
march 2010 | vol. 53 | no. 3 | communications of the acm 97

Computing Arbitrary Functions
of Encrypted Data
By Craig Gentry

Abstract
Suppose that you want to delegate the ability to process your
data, without giving away access to it. We show that this
separation is possible: we describe a “fully homomorphic”
encryption scheme that keeps data private, but that allows a
worker that does not have the secret decryption key to com-
pute any (still encrypted) result of the data, even when the
function of the data is very complex. In short, a third party
can perform complicated processing of data without being
able to see it. Among other things, this helps make cloud
computing compatible with privacy.

1. INTRODUCTION
Is it possible to delegate processing of your data without giv-
ing away access to it?

This question, which tests the tension between conve-
nience and privacy, has always been important, but seems
especially so now that we are headed toward widespread use
of cloud computing. To put everything online “in the cloud,”
unencrypted, is to risk an Orwellian future. For certain types
of data, such as medical records, storing them off-site unen-
crypted may be illegal. On the other hand, encrypting one’s
data seems to nullify the benefits of cloud computing. Unless
I give the cloud my secret decryption key (sacrificing my pri-
vacy), what can I expect the cloud to do with my encrypted
data except send it back to me, so that I can decrypt it and
process it myself?

Fortunately, this is a false dilemma, or at least conve-
nience and privacy can be reconciled to a large extent.
For data that is encrypted with an “ordinary” encryption
scheme, it is virtually impossible for someone without the
secret decryption key (such as the cloud) to manipulate the
underlying data in any useful way. However, some encryp-
tion schemes are homomorphic or malleable. They let anyone
manipulate (in a meaningful way) what is encrypted, even
without knowing the secret key!

In this paper, we describe the first fully homomorphic
encryption (FHE) scheme, where “fully” means that there
are no limitations on what manipulations can be per-
formed. Given ciphertexts c1, …, ct that encrypt m1, …, mt with
our scheme under some key, and given any efficiently com-
putable function f, anyone can efficiently compute a cipher-
text (or set of ciphertexts) that encrypts f (m1, …, mt) under
that key. In short, this permits general computations on
encrypted data. No information about m1, …, mt or the value
of f (m1, …, mt) is leaked.

This means that cloud computing is consistent with
privacy. If I want the cloud to compute for me some func-
tion f of my (encrypted) data m1, …, mt—for example,

this function could be “all files containing ‘CACM’ or
‘Communications’ within three words of ‘ACM’ ”—I send
a description of f to the cloud, which uses the scheme’s
malleability to compute an encryption of f(m1, …, mt), which
I decrypt. The cloud never sees any unencrypted data.
If I want, I can even use the scheme to encrypt a descrip-
tion of f, so that the cloud does not even see what I am
searching for.

Rivest, Adleman, and Dertouzos5 suggested that fully
homomorphic encryption may be possible in 1978, shortly
after the invention of the RSA cryptosystem,6 but were unable
to find a secure scheme. As an application, they described our
private cloud computing scenario above, though of course
they used different terminology. There are many other appli-
cations. Homomorphic encryption is useful whenever it is
acceptable if a response (e.g., to a search engine query) is
encrypted.

Below, we begin by describing homomorphic encryp-
tion in more detail. Then, we describe a concrete scheme
due to van Dijk, Gentry, Halevi, and Vaikuntanathan,9
which uses only simple integer operations, and is a con-
ceptually simpler version of the first scheme by Gentry,2, 3
which uses lattices. Toward the end, we discuss the
scheme’s (rather slow) performance. Throughout, we try
to make the ideas more tangible by constantly return-
ing to a physical analogy: a jewelry store owner, Alice,
who wants her workers to process raw precious materials
into intricately designed rings and necklaces, but who is
afraid to give her workers complete access to the materials
for fear of theft.

2. HOMOMORPHIC ENCRYPTION

2.1. Alice’s jewelry store
At first, the notion of processing data without having
access to it may seem paradoxical, even logically impos-
sible. To convince you that there is no fallacy, and to give
you some intuition about the solution, let us consider an
analogous problem in (a fictional version of) the “physical
world.”

