can be flexibly extended. In
the page table update against various address ranges (epgrticular, our extension includes a program analysis and
physical or virtual address ranges of hypervisor's code andptimization phase that can be applied to the intermediate
data sections). As discussed in Section IV-A, this check isepresentation (IR) of a program. In essence, it integrates
notredundant even in the presence of a control-flow integritythe supported alias analysis to build and generate thettarge
guarantee. tables while extending the compiler back-end to instrument

In our prototype, we use the memory lockdown featureinstructions for the use of target tables. Note the targeésa
to write-protect not only the hypervisor's code, but alsocontain information for both direct and indirect calls. The
its static data. Some examples of this data include theontrol flow graph for the direct calls is simple to extract
entries in the GDT, the IDT, and various target tables.because their targets are already encoded in the instngctio
As mentioned earlier, all these data structures are sgeurit For the control flow graph of indirect calls, we extend the
critical and should be write-protected by HyperSafe. Forexisting alias analysis in LLVM. Specifically, we leverage
guest page tables, there are two main virtualization modeghe data structure analysis implemented in LLVM to identify
shadow page table (SPT) and nested page table (NPT). possible call targets. Note that the data structure arsaigsi
the SPT mode, hypervisor “shadows” the guest page tables context-sensitive, field-sensitive unification-basethieo
by maintaining a corresponding copy, i.e., the shadow pageanalysis. As a result, it is considered conservative. Qurin
tables. The CPU translates the guest virtual address iirectour implementation, we found that it is relatively effeetito
to the host physical address using these shadow page tablesalyze C code. However, it is unable to handle assembly,
The hypervisor also traps updates to the guest page tablegich is one common limitation of existing alias analysis
and synchronizes shadow page tables with them. In th&ols.

NPT mode, there are two levels of page tables used by the In our prototype, we realize that one specific way BitVisor
hardware. The CPU first translates a guest virtual address gaves and utilizes function pointers foils the data struc-
a guest physical address with the guest page tables, and thene analysis. In particular, to facilitate multi-core popt,
maps that guest physical address to a host physical addreB#Visor keeps a per-cpu data structure and accesses it with
based on nested page tables maintained by the hypervisdine help of thegs segment. (Notgys is one of the two
Note that the shadow page tables (if running in the SPTsegments thate86_64 keeps to allow for such access.)
mode) or the nested page tables (if running in the NPTWith that, each processor can set is segment’s base
mode) need to be protected so that the hypervisor memomgr gs_base to a location different from other processors.
will not be accidently mapped and accessible to the guestAnd the hypervisor can conveniently access the per-cpu

) ) ) data with thegs : of fset addressing mode, which will be
B. Restricted Pointer Indexing translated by the current CPU into the_base + of fset.

Our second technique replaces all the control data wittAs assembly code is required to load the per-cpu data, the
their indexes and essentially leads to the protection ofrobn data structure analysis in LLVM is unfortunately unable to
data to enforce control-flow integrity. Specifically, it fily-  uncover all the call targets. To handle that, we manuallytwen
gregates all the possible destination addresses (furetibp ~ through the indirect calls that were not able to be analyzed



call pmap_read ret

is instrumented as:

push $index pop %r8 # pop index off stack
jmp pmap_read and $0x3f, %r8 # limit the index
mov  RT_pmap_read (,%r8,8), %r8 # load destination
jmp *%r8 # jmp to destination

Figure 5. The instrumentechll to pmap_read and the correspondinggt (note the instrumentation is done ir86_64)

and then leveraged our domain knowledge to resolve thenactually contain$4 elements and invalid elements are filled
Our experience shows that there a2 indirectly called in with error — the address of an error reporting routine to
functions and60 indirect call sites in BitVisor, and the data trap illegal control flows. In the meantime, it also allows
structure analysis was able to extract indirect call tar§mt  HyperSafe to prevent possible index overflows with one
about three fourths of them. Therefore, we had to manually:nd instruction (the second instruction in the instrumented
analyze the rest. We point out that most of these manuakt as shown in the figure). To reduce the performance
efforts only need to be done once, though ideally we stilloverhead, we use a caller-saved register,i&.to facilitate
need an automated approach. For that, the recent effortee instrumentation and avoid unnecessary register ragpilli

