Overview of Number Theory Basics

Murat Kantarcioglu

Based on Prof. Ninghui Li's Slides

Divisibility

Definition

Given integers a and $b, b \neq 0, b$ divides a (denoted $b \mid a$) if \exists integer c, s.t. $a=c b$.
b is called a divisor of a.
Theorem (Transitivity)
Given integers a, b, c, all > 1, with $a \mid b$ and $b \mid c$, then a|c.

Proof:
$\mathrm{a} \mid \mathrm{b}=>\exists \mathrm{m}$ s.t. $\mathrm{ma}=\mathrm{b}$
$\mathrm{b} \mid \mathrm{c}=>\exists \mathrm{n}$ s.t. $\mathrm{nb}=\mathrm{c}, \mathrm{nma}=\mathrm{c}$,
We obtain that $\exists \mathrm{q}=\mathrm{mn}$, s.t $\mathrm{c}=\mathrm{aq}$, so a $\mid c$

Divisibility (cont.)

Theorem
Given integers a, b, c, x, y all >1, with $a \mid b$ and $a \mid c$, then $\mathrm{a} \mid \mathrm{bx}+\mathrm{cy}$.

Proof:
$\mathrm{a} \mid \mathrm{b}=>\exists \mathrm{m}$ s.t. $\mathrm{ma}=\mathrm{b}$
$\mathrm{a} \mid \mathrm{c}=>\exists \mathrm{n}$ s.t. na $=\mathrm{c}$
$b x+c y=a(m x+n y)$, therefore $a \mid b x+c y$

Divisibility (cont.)

Theorem (Division algorithm)

Given integers a, b such that $a>0, a<b$ then there exist two unique integers q and $r, 0 \leq r<a \operatorname{s.t} b=a q+r$.

Proof:
Uniqueness of q and r :
assume $\exists q^{\prime}$ and r^{\prime} s.t $b=a q^{\prime}+r^{\prime}, 0 \leq r^{\prime}<a, q^{\prime}$ integer then $a q+r=a q^{\prime}+r^{\prime} \Rightarrow a\left(q-q^{\prime}\right)=r^{\prime}-r \Rightarrow q-q^{\prime}=\left(r^{\prime}-r\right) / a$ as $0 \leq r, r^{\prime}<a \Rightarrow-a<\left(r^{\prime}-r\right)<a \Rightarrow-1<\left(r^{\prime}-r\right) / a<1$
So $-1<q-q^{\prime}<1$, but $q-q^{\prime}$ is integer, therefore
$q=q^{\prime}$ and $r=r^{\prime}$

Prime and Composite Numbers

Definition

An integer $\mathrm{n}>1$ is called a prime number if its positive divisors are 1 and n.

Definition

Any integer number $\mathrm{n}>1$ that is not prime, is called a composite number.

Example

Prime numbers: 2, 3, 5, 7, 11, 13,17 ...
Composite numbers: 4, 6, 25, 900, 17778, ...

Decomposition in Product of

 PrimesTheorem (Fundamental Theorem of Arithmetic)
Any integer number $\mathrm{n}>1$ can be written as a product of prime numbers (>1), and the product is unique if the numbers are written in increasing order.

$$
n=p_{1}^{e_{1}} p_{2}^{e 2} \ldots p_{k}^{e k}
$$

Example: $84=2^{2} \bullet 3 \bullet 7$

Greatest Common Divisor (GCD)

Definition

Given integers $\mathrm{a}>0$ and $\mathrm{b}>0$, we define $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=\mathrm{c}$, the greatest common divisor (GCD), as the greatest number that divides both a and b.

Example
 $\operatorname{gcd}(256,100)=4$

Definition

Two integers $\mathrm{a}>0$ and $\mathrm{b}>0$ are relatively prime if $\operatorname{gcd}(\mathrm{a}, \mathrm{b})=1$.

Example

25 and 128 are relatively prime.