Alice owns a jewelry store. She has raw precious mate-
rials—gold, diamonds, silver, etc.—that she wants her
workers to assemble into intricately designed rings and

This paper draws from the STOC 2009 paper “Fully
Homomorphic Encryption Using Ideal Lattices,” my
thesis, and a recent manuscript co-authored with van
Dijk, Halevi, and Vaikuntanathan.

doi:10.1145/1666420.1666444

98 communications of the acm | march 2010 | vol. 53 | no. 3

research highlights

case. It has a fourth algorithm Evaluatee, which is associ-
ated to a set Fe of permitted functions. For any function f in
Fe and any ciphertexts c1, …, ct with ci ¬ Encrypte (pk, mi),
the algorithm Evaluatee(pk, f, c1, …, ct) outputs a ciphertext
c that encrypts f(m1, …, mt)—i.e., such that Decrypte(sk, c) =
f(m1, …, mt). (For convenience, we will assume that f has one
output. If f has k outputs, then Evaluatee outputs k cipher-
texts that encrypt f (m1, …, mt) collectively.) As shorthand, we
say that e can handle functions in Fe. For a function f not
in Fe, there is no guarantee that Evaluatee will output any-
thing meaningful. Typically Evaluatee is undefined for such
a function.

As described thus far, it is trivial to construct an encryp-
tion scheme that can handle all functions. Just define
Evaluatee as follows: simply output c ¬ (f, c1, …, ct), without
“processing” the ciphertexts at all. Modify Decrypte slightly:
to decrypt c, decrypt c1, …, ct to obtain m1, …, mt, and then
apply f to these messages.

But this trivial solution obviously does not conform to the
spirit of what we are trying to achieve—to delegate the data
processing (while maintaining privacy). The trivial solution
is as if, in Alice’s jewelry store, the worker simply sends the
box (which need not have gloves) back to Alice without doing
any work on the raw precious materials, and Alice unlocks
the box, extracts the materials, and assembles the ring or
necklace herself.

So, how do we formalize what it means to delegate?
Intuitively, the purpose of delegation is to reduce one’s
workload. We can formalize this in terms of the running
times (i.e., complexity) of the algorithms. Specifically, we
require that decrypting c (the ciphertext output by Evaluatee)
takes the same amount of computation as decrypting c1 (a
ciphertext output by Encrypte). Moreover, we require that c
is the same size as c1. We refer to these as the compact cipher-
texts requirement. Again, the size of c and the time needed
to decrypt it do not grow with the complexity of f; rather, they
are completely independent of f (unless f has multiple out-
puts). Also, of course, the complexity of Decrypte, as well as
the complexity of KeyGene and Encrypte, must remain poly-
nomial in l.

e is fully homomorphic if it can handle all functions, has
compact ciphertexts, and Evaluatee is efficient in a way that
we specify below. The trivial solution above certainly is not
fully homomorphic, since the size of the ciphertext output
by Evaluatee, as well as the time needed to decrypt it, depend
on the function being evaluated. In terms of Alice’s jewelry
store, our definition of fully homomorphic captures the best-
case scenario for Alice: her workers can assemble arbitrarily
complicated pieces inside the box, but the work needed to
assemble has no bearing on the work Alice needs to do to
unlock the box and extract the piece.

We want our fully homomorphic scheme to be efficient
for the worker, as well. In particular, we want the complex-
ity of Evaluatee—like the other algorithms of e—to depend
only polynomially on the security parameter. But clearly its
complexity must also depend on the function being evalu-
ated. How do we measure the complexity of f ? Perhaps the
most obvious measure is the running time Tf of a Turing
machine that computes f. We use a related measure, the size

necklaces. But she distrusts her workers and assumes that
they will steal her jewels if given the opportunity. In other
words, she wants her workers to process the materials into
finished pieces, without giving them access to the materials.
What does she do?

