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Divisibility
Definition
Given integers a and b, b 

 
0, b divides a 

(denoted b|a) if 
 

integer c, s.t. a = cb. 
b is called a divisor of a.

Theorem (Transitivity)
Given integers a, b, c, all > 1, with a|b

 
and b|c, 

then a|c.

Proof: 
a | b => 

 
m s.t. ma = b

b | c => 
 

n s.t.  nb
 

= c, nma
 

= c,
We obtain that 

 
q = mn, s.t

 
c = aq, so a | c



Divisibility (cont.)

Theorem
Given integers a, b, c, x, y all > 1, with a|b

 
and a|c, 

then a | bx
 

+ cy.

Proof:
a | b => 

 
m s.t. ma = b

a | c => 
 

n s.t.  na
 

=  c
bx

 
+ cy = a(mx

 
+ ny), therefore a| bx

 
+cy



Divisibility (cont.)

Theorem (Division algorithm)
Given integers a,b

 
such that a>0, a<b then there exist 

two unique integers q and r, 0 
 

r < a s.t. b = aq
 

+ r.

Proof:
Uniqueness of q and r: 
assume 

 
q’

 
and r’

 
s.t

 
b = aq’

 
+ r’, 0 

 
r’< a, q’

 
integer

then aq
 

+ r=aq’
 

+ r’
 


 

a(q-q’)=r’-r
 


 

q-q’
 

= (r’-r)/a
as 0 

 
r,r’ <a  

 
-a < (r’-r) < a  

 
-1 < (r’-r)/a

 
< 1

So   -1 < q-q’
 

< 1, but q-q’
 

is integer, therefore 
q = q’

 
and r = r’



Prime and Composite 
Numbers

Definition
An integer n > 1 is called a prime number

 
if its 

positive divisors are 1 and n.

Definition
Any integer number n > 1 that is not prime, is called 
a composite number.

Example
Prime numbers: 2, 3, 5, 7, 11, 13,17 …
Composite numbers: 4, 6, 25, 900, 17778,  …



Decomposition in Product of 
Primes

Theorem (Fundamental Theorem of Arithmetic)
Any integer number n > 1 can be written as a product 
of prime numbers (>1), and the product is unique if 
the numbers are written in increasing order.

Example:   84 = 2237 
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Greatest Common Divisor 
(GCD)

Definition
Given integers a > 0 and b > 0, we define gcd(a, b) = c, 
the greatest common divisor (GCD),  as the greatest 
number that divides both a and b.

Example
gcd(256, 100)=4

Definition
Two integers a > 0 and b > 0 are relatively prime if 
gcd(a, b) = 1.

Example
25 and 128 are relatively prime.



GCD using Prime 
Decomposition

Theorem
Given                                                and

then

where pi

 

are prime numbers
then

ek
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gcd(n,m)  p1
min(e1 , f1 )p2

min(e2 , f2 )...pk
min(ek , fk )

Example:  84=2237 90=2325

gcd(84,90)=2131 50 70



GCD as a Linear 
Combination 

Theorem
Given integers a, b > 0 and a > b, then d = gcd(a,b) is the 
least positive integer that can be represented as ax + by, 
x, y integer numbers.

Proof:  Let t be the smallest integer, t = ax + by
d | a and d | b  d | ax + by, so d ≤

 
t.

We now show t ≤
 

d.  
First t | a; otherwise, a = tu

 
+ r, 0 < r < t; 

r = a -
 

ut
 

= a -
 

u(ax+by) = a(1-ux) + b(-uy), so we found
another linear combination and r < t. Contradiction.
Similarly t | b, so t is a common divisor of a and b, thus 

t
 

≤
 

gcd
 

(a, b) = d.   So t = d.
Example
gcd(100, 36) = 4

 
= 4 

 
100 –

 
11 

 
36 = 400 -

 
396



GCD and Multiplication

Theorem
Given integers a, b, m >1. If
gcd(a, m) = gcd(b, m) = 1, 
then gcd(ab, m) = 1

Proof idea:
ax + ym

 
= 1 = bz

 
+ tm

Find u and v such that  (ab)u
 

+ mv
 

= 1



GCD and Division

Theorem
If g = gcd(a, b), where a > b, then gcd

 
(a/g, b/g) = 1

(a/g and b/g
 

are relatively prime).

Proof:
Assume gcd(a/g, b/g) = d, then a/g = md

 
and b/g

 
= nd.

a = gmd
 

and b = gnd, therefore gd
 

| a and gd
 

| b 
Therefore gd

 
≤

 
g, d ≤

 
1, so d =1. 

Example
gcd(100, 36) = 4
gcd

 
(100/4, 36/4) = gcd(25, 9) = 1



GCD and Division
Theorem
Given integers a>0, b, q, r, such that  b = aq

 
+ r,

then gcd(b, a) = gcd(a, r).