[8] on alias analysis at the assembly level can be naturally yrthermore, in the case that a target table only contains
integrated and extended. a single entry, we apply an optimization that avoids the
Once the complete call graph is derived, it is a rathelinstrumented-et instruction to read the target address from
straightforward process to generate the target tablesuin o the target table. Specifically, the instrumentetiwill be a
prototype, we use the standard union-find algorithm to Ecat simple add that increments thesp register by8 bytes to
the equivalent targets and assign the same index to th@move the return address index from the stack, followed
destinations if they appear in multiple target tables. Also by another direcimp to the corresponding target. Note this
our prototype assignsrror to certain target table entries if optimization has performance benefits and is made possible
they are not reachable in the call graph. In our build of thebecause the function is only called from a particular call
hypervisor, it turns out that there aé81 target tables for site. When compared to the unoptimized case (Figure 5), this
ret instructions and60 target tables for indiredtalls. If we  optimization saves two memory accessesp@p and moy;
include direct calls, there ar&l00 call sites in total. respectively) and replaces the indirgehp with a direct
After building the control-flow graph and generating the jmp. In our prototype, we found tha&91 out of 681 target
target tables, we extend the compiler back-end to instrutables for return instructions contain only one entry areirth
ment relevant source and sink instructions. In our buildoptimizations greatly contribute to reducing the perfonce
environment, the compiler first compiles the C source intooverhead of the system.

assembly code, and then generates the executable binaryThe indirect calls are handled in a similar way. Since the
with GAS, the GNU Assembler. Our prototype extendstargets for these indirect calls are function entry poimts,
a LLVM component called AsmPrinter to generate thepeed to convert the uses of function entry points to their
instrumented assembly code. Specificallgadl instruction  indexes. Accordingly, we convert those source instrustion
is instrumented to push the index of its return address to thgs g./mov) that load function addresses into registers to load
stack, while aret is instrumented to pop the index off the their indexes instead. Note the locations of these source
stack, fetch the actual return address from its target ,talenstructions are easy to identify in the Comp”er since one
and continue execution there. of its operands is actually the symbol of the function. After
To better describe the scheme and discuss one possitiieat, we replace the function addresses in data structures
optimization we identified and implemented in our system,with their corresponding indexes. Our system instruments
we consider the instrumentation of a direall. In Figure the corresponding sink instructions (at the corresponuling
5, we present the results after instrumenting a dicaditto  direct call sites) to examine the indexes from their opesand
the functionpmap_read and the correspondinget in that  and convert them back to the function entry points (i.e., by
function. Basically, the instrumented!! instruction pushes indexing into the target tables). Similarly, we can alsolgpp
the index of the return address to the stack followed by ahe previous optimization if a particular indirect call hady
jump to the target function. Theet instruction is rewritten  one target in the target table. By doing so, we can replace the
to first pop the index off the stack, then load the actual retur indirect call with a direct call and improve performance by
address from its target tabl®{_pmap_read) and resume avoiding one memory read (of the function pointer). In our
execution to it. In this example?T_pmap_read is defined  prototype, we foun@94 out of 360 target tables for indirect
as a static global variable to contain the return addresses @alls contain only a single entry and can thus be optimized.
58 calls to pmap_read. For alignment purposes, the table Further investigation shows that most of these optimized



indirect calls are due to the specific way taken by BitVisorthe hypervisor code integrity and the second technique
to support the two existing X86 hardware virtualization expands the protection to enforce control-flow integrity. |
architectures, namely Intel VT and AMD SVM. In particular, the following, we systematically examine possible thréats
BitVisor defines a common interface for the support of Intelthese security guarantees.