GCD using Prime Decomposition

Theorem
Given

$$
\begin{array}{ll}
n=p_{1}^{e_{1}} p_{2}^{e 2} \ldots p_{k}^{e k} \quad \text { and } \\
m=p_{1}^{f_{1}} p_{2}^{f_{2}} \ldots p_{k}^{f_{k}} & \text { then }
\end{array}
$$

where p_{i} are prime numbers then

$$
\operatorname{gcd}(n, m)=p_{1}^{\min \left(e_{1}, f_{1}\right)} p_{2}^{\min \left(e_{2}, f_{2}\right)} \ldots p_{k}^{\min \left(e_{k}, f_{k}\right)}
$$

Example: $84=2^{2} \bullet 3 \bullet 7 \quad 90=2 \bullet 3^{2} \bullet 5$
$\operatorname{gcd}(84,90)=2^{1} \bullet 3^{1} \bullet 5^{0} \bullet 7^{0}$

GCD as a Linear Combination

Theorem

Given integers $a, b>0$ and $a>b$, then $d=\operatorname{gcd}(a, b)$ is the least positive integer that can be represented as ax + by, x, y integer numbers.

Proof: Let t be the smallest integer, $\mathrm{t}=\mathrm{ax}+\mathrm{by}$
$\mathrm{d} \mid \mathrm{a}$ and $\mathrm{d}|\mathrm{b} \Rightarrow \mathrm{d}| \mathrm{ax}+\mathrm{by}$, so $\mathrm{d} \leq \mathrm{t}$.
We now show $\mathrm{t} \leq \mathrm{d}$.
First $\mathrm{t} \mid \mathrm{a}$; otherwise, $\mathrm{a}=\mathrm{tu}+\mathrm{r}, 0<\mathrm{r}<\mathrm{t}$;
$r=a-u t=a-u(a x+b y)=a(1-u x)+b(-u y)$, so we found another linear combination and $\mathrm{r}<\mathrm{t}$. Contradiction.
Similarly $t \mid b$, so t is a common divisor of a and b, thus $t \leq \operatorname{gcd}(a, b)=d . \quad$ So $t=d$.
Example
$\operatorname{gcd}(100,36)=4=4 \times 100-11 \times 36=400-396$

GCD and Multiplication

Theorem

Given integers $a, b, m>1$. If
$\operatorname{gcd}(a, m)=\operatorname{gcd}(b, m)=1$, then $\operatorname{gcd}(a b, m)=1$

Proof idea:
$a x+y m=1=b z+t m$
Find u and v such that $(a b) u+m v=1$

GCD and Division

Theorem

If $\mathrm{g}=\operatorname{gcd}(\mathrm{a}, \mathrm{b})$, where $\mathrm{a}>\mathrm{b}$, then $\operatorname{gcd}(\mathrm{a} / \mathrm{g}, \mathrm{b} / \mathrm{g})=1$
(a / g and b / g are relatively prime).
Proof:
Assume $\mathrm{gcd}(\mathrm{a} / \mathrm{g}, \mathrm{b} / \mathrm{g})=\mathrm{d}$, then $\mathrm{a} / \mathrm{g}=\mathrm{md}$ and $\mathrm{b} / \mathrm{g}=\mathrm{nd}$.
$a=$ gmd and $b=$ gnd, therefore gd $\mid a$ and gd $\mid b$
Therefore $\mathrm{gd} \leq \mathrm{g}, \mathrm{d} \leq 1$, so $\mathrm{d}=1$.

```
Example \(\operatorname{gcd}(100,36)=4\)
\(\operatorname{gcd}(100 / 4,36 / 4)=\operatorname{gcd}(25,9)=1\)
```


GCD and Division

Theorem

Given integers $a>0, b, q, r$, such that $b=a q+r$, then $\operatorname{gcd}(b, a)=\operatorname{gcd}(a, r)$.

Proof:
Let $\operatorname{gcd}(b, a)=d$ and $\operatorname{gcd}(a, r)=e$, this means
$d \mid b$ and $d \mid a$, so $d \mid b-a q$, so $d \mid r$
Since $\operatorname{gcd}(a, r)=e$, we obtain $d \leq e$.
$e \mid a$ and e|r, so e|aq $+r$, so e|b, Since $\operatorname{gcd}(\mathrm{b}, \mathrm{a})=\mathrm{d}$, we obtain $\mathrm{e} \leq \mathrm{d}$.