Proof:
Let gcd(b, a) = d and  gcd(a, r) = e, this means

d | b and d | a, so d | b -
 

aq
 

, so d | r
Since gcd(a, r) = e, we obtain d ≤

 
e.

e | a and e | r,  so e | aq
 

+ r , so e | b, 
Since gcd(b, a) = d, we obtain e ≤

 
d.

Therefore d = e



Finding GCD

Using the Theorem: Given integers a>0, b, q, r, 
such that  b = aq

 
+ r, then gcd(b, a) = gcd(a, r).

Euclidian Algorithm
Find gcd

 
(b, a)

while a 0 do
r  b mod a
b  a
a  r

return b



Euclidian Algorithm 
Example

Find gcd(143, 110)

gcd (143, 110) = 11

143 = 1 
 

110 + 33
110 = 3 

 
33 + 11

33   = 3 
 

11 + 0



Towards Extended Euclidian 
Algorithm

•
 

Theorem: Given integers a, b > 0 and a 
> b, then d = gcd(a,b) is the least positive 
integer that can be represented as ax + 
by, x, y integer numbers.

•
 

How to find such x and y?

•
 

If a and b are relative prime, then there 
exist x and y such that ax + by = 1.  
–

 
In other words, ax mod b = 1. 



Euclidian Algorithm 
Example

Find gcd(143, 111)

gcd (143, 111) = 1

143 = 1 
 

111 + 32
111 = 3 

 
32 + 15

32 = 2 
 

15 + 2
15 = 7 

 
2 + 1

32 = 143 
 

1 
 

111 
15 = 111 

 
3 

 
32

= 4111 
 

3 143
2 = 32 

 
2 

 
15

= 7 143 
 

9 
 

111
1 = 15 - 7 

 
2

= 67 
 

111 – 52 
 

143



Extended Euclidian 
Algorithm

x=1;  y=0;  d=a;  r=0;  s=1;  t=b;
while (t>0) {

q = d/t
u=x-qr;  v=y-qs;  w=d-qt
x=r;       y=s;       d=t
r=u;       s=v;       t=w

}
return (d, x, y)

ax + by = d
ar + bs = t

Invariants:



Equivalence Relation

Definition
A relation is defined as any subset of a cartesian

 product. We denote a relation (a,b) 
 

R as aRb,  a 
 A and b 

 
B.

Definition
A relation is an equivalence relation on a set S, if R is 
Reflexive:    aRa

 
for all a 

 
S 

Symmetric:  for all a, b 
 

S, aRb
 

 bRa
 

. 
Transitive:   for all a,b,c

 


 
S, aRb

 
and bRc

 
 aRc

Example
“=“

 
is an equivalence relation on N



Modulo Operation

nbnanba  mod  mod  mod 

rnqaqrna    s.t. ,  mod 
where 0  r  n 1

Definition:

Example:
7 mod 3 = 1
-7 mod 3 = 2

Definition (Congruence):



Congruence Relation

Theorem
Congruence mod n is an equivalence relation:
Reflexive:

 
a 

 
a (mod n)   

Symmetric: a 
 

b(mod
 

n) iff
 

b 
 

a mod n  . 
Transitive:

 
a 

 
b(mod

 
n) and b 

 
c(mod

 
n) 

a 
 

c(mod
 

n)



Congruence Relation 
Properties

Theorem
1) If a 

 
b (mod n) and c 

 
d (mod n), then:

a 
 

c 
 

b 
 

d (mod n) and 
ac 

 
bd

 
(mod n) 

2) If a 
 

b (mod n) and d | n then:
a 

 
b (mod d)



Reduced Set of Residues

Definition: A reduced set of residues (RSR) 
modulo m is a set of integers R each 
relatively prime to m, so that every integer 
relatively prime to m is congruent to 
exactly one integer in R.



The group (Zn
 

*, ×)
•

 
Zn

 

* consists of all integers in [1..n-1] that 
are relative prime to n
–

 
Zn

 

* = { a | 1an and gcd(a,n)=1 }
–

 
is a reduced set of residues modulo n

–
 

(Zn

 

*, ×)
 

is a group
•

 
gcd(a,n)=1 and gcd(b,n)=1  

 
gcd(ab, n)=1

–
 

given a 
 

Zn

 

*, how to compute a-1?



Linear Equation Modulo

Theorem
If gcd(a, n) = 1, the equation
has a unique solution, 0< x < n

Proof Idea:
if  ax1

 


 

1 (mod n) and ax2

 


 

1 (mod n), then    
a(x1

 

-x2

 

) 
 

0 (mod n),  then n | a(x1

 

-x2

 

), then 
n|(x1

 

-x2

 

),  then x1

 

-x2

 

=0

ax  1 mod n



Linear Equation Modulo 
(cont.)

Theorem
If gcd(a, n) = 1, the equation 

has a solution.