Here is her plan. She uses a transparent impenetrable
glovebox, secured by a lock for which only she has the key.
She puts the raw precious materials inside the box, locks it,
and gives it to a worker. Using the gloves, the worker assem-
bles the ring or necklace inside the box. Since the box is
impenetrable, the worker cannot get to the precious materi-
als, and figures he might as well return the box to Alice, with
the finished piece inside. Alice unlocks the box with her key
and extracts the ring or necklace. In short, the worker pro-
cesses the raw materials into a finished piece, without hav-
ing true access to the materials.

The locked impenetrable box, with raw precious materials
inside, represents an encryption of the initial data m1, …, mt,
which can be accessed only with the secret decryption key.
The gloves represent the homomorphism or malleability
of the encryption scheme, which allows the raw data to be
manipulated while it is inside the “encryption box.” The
completed ring or necklace inside the box represents the
encryption of f(m1, …, mt), the desired function of the ini-
tial data. Note that “lack of access” is represented by lack of
physical access, as opposed to lack of visual access, to the
jewels. (For an analogy that uses lack of visual access, con-
sider a photograph developer’s darkroom.)

Of course, Alice’s jewelry store is only an analogy.
It does not represent some aspects of homomorphic
encryption well, and taking it too literally may be more
confusing than helpful. We discuss some flaws in the anal-
ogy at the end of this section, after we describe homomor-
phic encryption more formally. Despite its flaws, we return
to the analogy throughout, since it motivates good ques-
tions, and represents some aspects of our solution quite
well—most notably, “bootstrapping,” which we discuss in
Section 4.

2.2. Homomorphic encryption: functionality
An encryption scheme e has three algorithms: KeyGene,
Encrypte, and Decrypte, all of which must be efficient—that
is, run in time poly(l), polynomial in a security parameter
l that specifies the bit-length of the keys. In a symmetric, or
secret key, encryption scheme, KeyGene uses l to generate a
single key that is used in both Encrypte and Decrypte, first to
map a message to a ciphertext, and then to map the cipher-
text back to the message. In an asymmetric, or public key,
encryption scheme, KeyGene uses l to generate two keys—a
public encryption key pk, which may be made available to
everyone, and a secret decryption key sk. As a physical anal-
ogy for an asymmetric encryption scheme, one can think of
Alice’s public key as a padlock, which she constructs and
distributes, that can be locked without a key. Anyone can put
a message inside a box secured by Alice’s padlock (encrypt),
and mail it via a public channel to Alice, but only Alice has
the key needed to unlock it (decrypt).

A homomorphic encryption scheme can be either sym-
metric or asymmetric, but we will focus on the asymmetric

march 2010 | vol. 53 | no. 3 | communications of the acm 99

ciphertext c that encrypts unknown message m under pk, it
should be “hard” to output m. “Hard” means that any algo-
rithm or “adversary” A that runs in poly(l) time has a negligi-
ble probability of success over the choices of pk and m (i.e., the
probability it outputs m is less than 1/lk for any constant k).

Nowadays, we typically require an encryption scheme to
have a stronger security property, called semantic security
against chosen-plaintext attacks (CPA)4: given a ciphertext c
that encrypts either m0 or m1, it is hard for an adversary to
decide which, even if it is allowed to choose m0 and m1. Here,
“hard” means that if the adversary A runs in polynomial
time and guesses correctly with probability 1/2 + Œ, then Œ,
called A’s advantage, must be negligible. If this advantage
is nonnegligible, then we say (informally) that the adversary
breaks the semantic security of the encryption scheme.

If an encryption scheme is deterministic—i.e., if there is
only one ciphertext that encrypts a given message—then it
cannot be semantically secure. An attacker can easily tell
whether c encrypts m0, by running c0 ¬ Encrypt(pk, m0) and
seeing if c and c0 are the same. A semantically secure encryp-
tion scheme must be probabilistic—i.e., there must be many
ciphertexts that encrypt a given message, and Encrypte must
choose one randomly according to some distribution.