Therefore $\mathrm{d}=\mathrm{e}$

Finding GCD

Using the Theorem: Given integers $a>0, b, q, r$, such that $b=a q+r$, then $\operatorname{gcd}(b, a)=\operatorname{gcd}(a, r)$.
Euclidian Algorithm
Find gcd (b, a)
while $\mathrm{a} \neq 0$ do
$r \leftarrow b \bmod a$
$b \leftarrow a$
$a \leftarrow r$
return b

Euclidian Algorithm Example

Find $\operatorname{gcd}(143,110)$

$$
\begin{aligned}
& 143=1 \times 110+33 \\
& 110=3 \times 33+11 \\
& 33=3 \times 11+0
\end{aligned}
$$

$\operatorname{gcd}(143,110)=11$

Towards Extended Euclidian Algorithm

- Theorem: Given integers $\mathrm{a}, \mathrm{b}>0$ and a $>b$, then $d=\operatorname{gcd}(a, b)$ is the least positive integer that can be represented as ax + by, x, y integer numbers.
- How to find such x and y ?
- If a and b are relative prime, then there exist x and y such that $a x+b y=1$. - In other words, $a x \bmod b=1$.

Euclidian Algorithm Example

Find $\operatorname{gcd}(143,111)$

$$
\begin{aligned}
& 143=1 \times 111+32 \\
& 111=3 \times 32+15 \\
& 32=2 \times 15+2 \\
& 15=7 \times 2+1
\end{aligned}
$$

$$
\begin{aligned}
32 & =143-1 \times 111 \\
15 & =111-3 \times 32 \\
& =4 \times 111-3 \times 143 \\
2 & =32-2 \times 15 \\
& =7 \times 143-9 \times 111 \\
1 & =15-7 \times 2 \\
& =67 \times 111-52 \times 143
\end{aligned}
$$

Extended Euclidian Algorithm

$\mathrm{x}=1 ; \mathrm{y}=0$; $\mathrm{d}=\mathrm{a} ; \mathrm{r}=0$; $\mathrm{s}=1$; $\mathrm{t}=\mathrm{b}$; while ($\mathrm{t}>0$) \{
$q=\lfloor d / t\rfloor$
$u=x-q r ; ~ v=y-q s ; ~ w=d-q t$
$x=r ; \quad y=s ; \quad d=t$
$r=u ; \quad s=v ; \quad t=w$
\}
return ($\mathrm{d}, \mathrm{x}, \mathrm{y}$)

Invariants:

$$
\begin{aligned}
& \mathrm{ax}+\mathrm{by}=\mathrm{d} \\
& \mathrm{ar}+\mathrm{bs}=\mathrm{t}
\end{aligned}
$$

Equivalence Relation

Definition

A relation is defined as any subset of a cartesian product. We denote a relation $(a, b) \in R$ as $a R b, a \in$ A and $b \in B$.

Definition

A relation is an equivalence relation on a set S, if R is
Reflexive: aRa for all $a \in S$
Symmetric: for all $\mathrm{a}, \mathrm{b} \in \mathrm{S}, \mathrm{aRb} \Rightarrow \mathrm{bRa}$.
Transitive: for all $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{S}, \mathrm{aRb}$ and $\mathrm{bRc} \Rightarrow \mathrm{aRc}$

Example

"=" is an equivalence relation on N

Modulo Operation

Definition:

$$
a \text { modn }=r \Leftrightarrow \exists q \text {, s.t. } a=q \times n+r
$$

Example:
$7 \bmod 3=1$
$-7 \bmod 3=2$

Definition (Congruence):

$$
a \equiv b \bmod n \Leftrightarrow a \bmod n=b \bmod n
$$

Congruence Relation

Theorem
Congruence $\bmod \mathrm{n}$ is an equivalence relation:
Reflexive: $\mathrm{a} \equiv \mathrm{a}(\bmod \mathrm{n})$
Symmetric: $a \equiv b(\bmod n)$ iff $b \equiv a \bmod n$.
Transitive: $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ and $\mathrm{b} \equiv \mathrm{c}(\bmod \mathrm{n}) \Rightarrow$

$$
a \equiv c(\bmod n)
$$

Congruence Relation Properties

Theorem

1) If $a \equiv b(\bmod n)$ and $c \equiv d(\bmod n)$, then:
$a \pm c \equiv b \pm d(\bmod n)$ and $\mathrm{ac} \equiv \mathrm{bd}(\bmod \mathrm{n})$
2) If $a \equiv b(\bmod n)$ and $d \mid n$ then: $a \equiv b(\bmod d)$

Reduced Set of Residues

Definition: A reduced set of residues (RSR) modulo m is a set of integers R each relatively prime to m, so that every integer relatively prime to m is congruent to exactly one integer in R.