VT and AMD SVM. The common interface contains a To subvert the hypervisor's integrity, an attacker's main
set of function pointers to abstract the difference betweemoal is to modify existing hypervisor code or introduce
them so that the upper layer software can be shielded frorand execute its own attack code in the hypervisor space.
low level details. With that, since only one architecture isSince the modifiability of existing hypervisor code and
possible at runtime, we optimized these function pointérs aexecutability of introduced attack code are governed by the
the compiler time according to the CPU used. Besides thedeypervisor page tables, the attacker needs to first subvert
source and sink instructions, we do not observe the presentlee page tables. Due to non-bypassable memory lockdown
of any other instructions that examine the function positer in HyperSafe, these page tables are write-protected wéh th
content. In other words, there is not a single arithmeticW P bit on. In the following, we examine two possible
operation on function pointers. attacks to subvert the protected page tables.

It is also interesting to mention that in the early devel- Disabling the WP bit  The first attack aims to turn
opment of our second technique, we explored another wagff the W P bit. Since the attackers are not yet able to
to handleret instructions: shadow stack. Specifically, eachinject and execute their own attack code, they must misuse
call pushes a copy of the return address to the shadow staekisting hypervisor code. To accommodate benign page
and eachret fetches the return addresses from both thetable updates, HyperSafe does introduce additional code to
shadow stack and the original stack and then compares thetemporarily turn off thél/’ P bit. Specifically, to legitimately
to detect any corruption. However, one challenge we redlizeupdate a page table, HyperSafe uses an atomic function
is how to effectively protect the shadow stack. One feasiblghat disables interrupts and turns off th& P protection
approach on the86 architecture is to use segmentation: thebefore updating the page table. Immediately after the @pdat
shadow stack is kept on an isolated segment from the seghe W P protection is turned back on again. With that, in
ments used by the normal code and will be only accessiblerder to disable théV P bit, the attacker must divert the
by instrumented instructions. Unfortunately, segmeatati normal execution flow (i.e., by hijacking control data) brefo
support is largely disabled on th&6_64 platform. Another the WP bit is turned on again. Based on the control-data
possibility is to make the shadow stack read-only with theprotection by the second key technique of HyperSafe, such
same memory lockdown technique (i.e., by wrapping thea diversion attempt is effectively defeated.
call/ret instruction with the code to dynamically switch  Another possible method is to compromise a previously
the WP bit on and off). We have actually implemented saved runtime context. For example, the hypervisor may save
this approach but our experiments show that it incurs @mportant control registers (such a8R0 with the W P bit
performance penalty of more tha300%. This is rather andCR3 as the page table base address) to writable memory
disappointing. The reason is that the return addresses aead later restore them. The attacker could potentially gain
frequently generated and the instructions to read and writéull control of the execution if these saved states can be
CRO (to change théV P bit) are more expensive than tampered with. In our prototype, we ensure the correctness
other regular instructions. After these failed attempts, w of these states before restoring them, i.e., their values ar
eventually ended up with the current scheme that achievesot changed after being initialized.
the desired security properties with a small performance Subverting the page tables Alternatively, the attackers
overhead (Section V). could subvert the page tables. As before, due to their

To summarize, our second technique effectively protecténability to directly execute their own code, the attackers
the control data and allows for a stronger hypervisor cdntro have to misuse existing code. For that, the attackers may
flow integrity guarantee from the original code integrity.  attempt to introduce a double mapping (Section II) to bypass
the protection. Specifically, they can change or providé-mal
cious parameters to those normal routines that handle benig

In this section, we first analytically examine the securitypage table updates. Based on our current adversary model,
guarantees provided by HyperSafe. Then we present ouhis attack is possible (even if we can faithfully enforce
experiments with synthetic hypervisor exploits and measur control-flow integrity) due to the presence of exploitable