One can prove the (conditional) one-wayness or semantic
security of an encryption scheme by reducing a hard prob-
lem to breaking the encryption scheme. For example, sup-
pose one shows that if there is an efficient algorithm that
breaks the encryption scheme, then this algorithm can be
used as a subroutine in an efficient algorithm that factors
large numbers. Then, under the assumption that factor-
ing is hard—i.e., that no poly(l)-time algorithm can factor
l-bit numbers—the reduction implies that the encryption
scheme must be hard to break.

Semantic security of a homomorphic encryption scheme
is defined in the same way as for an ordinary encryption
scheme, without reference to the Evaluatee algorithm. If
we manage to prove a reduction—i.e., that an attacker that
breaks e can be used to solve a hard problem like factoring—
then this reduction holds whether or not e has an Evaluatee
algorithm that works for a large set of functions.

To understand the power of semantic security, let us
reconsider our cloud computing application. Sometime
after storing her encrypted files in the cloud, Alice wants the
cloud to retrieve the files that have a certain combination
of keywords. Suppose that in its response, the cloud sends
ciphertexts that encrypt the first three files. Can’t the cloud
just see that the first three encrypted files that it is storing
for Alice happen to encrypt the same content as the three
files that it sends to Alice? Not if the scheme is semantically
secure. Even though some of the stored ciphertexts encrypt
the same content as the sent ciphertexts, the cloud cannot
see this, because semantic security guarantees that it is hard
to tell whether two ciphertexts encrypt the same content.

Intuitively, it seems like the Evaluatee algorithm should
make e easier to break, simply because this additional algo-
rithm gives the attacker more power. Or, to put it in terms of
the physical analogy, one would think that the easiest way
to get inside the glovebox is to cut through the gloves, and
that, the more flexible the gloves are, the easier the glovebox

Sf of a boolean circuit (i.e., the number of AND, OR, and NOT
gates) that computes f. Any function that can be computed
in Tf steps on a Turing machine can be expressed as a circuit
with about Tf gates. More precisely, Sf < k • Tf • log Tf for some
small constant k. Overall, we say that Evaluatee is efficient if
there is a polynomial g such that, for any function f that is
represented by a circuit of size Sf , Evaluatee(pk, f, c1, …, ct) has
complexity at most Sf • g(l).

The circuit representation of f is also useful because it
breaks the computation of f down into simple steps—e.g.,
AND, OR, and NOT gates. Moreover, to evaluate these gates,
it is enough to be able to add, subtract, and multiply. (In
fact, it is enough if we can add, subtract and multiply mod-
ulo 2.) In particular, for x, y Î {0, 1}, we have AND(x, y) = xy,
OR(x, y) = 1 − (1 − x)(1 − y) and NOT(x) = 1 − x. So, to obtain
a fully homomorphic encryption scheme, all we need is a
scheme that operates on ciphertexts so as to add, subtract,
and multiply the underlying messages, indefinitely.

But is the circuit representation of f—or some arithmetized
version of it in terms of addition, subtraction, and multiplica-
tion—necessarily the most efficient way to evaluate f ? In fact,
some functions, like binary search, take much longer on a
Turing machine or circuit than on a random access machine.
On a random access machine, a binary search algorithm on t
ordered items only needs to “touch” O(log t) of its inputs.

A moment’s thought shows that random-access speed-
ups cannot work if the data is encrypted. Unless we know
something a priori about the relationship between f and
m1, …, mt, the algorithm Evaluatee(pk, f, c1, …, ct) must touch
all of the input ciphertexts, and therefore have complexity
at least linear in the number of inputs. To put it another
way, if Evaluatee (for some reason) did not touch the second
half of the ciphertexts, this would leak information about
the second half of the underlying messages—namely, their
irrelevance in the computation of f—and this leakage would
contradict the security of the encryption scheme. While
Evaluatee must have running time at least linear in t as an
unavoidable cost of the complete privacy that homomorphic
encryption provides, a trade-off is possible. If I am willing to
reveal—e.g., in the cloud computing context—that the files
that I want are contained in a certain 1% of my data, then
I may help the cloud reduce its work by a factor of 100.