The group $\left(Z_{n}{ }^{*}, \times\right)$

- $Z_{n}{ }^{*}$ consists of all integers in [1..n-1] that are relative prime to n
$-Z_{n}{ }^{*}=\{a \mid 1 \leq a \leq n$ and $\operatorname{gcd}(a, n)=1\}$
- is a reduced set of residues modulo n
$-\left(Z_{n}{ }^{*}, x\right)$ is a group
$\cdot \operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$ and $\operatorname{gcd}(\mathrm{b}, \mathrm{n})=1 \Rightarrow \operatorname{gcd}(\mathrm{ab}, \mathrm{n})=1$
- given $a \in Z_{n}{ }^{*}$, how to compute a^{-1} ?

Linear Equation Modulo

Theorem

If $\operatorname{gcd}(\mathrm{a}, \mathrm{n})=1$, the equation $a x \equiv 1 \bmod n$ has a unique solution, $0<x<n$

Proof Idea:
if $a x_{1} \equiv 1(\bmod n)$ and $a x_{2} \equiv 1(\bmod n)$, then
$a\left(x_{1}-x_{2}\right) \equiv 0(\bmod n)$, then $n \mid a\left(x_{1}-x_{2}\right)$, then $n \mid\left(x_{1}-x_{2}\right)$, then $x_{1}-x_{2}=0$

Linear Equation Modulo (cont.)

Theorem

If $\operatorname{gcd}(a, n)=1$, the equation

$$
a x \equiv b \bmod n
$$

has a solution.
Proof Idea:
$x=a^{-1} b \bmod n$

Chinese Reminder Theorem

 (CRT)
Theorem

Let $\mathrm{n}_{1}, \mathrm{n}_{2},,,, \mathrm{n}_{\mathrm{k}}$ be integers s.t. $\operatorname{gcd}\left(\mathrm{n}_{\mathrm{i}}, \mathrm{n}_{\mathrm{j}}\right)=1$,
$\mathrm{i} \neq \mathrm{j}$.

$$
\begin{aligned}
& x \equiv a_{1} \bmod n_{1} \\
& x \equiv a_{2} \bmod n_{2} \\
& \cdots \\
& x \equiv a_{k} \bmod n_{k}
\end{aligned}
$$

There exists a unique solution modulo

$$
\mathrm{n}=\mathrm{n}_{1} \mathrm{n}_{2} \ldots \mathrm{n}_{\mathrm{k}}
$$

Proof of CMT

- Consider the function $\chi: Z_{n} \rightarrow Z_{n 1} \times Z_{n 2} \times \ldots \times Z_{n k} \quad \chi(x)$ $=\left(x \bmod n_{1}, \ldots, x \bmod n_{k}\right)$
- We need to prove that χ is a bijection.
- For $1 \leq i \leq k$, define $m_{i}=n / n_{i}$, then $\operatorname{gcd}\left(m_{i}, n_{i}\right)=1$
- For $1 \leq i \leq k$, define $y_{i}=m_{i}^{-1} \bmod n_{i}$
- Define function $\rho(a 1, a 2, \ldots, a k)=\Sigma a_{i} m_{i} y_{i} \bmod n$
$-a_{i} m_{i} y_{i} \equiv a_{i}\left(\bmod n_{i}\right)$
$-a_{i} m_{i} y_{i} \equiv 0\left(\bmod n_{j}\right)$ where $i \neq j$

Proof of CMT

- Example of the mappings: $\mathrm{n}_{1}=3, \mathrm{n}_{2}=5, \mathrm{n}=15$ χ : $\rho: \quad m_{1}=5, y_{1}=2, m_{1} y_{1}=10$,

$\mathrm{m}_{2} \mathrm{y}_{2}=6,1$			
1	$(1,1)$	$(1,1)$	$10+6$
2	$(2,2)$	$(1,2)$	$10+12$
$4(1,4)$	$(1,3)$	$10+18$	7
7	$(1,2)$	$(1,4)$	$10+24$
$8(2,3)$	$(2,1)$	$20+6$	4
$11(2,1)$	$(2,2)$	$20+12$	2
$13(1,3)$	$(2,3)$	$20+18$	8
$14(2,4)$	$(2,4)$	$20+24$	14