IV. EVALUATION

the performance overhead. software bugs. Fortunately, our memory lockdown technique
_ ) enforces a simple invariant by disallowing double mapping
A. Security Analysis and any changes to the permission bits (eR/JV and

As mentioned earlier, HyperSafe implements two keyN X) associated with the hypervisor code and data. A more
techniques: non-bypassable memory lockdown and restrictesubtle attack is that the attacker might map the hypensdsor’
pointer indexing. The first technique essentially guarasite memory to a compromised guest VM (another variant of



double mapping) by manipulating shadow page table entries. More specifically, in the first experiment, we tried to over-
HyperSafe effectively blocks this by write-protecting the write one of the hypervisor’s instructions with the instian
shadow page tables and preventing it from happening.  to reload theC R0 register so that th&/ P bit can be turned
Also, instead of focusing on subverting page tables, theff. The write operation immediately triggered a page fault
attacker may simply misuse existing code for maliciousexception with the error codec03. This error code indicates
computations — as demonstrated by recent return-orientdfiat the fault was caused by an illegal memory write and the
programming [20], [43]. We point out the recently-surfacedregisterCR2 contains the address of the faulting memory
return-oriented attacks are the very reason behind the ewrite. In the second experiment, we spilled a sequence of
panded HyperSafe protection from the code integrity to thecode (that turns off thé&/” P protection) to a global array in
control-flow integrity. Specifically, with restricted pder the heap and the exploit triggered the execution of theespill
indexing, HyperSafe protects the control-data and ensuregpde. This attack is successfully foiled by the HyperSafe’s
their uses will always adhere to the control flow graph thatNX protection as the execution attempt leads to a page fault
is pre-computed a priori. It may be argued thateamay  exception with an error codér11. This error code reports
be manipulated to return to another return address that igat the page fault was caused by an NX violation. In the
contained in its target table but not in the last call site.third experiment, we targeted the page table by attempting t
However, such an attack is seriously limited in its scopemake the previously mentioned array executable. We point
and capability due to the need to follow the pre-determinedut this attack challenges the HyperSafe’s key technique —
control flow graph. Also, recent efforts (e.g., WIT [2]) can non-bypassable memory lockdown — andl be successful
be naturally integrated for improved precision and pradect in a hypervisor if not protected by HyperSafeortunately,
coverage. with HyperSafe, the hypervisor's page tables are write-
To the best of our knowledge, HyperSafe is the first sysProtected, and the page table update attempt triggered a
tem that is able to provide hypervisor control-flow integrit Page fault with the error codez03. As compared to the
This guarantee is achieved by creating an unbreakable deafitst experiment, the faulting address (containedCif2)
lock for the attackers. Specifically, the deadlock is ceeter in this case now pointed to one of the page table entries.
on the need to subvert the page table for the attackers: On théstly, in our fourth experiment, we attempted to alter the
one hand, to manipulate the page table, the attackers nedypervisor’s control flow by modifying a return pointer
to execute a turn-off-WP instruction injected or misusetl ou©On the stack. Interestingly, HyperSafe silently defeated a
of the normal control flow. On the other hand, to executerécovered from the attack. A further investigation showed
the turn-off-WP instruction injected or misused out of thethat the attacked return pointer belongs to a function, whic
normal control flow, they need to hijack the execution andis called only from one location. Recall the optimization
tamper with write-protected code or control-flow data, whic that avoids the unnecessary memory reads for performance
in turn requires manipulating the page table. By integratin (Section 11-B), the instrumented code essentially igisdhe
recent TPM-assisted static/dynamic root of trust [21],][48 return pointer on the stack and uses a difewt instruction
that establishes load-time integrity, HyperSafe effetyiv t0 return to its (single) caller. When the optimization is

enables non-subvertable enforcement for lifetime intggri Not applied, the modified return pointer (or more precisely
pointer index) will return back to either the original calle