Another artifact of using a fixed circuit representation of
f is that the size of the output—i.e., the number of output
wires in the circuit—must be fixed in advance. For example,
when I request all of my files that contain a combination
of keywords, I should also specify how much data I want
retrieved—e.g., 1MB. From my request, the cloud will gener-
ate a circuit for a function that outputs the first megabyte of
the correct files, where that output is truncated (if too much
of my data satisfies my request), or padded with zeros (if too
little). A moment’s thought shows that this is also unavoid-
able. There is no way the cloud can avoid truncating or
padding unless it knows something a priori about the rela-
tionship between the function and my data.

2.3. Homomorphic encryption: security
In terms of security, the weakest requirement for an encryp-
tion scheme is one-wayness: given the public key pk and a

100 communications of the acm | march 2010 | vol. 53 | no. 3

research highlights

3.2. Our somewhat homomorphic scheme
Our somewhat homomorphic encryption scheme e,
described below, is remarkably simple.9 We describe it first
as a symmetric encryption scheme. As an example param-
eter setting, for security parameter l, set N = l, P = l2 and
Q = l5.

An Encryption Scheme:

KeyGene(l): The key is a random P-bit odd integer p.
Encrypte(p, m): To encrypt a bit m Î {0, 1}, set m¢ to be a

random N-bit number such that m¢ = m mod 2. Output
the ciphertext c ¬ m¢ + pq, where q is a random Q-bit
number.

Decrypte(p, c): Output (c mod p) mod 2, where (c mod p) is
the integer c¢ in (−p/2,p/2) such that p divides c − c¢.

Ciphertexts from e are near-multiples of p. We call (c mod p)
the noise associated to the ciphertext c. It is the distance
to the nearest multiple of p. Decryption works because the
noise is m¢, which has the same parity as the message. We
call a ciphertext output by Encrypt a fresh ciphertext, since it
has small (N-bit) noise.

How is the scheme homomorphic? By simply adding,
subtracting, or multiplying the ciphertexts as integers, we
can add, subtract, or multiply (modulo 2) the underlying
messages. However, complications arise, because these
operations increase the noise associated to resulting cipher-
texts. Eventually, the noise become so large that decryption
no longer reliably returns the correct result.

Homomorphic Operations:

Adde(c1, c2), Sube(c1, c2), Multe(c1, c2): the output ciphertext c
is c1 + c2, c1 − c2, or c1 • c2.

Evaluatee(f, c1, …, ct): Express the boolean function f as a
circuit C with XOR and AND gates. Let C† be the same
circuit as C, but with XOR and AND gates replaced by
addition and multiplication gates over the integers.
Let f † be the multivariate polynomial that corresponds
to C †. Output c ¬ f †(c1, …, ct).

Let us check that ciphertexts output by Evaluatee decrypt
correctly. As a warm-up, let us consider Multe. Let c = c1 • c2,
where ci’s noise is m¢i, which has the same parity as the mes-
sage mi. We have that

c = m¢1 • m¢2 + pq¢

for some integer q¢. As long as the noises are small enough
so that |m¢1 • m¢2|< p/2, we have that

(c mod p) = m¢1 • m¢2

and therefore (c mod p) mod 2 = m1 • m2, as it should be. We
will consider the evaluation of more complicated functions
momentarily, in Section 3.3.

So far we only described a symmetric homomorphic
encryption scheme. Turning it into a public-key scheme is
easy, but adds some complexity. As before, the secret key
is p. The public key consists of a list of integers that are

is to compromise; this suggests that, the more malleable
the encryption scheme is, the easier it is to break. There is
some truth to this intuition. Researchers1, 8 showed that if
e is a deterministic fully homomorphic encryption scheme
(or, more broadly, one for which it is easy to tell whether two
ciphertexts encrypt the same thing), then e can be broken
in subexponential time, and in only polynomial time (i.e.,
efficiently) on a quantum computer. So, malleability seems
to weaken the security of deterministic schemes. But these
results do not apply to semantically secure schemes, such
as ours.

