Virtual Machine co-location attacks *

* Based on Slides from Prof. Hassan

http://www.cs.jhu.edu/~ragib/sp10/cs412/lectures/600.412.lecture03.pptx

And

Hey, You, Get Off of My Cloud: Exploring Information Leakage in Third-Party Compute Clouds, Ristenpart et al., CCS 2009

Why Cloud Computing brings new

But clouds allow **co-tenancy** :

Multiple independent users share the same physical infrastructure

So, an attacker can legitimately be in the same physical machine as the target

How to find out where the target is located

How to be **co-located** with the target in the same (physical) machine

How to gather information about the target

Overview

- First work on cloud cartography
- Attack launched against commercially available "real" cloud (Amazon EC2)
- Claims up to 40% success in co-residence with target VM

- Map the cloud infrastructure to find where the target is located
- Use various heuristics to determine coresidency of two VMs
- Launch probe VMs trying to be co-resident with target VMs
- Exploit cross-VM leakage to gather info about target

Attacker model

- Cloud infrastructure provider is trustworthy
- Cloud insiders are trustworthy
- Attacker is a malicious third party who can legitimately the cloud provider as a client

Assets

- Confidentiality aware services run on cloud
- Availability of services run on cloud

Tools of the trade

- Nmap, hping, wget for network probing
- Amazon EC2's own DNS to map dns names to IPs

Sidenote: EC2 configuration

EC2 uses Xen, with up to 8 instances per physical machine

Dom0 is the first instance on the machine, connected to physical adapter All other instances route to external world via dom0

Task 1: Mapping the cloud

Internal IP address Different availability zones use different IP regions.

Each instance has one internal IP and one external IP. Both are static.

For example:

External IP: 75.101.210.100

External Name: ec2-75-101-210-100.computer-1.amazonaws.com

Internal IP: 10.252.146.52

Internal Name: domU-12-31-38-00-8D-C6.computer-

1.internal

Reverse engineering the VM placement schemes provides useful heuristics about EC2's strategy

Task 1: Mapping the Cloud Account B Account A c1.medium + c1.xlarge m1.large \star m1.small m1.xlarge × 64320 643210.252.0.0 10.253.0.0 10.254.0.0 Internal IP address

Finding: same instance type within the same zone = similar IP regions

Reverse engineered mapping decision heuristic:

A /24 inherits any included sampled instance type. A /24 containing a Dom0 IP address only contains Dom0 IP address.

Task #2: Determining co-residence

- **Co-residence**: Check to determine if a given VM is placed in the same physical machine as another VM
- Network based check:
 - Match Dom0 IP addresses, check packet RTT, close IP addresses (within 7, since each machine has 8 VMs at most)
 - Traceroute provides Dom0 of target
 - No false positives found during experiments

Task #3: Making a probe VM coresident with target VM

Brute force scheme

- Idea: figure out target's availability zone and type
- Launch many probe instances in the same area
- Success rate: 8.4%

Task #3: Making a probe VM co-resident with target VM

Smarter strategy: utilize locality

- Idea: VM instances launched right after target are likely to be co-resident with the target
- Paper claims 40% success rate

Task #3: Making a probe VM co-resident with target VM

Window of opportunity is quite large, measured in days

Task #4: Gather leaked information

Now that the VM is co-resident with target, what can it do?

- Gather information via side channels
- Perform DoS

If VM's are separated and secure, the **best** the attacker can do is to gather information

- Measure latency of cache loads
- Use that to determine
 - Co-residence
 - Traffic rates
 - Keystroke timing

Mitigation strategies #1: Mapping

- Use a randomized scheme to allocate IP addresses
- Block some tools (nmap, traceroute)

Mitigation strategies #2: Co-residence checks

• Prevent traceroute (i.e., prevent identification of dom0)

Mitigation strategies #3: Co-location

- Not allow co-residence at all
 - Beneficial for cloud user
 - Not efficient for cloud provider

Mitigation strategies #4: Information leakage

• Prevent cache load attacks?