or error. In either case, this attack is foiled.
Also, we point out that once an attack is detected, we can
To further validate the HyperSafe’s design, we empiricallyeasily combine the knowledge of the page fault’s error code,
evaluated its effectiveness against several powerfuhgjitct  the faulting address, and the hypervisor's memory layout
attacks. Specifically, we deliberately introduced a hyperio infer the nature of captured attacks. For example, if the
call interface with various buffer overflow vulnerabilsie faulting addres€’'R2 points to an entry in a page table and
and ported the Wilander’s buffer overflow benchmark testthe error code i9203, we can tell that the attacker intended
suite [54] for a number of realistic attack scenarios. Byto manipulate the hypervisor's page tables. Based on the
exploiting these vulnerabilities, the attacker can write t nature of the captured attack, we can then determine the
arbitrary memory locations with any value of choice. In most appropriate response. In our prototype, we simplyeissu
our experiments, we have conducted four different typesn alert message, dump the machine context, and recover the
of attacks: the first one modifies the hypervisor code, thexecution if possible by ignoring the page faults.
second one executes from the injected code, the third one i
modifies the page table, and the fourth one tampers with & Performance Evaluation
return pointer. Note these attacks mimic the key techniques To evaluate the performance overhead introduced by Hy-
of the real world attacks against hypervisors as shown iperSafe, we measured the runtime overhead with standard
the National Vulnerability Database [33]. Our experimentsbenchmark programs including LMbench [31], UnixBench
show that HyperSafe successfully prevented all of them. [51], ApacheBench [4], and two other real world applica-

B. Synthetic Experiments



Table | Table I

SOFTWARE CONFIGURATIONS FOREVALUATION LMBENCH PERFORMANCE RESULTSIN pus — SMALLER IS BETTER)
Item Version Configuration/command VMM ctx stat mmap shproc 10K file Bcop
Ubuntu Desktop| 9.10-AMD64 standard installation BitVisor 31.0 0.86 5379 5976 28.8 1377
Clang/LLVM 2.6 pre-release2 default configuration HyperSafe-2 | 32.7  0.87 5411 6181 30.1 1451
LMbench 3.0-a9 make results see overhead | 55% 1.2% 0.6%  3.4% 4.5% 5.49
UnixBench 4.10 J/Run HyperSafe-m| 31.2 086 5249 5844 29.8 1416
Kernel Build 2.6.31.4 (59MB) | make allnoconfig && make overhead | 0.6% 0%  -2.4%  -2.2% 3.5% 2.8%
bzip2 1.05 tar -jxf <kernel file>
Apache Server 2.2.12 Ubuntu package . . . o
ApacheBench 2.3 ab -c3 -t 60<url> a computation-oriented task which will involve less
hypervisor intervention, while the kernel compilation
oo mE involves lots of device I/Os that will be intercepted by the