2.4. Some flaws in the physical analogy
The physical analogy represents some aspects of homomor-
phic encryption poorly. For example, the physical analogy
suggests that messages that are encrypted separately are in
different “encryption boxes” and cannot interact. Of course,
this interaction is precisely the purpose of homomorphic
encryption. To fix the analogy, one may imagine that the
gloveboxes have a one-way insertion slot like the mail bins
used by the post office. Then, messages can be added to
the same encryption box as they arrive. (Even this fix is not
entirely satisfactory.)

Another flaw is that the output f(m1, …, mt) may have signifi-
cantly fewer bits than m1, …, mt, whereas in the analogy (absent
significant nuclear activity inside the glovebox) the conserva-
tion of mass dictates that the box will have at least as much
material inside when the worker is done as when he started.
Finally, in Alice’s jewelry store, even though a worker cannot
extract the materials from a locked glovebox, he can easily tell
whether or not a box contains a certain set of materials—i.e.,
the gloveboxes do not provide “semantic security.”

3. A SOMEWHAT HOMOMORPHIC ENCRYPTION
SCHEME
On our way to fully homomorphic encryption, we begin by
constructing a somewhat homomorphic encryption scheme
e that can handle a limited class Fe of permitted functions.
Evaluatee (pk, f, c1, …, ct) does not work for functions f that
are too complicated. Later, we will show to use e to obtain
fully homomorphic encryption.

3.1. Meanwhile in Alice’s jewelry store
After figuring out how to use locked gloveboxes to get her
workers to process her precious materials into fancy rings
and necklaces, Alice puts in an order with Acme Glovebox
Company. Unfortunately, the gloveboxes she receives are
defective. After a worker uses the gloves for 1 min, the gloves
stiffen and become unusable. But some of the fanciest
pieces take up to an hour to assemble. Alice sues Acme, but
meanwhile she wonders: Is there some way I can use these
defective boxes to get the workers to securely assemble even
the most complicated pieces?

She notices that the boxes, while defective, do have a
property that might be useful. As expected, they have a one-
way insertion slot, like post office mail bins. But they are also
flexible enough so that it is possible to put one box inside
another through the slot. She wonders whether this property
might play a role in the solution to her problem, etc.

march 2010 | vol. 53 | no. 3 | communications of the acm 101

Moreover, we can reduce the approximate gcd problem
to the security of our somewhat homomorphic encryption
scheme. That is, we can prove that an attacker cannot effi-
ciently break the semantic security of our encryption scheme
unless the approximate gcd problem is easy.

4. BOOTSTRAPPABLE ENCRYPTION

4.1. Alice’s eureka moment
One night, Alice dreams of immense riches, caverns piled
high with silver, gold, and diamonds. Then, a giant dragon
devours the riches and begins to eat its own tail! She awakes
with a feeling of peace. As she tries to make sense of her
dream, she realizes that she has the solution to her prob-
lem. She knows how to use her defective boxes to securely
delegate the assembly of even the most intricate pieces!

Like before, she gives a worker a glovebox, box #1, con-
taining the raw materials. But she also gives him several addi-
tional gloveboxes, where box #2 contains (locked inside) the
key to box #1, box #3 contains the key to box #2, and so on.
To assemble an intricate design, the worker manipulates the
materials in box #1 until the gloves stiffen. Then, he places
box #1 inside box #2, where the latter box already contains a
the key to box #1. Using the gloves for box #2, he opens box
#1 with the key, extracts the partially assembled trinket, and
continues the assembly within box #2 until its gloves stiffen.
He then places box #2 inside box #3, and so on. When the
worker finally finishes his assembly inside box #n, he hands
the box to Alice.