Example of CMT:

$$
x \equiv 5(\bmod 7)
$$

- $\mathrm{n}_{1}=7, \mathrm{n}_{2}=11, \mathrm{n}_{3}=13, \mathrm{n}=1001$ $x \equiv 3(\bmod 11)$
$x \equiv 10(\bmod 13)$
- $m_{1}=143, m_{2}=91, m_{3}=77$
- $\mathrm{y}_{1}=143^{-1} \bmod 7=3^{-1} \bmod 7=5$
- $y_{2}=91^{-1} \bmod 11=3^{-1} \bmod 11=4$
- $y_{3}=77^{-1} \bmod 13=12^{-1} \bmod 13=12$
- $x=(5 \times 143 \times 5+3 \times 91 \times 4+10 \times 77 \times 12) \mathrm{mod}$ $1001=13907 \bmod 1001=894$

The Euler Phi Function

Definition

Given an integer $n, \Phi(n)=\left|Z_{n}{ }^{*}\right|$ is the number of all numbers a such that 0 $<\mathrm{a}<\mathrm{n}$ and a is relatively prime to n (i.e., $\operatorname{gcd}(a, n)=1$).
Theorem:

$$
\text { If } \operatorname{gcd}(\mathrm{m}, \mathrm{n})=1, \Phi(\mathrm{mn})=\Phi(\mathrm{m}) \Phi(\mathrm{n})
$$

The Euler Phi Function

Theorem: Formula for $\Phi(\mathrm{n})$
Let p be prime, e, m, n be positive integers

$$
\begin{aligned}
& \text { 1) } \Phi(p)=p-1 \\
& \text { 2) } \Phi\left(p^{\mathrm{e}}\right)=\mathrm{p}^{\mathrm{e}}-\mathrm{p}^{\mathrm{e}-1}
\end{aligned}
$$

3) If $n=p_{1}^{e_{1}} p_{2}^{e 2} \ldots p_{k}^{e k}$ then

$$
\Phi(n)=n\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right) \ldots\left(1-\frac{1}{p_{k}}\right)
$$

Fermat's Little Theorem

Fermat's Little Theorem

If p is a prime number and a is a natural number that is not a multiple of p, then

$$
\mathrm{a}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})
$$

Proof idea:

$\operatorname{gcd}(a, p)=1$, then the set $\left\{i^{*} a \bmod p\right\} 0<i<p$ is a permutation of the set $\{1, \ldots, p-1\}$. (otherwise we have $0<n<m<p$ s.t. $\operatorname{man} \bmod p=\operatorname{na} \bmod p$
$\mathrm{p}|(\mathrm{ma}-\mathrm{na}) \Rightarrow \mathrm{p}|(\mathrm{m}-\mathrm{n})$, where $0<m-\mathrm{n}<\mathrm{p})$
$a * 2 a * \ldots *(p-1) a=(p-1)!a^{p-1} \equiv(p-1)!(\bmod p)$
Since $\operatorname{gcd}((p-1)!, p)=1$, we obtain $a^{p-1} \equiv 1(\bmod p)$

Consequence of Fermat's Theorem

Theorem

- p is a prime number and
- a, e and f are positive numbers
- e $\equiv \mathrm{f} \bmod \mathrm{p}-1$ and
- p does not divide a, then

$$
\mathrm{a}^{\mathrm{e}} \equiv \mathrm{a}^{\mathrm{f}}(\bmod \mathrm{p})
$$

Proof idea:
$a^{e}=a^{q(p-1)+f}=a^{f}\left(a^{(p-1)}\right)^{q}$
by applying Fermat's theorem we obtain
$a^{e} \equiv a^{f}(\bmod p)$

Euler's Theorem

Euler's Theorem

Given integer $n>1$, such that $\operatorname{gcd}(a, n)=1$ then

$$
a^{\Phi(n)} \equiv 1(\bmod n)
$$

Corollary

Given integer $n>1$, such that $\operatorname{gcd}(a, n)=1$ then $a^{\Phi(n)-1} \bmod n$ is a multiplicative inverse of a $\bmod n$.

Corollary

Given integer $\mathrm{n}>1, \mathrm{x}, \mathrm{y}$, and a positive integers with $\operatorname{gcd}(a, n)=1$. If $x \equiv y(\bmod \Phi(n))$, then

$$
a^{x} \equiv a^{y}(\bmod n)
$$

Next ...

- Prime number distribution and testing
- RSA
- Efficiency of modular
 arithmetic