hypervisor. As a result, we anticipate that the impact on
the kernel compilation is more significant than the impact
it N aints I BN Ht B B on the kernel decompression. The third test is the standard
ApacheBench program that measures the throughput of an
Apache web server running inside the Ubuntu system.
] N s AN et N N Figure 6 shows the normalized performance results of
HyperSafe-2 and HyperSafe-m when compared to the un-
Pecompress  KemelBuld - ApacheBench modified BitVisor. Overall, HyperSafe-m introduces less
Figure 6. Normalized performance of application benchmaskth the than 5% performance overhead. Interestingly, in all these
original BitVisor as the baseline tests, HyperSafe-m outperforms HyperSafeTtis sounds
counter-intuitive as HyperSafe-m achieves better precisi
tions. Our testing platform is a Dell Optiple’5 desktop  than HyperSafe-2 likely at the cost of higher performance
with a 3.0GH z Intel E8400 Core2Duo processor aB@B  overhead. A further investigation indicates that the prese
memory. The machine runs a default installation of theof multiple target tables and the optimization that avoids
Ubuntu9.10 desktop with the officia®.6.31.14 kernel. Table unnecessary memory reads when performing indirect con-
| shows the configurations of our evaluation platform. trol transfers both lead to improved performance. More
We tested the guest OS’s performance under BitVisor irspecifically, the finer destination tables can improve cache
two scenarioswith and without the HyperSafe protection. utilization due to better locality. Also, the optimizatiom
In order to further evaluate the impact from the improvedHyperSafe-m avoids the execution of additional memory-
precision, we tested two different implementations of Hype reading instructions.
Safe: one has the least precise implementation with two big Micro-benchmarks: We also used the standard micro-
target tables (one for return instructions and one for gxtir benchmark suites to evaluate HyperSafe’s impacts on v&riou
calls), and another has the most precise implementatioaspects of OS operations. Here, we focus on the context
with one target table for each function and one target tablswitch and memory operation overheads as they are known
for each indirect call instruction. For simplicity, the foer  to cause most performance impacts [46]. In Table Il, we
prototype is represented &typerSafe-2and the latter as show the LMbench results. Specifically, the colurotx
HyperSafe-mNote that theHyperSafe-nprototype includes shows the latency of performing a context switch; the
the optimization mentioned in Section III-B. columnsstat and mmapare the latency required to execute
In our evaluation with the application benchmarks, wethe corresponding system cadlh procis the time spent to
calculated the running time with the Linutime com-  execute the C library functiosystemand 10K file reports
mand and reported the system time plus user time. Ithe time to create a 10KB file; and the colunBtopy
the ApacheBench test, we run the Apache server insideshows the time to copy 1MB data using the C library
the Ubuntu 9.10 desktop and the ApacheBench client ofunction bcopy For the UnixBench results, the final scores
another Dell machine with the same hardware configuratiofior BitVisor, HyperSafe-2, and HyperSafe-m, ag65.9,
to measure the web server’s throughput. These two machinéd4.5 (2.5%), and849.6 (1.9%), respectively.
were interconnected by a Gigabit Ethernet switch. All the In general, BitVisor without the HyperSafe protection per-
test results reported here were the average of 10 runs. THerms better than the two HyperSafe-based implementations
deviations among these 10 runs are smalB(%). However, for two specific tests, i.e., tlnemapand sh proc
Application  Benchmarks: We first performed tests, HyperSafe-m actually performs better than BitVisor
application-level tests to measure HyperSafe's impacts oby a small margin, likely caused by the variations in our
real world programs. For that, we decompressed the officiaéxperiments. And consistent with the previous application
Linux 2.6.31.4 kernel source tarball, and then compiledevel tests, HyperSafe-m always beats HyperSafe-2 for the
the kernel. Conceptually, the kernel decompression isame reason as mentioned earlier: HyperSafe-m can achieve
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better cache utilization and avoid unnecessary memorysreadbe potentially tampered with by the attacker to hijack the
in certain control flow transfers. In other words, HyperSafe control flow. For that, there is a need to carefully examine
m is not only more precise than HyperSafe-2, but also runsll possible situations that may lead to states being saved t
faster. As a result, the benefits in achieving an enhanceshemory and ensure their correctness before being restored.
security guarantee and improving system performance ar€ortunately, most of these efforts are required only once.
worth the extra development and debugging efforts to imHowever, the support of loadable kernel modules, espe-
plement the more precise HyperSafe-m. cially closed-source third-party drivers, remains a draie.