Proof Idea:
x = a-1

 

b mod n

nbax  mod 



Chinese Reminder Theorem 
(CRT)

Theorem
Let n1

 

, n2

 

, ,,, nk

 

be integers s.t. gcd(ni

 

, nj

 

) = 1, 
i 

 
j. 

There exists a unique solution modulo 
n = n1

 

n2

 

… nk

kk nax

nax
nax

mod
...

mod
 mod 

22

11








Proof of CMT

•
 

Consider the function : Zn

 

 Zn1

 

× Zn2

 

×
 

 × Znk

 

(x) 
= (x mod n1

 

, …, x mod nk

 

)
•

 
We need to prove that 

 
is a bijection.

•
 

For 1ik, define mi

 

= n / ni

 

, then gcd(mi

 

,ni

 

)=1
•

 
For 1ik, define yi

 

= mi
-1

 

mod ni

•
 

Define function (a1,a2,…,ak) = 
 

ai

 

mi

 

yi

 

mod n
–

 
ai

 

mi

 

yi

 


 

ai

 

(mod ni

 

)
–

 
ai

 

mi

 

yi

 


 

0 (mod nj

 

)  where i 
 

j



Proof of CMT

•
 
Example of the mappings:   n1

 

=3, n2

 

=5, n=15
:

 
: m1

 

=5, y1

 

=2, m1

 

y1

 

=10, 
m2

 

y2

 

=6,
1

 
(1,1)

 
(1,1)

 
10+6

 
1

2
 

(2,2)
 

(1,2)
 

10+12
 

7
4

 
(1,4)

 
(1,3)

 
10+18

 
13

7
 

(1,2)
 

(1,4)
 

10+24
 

4
8

 
(2,3)

 
(2,1)

 
20+6

 
11

11
 

(2,1)
 

(2,2)
 

20+12
 

2
13

 
(1,3)

 
(2,3)

 
20+18

 
8

14
 

(2,4)
 

(2,4)
 

20+24
 

14



Example of CMT:

•
 

n1

 

=7,  n2

 

=11,  n3

 

=13,  n=1001
•

 
m1

 

=143,  m2

 

=91,  m3

 

=77
•

 
y1

 

=143-1

 
mod 7 = 3-1 mod 7 = 5

•
 

y2

 

=91-1

 
mod 11 = 3-1 mod 11 = 4

•
 

y3

 

=77-1

 
mod 13 = 12-1 mod 13 = 12

•
 

x=(5×143×5 + 3×91×4 + 10×77×12)  mod 
1001   = 13907 mod 1001 = 894

x 
 

5 (mod 7)
x 

 
3 (mod 11)

x 
 

10 (mod 13)



The Euler Phi Function

Definition
Given an integer n, (n) = | Zn

 

*|  is the 
number of all numbers  a  such that 0 
<  a < n  and  a  is relatively prime to 
n  (i.e., gcd(a, n)=1).

Theorem: 
If gcd(m,n) = 1, (mn) = (m) (n)



The Euler Phi Function

Theorem: Formula for (n)
Let p be prime, e, m, n be positive integers

1) (p) = p-1
2) (pe) = pe

 
– pe-1

3) If                             thenek
k

ee pppn ...2
21

1
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21 kppp

nn 



Fermat’s Little Theorem

Fermat’s Little Theorem
If p is a prime number and a is a natural number that 
is not a multiple of p, then 

ap-1

 


 

1 (mod p)
Proof idea:
gcd(a, p) = 1, then the set { i*a mod p} 0< i < p is a
permutation of the set {1, …, p-1}.(otherwise we have 
0<n<m<p s.t. ma mod p = na

 
mod p

p| (ma -
 

na)  p | (m-n), where 0<m-n
 

< p ) 
a * 2a * …*(p-1)a  = (p-1)! ap-1

 


 

(p-1)! (mod p)
Since gcd((p-1)!, p) = 1, we obtain ap-1

 


 

1 (mod p)



Consequence of Fermat’s 
Theorem

Theorem
-

 
p is a prime number and 

-
 

a, e and f are positive numbers 
- e 

 
f mod p-1 and 

-
 

p does not divide a, then
ae

 


 

af

 

(mod p) 

Proof idea:
ae

 

=  aq(p-1) + f

 

= af

 

(a(p-1))q

by applying Fermat’s theorem we obtain
ae

 


 

af

 

(mod p)



Euler’s Theorem

Euler’s Theorem
Given integer n > 1, such that gcd(a, n) = 1   then       

a(n)

 


 

1 (mod n)
Corollary
Given integer n > 1, such that gcd(a, n) = 1 then  
a(n)-1 mod n is a multiplicative inverse of a mod n.

Corollary
Given integer n > 1, x, y, and a positive integers with 
gcd(a, n) = 1. If x 

 
y (mod (n)), then 

ax

 


 

ay

 

(mod n).



Next …

•
 

Prime number 
distribution and 
testing

•
 

RSA
•

 
Efficiency of modular 
arithmetic 
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