In conclusion, HyperSafe is a lightweight hypervisor Specifically, for the enforcement of control-flow integrity
protection mechanism that incurs less tt5&h performance our second key technique requires a precise alias analysis.
overhead, thus satisfying our third design goal (Sectipn Il How to improve its precision when handling a large-scale
system software such as commodity OS kernels as well as
assembly instructions (or binary code) is still an ongoing

In this paper, we have so far discussed the protectiomesearch topic.
of Type-l bare-metal hypervisors by proposing two key Also note that in its current form, our CFl enforcement
techniques. In the following, we examine the possibility ofis not as restrictive as possible because impossible piths [
porting them to support other Type-Il hosted hypervisors orare still tolerated. For example, the indirect call site R1 i
commodity OS kernels. Note a type-Il hypervisor requiresFigure 4 is allowed to transfer control to functiohsg i
a hosted OS kernel. Therefore, similar challenges will beandfunc j. However, there may exist certain execution paths
encountered to enable their support. In the following, wewhere only one of them is the valid target. Similarly, a ratur
discuss the challenges we may face in the process andstruction may return to call sites other than its most néce
examine possible limitations in the current prototype. caller. In Figure 4, the attacker may force functifumc i

At first glance, Type-I hypervisors and commodity OSesto return to call siteR2 by manipulating the return index
(including the Type-Il hypervisors) are both system sofeva on the stack, even that the function should returiRio To
that directly run on top of the bare-metal hardware andaddress impossible paths, one possible way is to make our
can be similarly supported. However, certain choices mad€FI| enforcement context sensitive. For instance, the shado
in commodity OS design and implementation present addistack provides a viable way to enforce strict control transf
tional challenges to achieve the intended security gueesnt for returns. Unfortunately, our implementation experienc
For instance, the design of modern OSes such as Linux py@Section 11I-B) shows that performance overhead of write-
much emphasis on the performance. Developers use all kingsotected shadow stack is high. However, despite these lim-
of hacks to squeeze more performance from the hardwaréations, CFI still severely limits what attackers can aviei
And unfortunately, not all of these techniques are soundnd is able to provide protection against a wide spectrum of
in security. This is especially true in the area of memoryattacks [1], [25].
management. Issues such as double mapping and mixedFor the very same reason, in our prototype, for some
pages are quite common in commodity OS kernels (e.gspecific indirect function calls, we were forced to manually
the Linux kernel always doubly-maps the lower memory).compute their call targets to handle the imprecision of the
To implement the similar memory lockdown technique in existing alias analysis tool we used. Manual analysis is
HyperSafe, we need to remove all the doubly-mapped antkdious, time-consuming and error-prone. For the support
mixed pages. In this process, the presence of doubly-mapped commodity OSes, there is a need to completely eliminate
pages will likely cause more difficulties as it will require the need of manual involvement. To achieve that, we need to
to overhaul the way the kernel accesses its memory. Andl) scale the current field-and-context-sensitive unificat
conceivably, it is a challenging task to ensure the re-based alias analysis method and make it applicable for com-
designed memory management can still achieve comparabirodity OS kernels; and (2) enhance it for better precision
performance while accommodating the much more frequeriy allowing for inclusion-based or flow-sensitive alias lana
(benign) page table updates. Considering the need to escargis and supporting assembly code. Note some promising
page table updates and the associated overhead, the @fgresses in this direction have been made by existing
might consider implementing a batch mode for page tableesearch efforts [6], [8], [11], [19] and the integration of
updates so that the cost can be amortized. these techniques remains an interesting direction fordéutu

Additional challenges are also present to enforce the kemork.
nel's control-flow integrity, mainly due to the asynchrosou
nature of context switching and interrupt handling as well a
the support of (potentially closed-source) third-partiyeirs. Program Analysis and Formal Proof The first area of
In particular, when a running process is being interruptedrelated work is recent efforts in applying static analysis t
the machine states are saved to memory so that they cadentify and remove software bugs or using formal methods
be re-used later for resumption. Note these saved states cém prove certain security properties. For example, static
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analysis, model checking, and symbolic execution have longntegrity and their enforcement usually relies on a trusted
been explored in the area of security research [2], [9],,[10]entity. In contrast, our system enables the self-protactio
[15], [17]. These systems are designed to uncover bugs in th&f hypervisors and provides non-bypassable enforcement of
source code [10], [15]; prevent the bug from being exploitedcontrol-flow integrity.
[2]; reason about the safety of one facet of the software [9]; The notion of control-flow integrity is initially proposed
or demonstrate the absence of some kind of bugs [17]. Sonte protect user-level applications [1] by assuming two
of these systems can be scaled to analyze commodity Offindamental assumptions, i.e., non-writable code and non-
kernels. However, they typically focus on a small subset ofexecutable data, from the underlying OS kernel. As a
security vulnerabilities or properties. For example, Bugr comparison, HyperSafe eliminates these two assumptions by
et al. [9] validates the safety of Linux kernel's pointer proposing a non-bypassable memory lockdown technique.
dereferences in system call arguments, where the safety Without relying on external or layer-below components
defined by the presence of sanity checks of pointers, not th® provide the intended integrity guarantee, this techamiqu
proper use of the dereferenced contents. serves as the foundation of our scheme and is thus one key
There also exist parallel research efforts [3], [16], [26] contribution of this paper.
that aim to formally prove the safety of system software. Hardware Support for Static and Dynamic Root
Among them, seL4 [26] recently made significant progressof Trust  Also closely related, the Trusted Computing
In particular, it proves that the C code of the seL4 micro-Group [50] has provided foundational work such as Trusted
kernel (~8700 SLOC) implements the behaviors specifiedPlatform Module (TPM) [48] and Core Root of Trust for
in the abstract specification and contains nothing moreMeasurement (CRTM) [50] that enabled trusted computing
As mentioned earlier, the proof is achieved by imposingin commodity hardware. The recent Intel TXT technology
several restrictive requirements on the micro-kernel&gte [21] has provided a reliable way called measured late launch
and implementation. Specifically, it requires interruptinlgy  to securely load a clean hypervisor (or OS kernel). They have
disabled for most of the time and instead schedules thbeen leveraged to provide secure loading (with the guaran-
interrupt polling at a small number of carefully-placed teed load-time integrity) [49], [32], integrity measuremhe
interrupt points. Further, it moves the memory managemen9], [22], and attestation [41], [42], [45]. HyperSafeiesl
out of the kernel and avoids the need of verifying it as parton these works to ensure hypervisor load-time integrity and
of seL4. Due to these restrictions, it is still an open questi further complements them by effectively providing runtime
of how well formal methods can be applied to commaodityintegrity to the hypervisor.
hypervisors such as Xen. (Note X&n.1 has~230K SLOC
and its memory management alone has4K SLOC). In
comparison, HyperSafe takes a different approach to peovid We have presented HyperSafe, a lightweight approach
control-flow integrity even in the presence of exploitableto provide lifetime control-flow integrity for commodity
memory corruption bugs. As such, both approaches ardyPe-l hypervisors. HyperSafe achieves its goal by two key
complementary in nature and our system can be |everagégchniques: The first technique locks down write-protected
to ensure the runtime integrity of a seL4 micro-kernel. ~ Mmemory pages and prevents them from being manipulated
Protection of OS Kernels or Running Applications at runtime, thus effectively protecting the hypervisorsle
The second category of related work aims to protect thdntegrity; The second key technique converts the contrtzl da
integrity of OS kernels or running applications. Systemsimo pointer indexes by introducing one layer of indirentio
such as [34], [35], [36], [40], [44], [53] take advantage of and thus expands protection to include control-flow enforce
the isolation and dominant control provided by a trustedMent. A proof-of-concept system has been developed to pro-
hypervisor to secure the integrity of guest OS kernelstect two open-source Type-I hypervisors: BitVisor and Xen.
With their assumption of a layer-below trusted entity to EXperimental results with a number of (synthetic) hypeowis
provide the base, the techniques in these systems cannot Biacks as well as benchmarking programs show HyperSafe
directly applied for the hypervisor protection. In otherras, ~ an reliably provide the intended security guarantee with a
HyperSafe can not enjoy the luxury of such an one-layersmall performance overhead.
below approach since it already runs at the lowest layer. Acknowledgments The authors would like to thank the
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