Of course, Alice observes, this trick does not work unless
the worker can open box #i within box #(i + 1), and still
have time to make a little bit of progress on the assembly,
all before the gloves of box #(i + 1) stiffen. But as long as the
unlocking operation (plus a little bit of assembly work) takes
less than a minute, and as long as she has enough defective
gloveboxes, then it is possible to assemble any piece, no
matter how complicated!

4.2. A dream deciphered
In the analogy, the defective gloveboxes represent our some-
what homomorphic encryption scheme, which can perform
Add, Sub, and Mult operations on ciphertexts for a little
while—it can handle functions in a limited set Fe—until the
noise becomes too large. What we would like to do is use this
somewhat homomorphic scheme to construct a fully homo-
morphic one.

As before, box #1 with the precious materials inside
represents the ciphertexts that encrypt the initial data. Box
#(i + 1) with the key for box i inside represents an encrypted
secret decryption key—i.e., ski encrypted under pki+1.

In the analogy, Alice discovers that there is only one thing
that her workers really need to be able to do in less than
1 min with the gloves, aside from performing a very small
operation on the piece: unlock box #i within box #(i + 1) and
extract the piece. It will turn out that there is only one func-
tion that our scheme e really needs to be able to handle, with
a tiny bit of room left over to perform one more Add, Sub,
or Mult: the decryption function (which is like unlocking the
“encryption box”).

essentially “encryptions of zero.” The list has length poly-
nomial in l. To encrypt a bit m, the ciphertext c is (essen-
tially) m plus a random subset sum of the ciphertexts in the
public key. If these ciphertexts have very small noise, the
resulting ciphertext will also have small noise, and decryp-
tion will work properly: (c mod p) mod 2 will equal m, as
before.

3.3. How homomorphic is it?
What is the set of permitted functions that our homomor-
phic encryption scheme e can handle?

To answer this question, we need to analyze how the
noise grows as we add and multiply ciphertexts. Encrypte
outputs a fresh ciphertext with a small noise, at most N bits.
As we Adde, Sube, or Multe ciphertexts, the output ciphertext
becomes more noisy. Multiplication tends to increase the
noise faster than addition or subtraction. In particular, for
ciphertexts c1 and c2 with k1- and k2-bit noises, the ciphertext
c ¬ c1 • c2 has (roughly) (k1 + k2)-bit noise.

What happens when we perform many Adde, Sube, and
Multe operations, as prescribed by the circuit representing
a function f ? Similar to what we saw above with multiplica-
tion, we have

f †(c1, ..., ct) =  f †(m¢1, ..., m¢t) + pq¢

for some integer q¢, where m¢t is the noise associated to ci.
If | f †(m¢1, ..., m¢t)| < p/2, then (f †(c1, …, ct) mod p) equals
f †(m¢1, ..., m¢t). And if we reduce this result modulo 2, we
obtain the correct result: f (m1, …, mt).

In short, the functions that e can handle are those for
which | f † (a1, …, at)| is always less than p/2 if all of the ai are
at most N bits.

e is already quite powerful. As an example, it can han-
dle an elementary symmetric polynomial of degree d in t
variables, as long as 2Nd • (t

d) < p/2, which is true (roughly)
when d < P/(N • log t). For our suggested parameters, this
degree can be quite large: l/(log t) = W(l/log l). That e can
evaluate polynomials of such high degree makes it “homo-
morphic enough” for many applications. For example, it
works well when f is a highly parallelizable function—e.g.,
a basic keyword search—in which case f has fairly low
degree.

3.4. Semantic security and approximate GCDs
Euclid showed that, given two integers x1 and x2, it is easy to
compute their greatest common divisor (gcd). But suppose
that x1 = s1 + p • q1 and x2 = s2 + p • q2 are near-multiples of p,
with s1 and s2 much smaller than p. When p is only an approx-
imate gcd, is it still possible to compute p efficiently—i.e., in
time polynomial in the bit-lengths of x1 and x2? Not in gen-
eral, as far as we know.

In fact, if we sample si, p and qi with l, l2, and l5 bits (simi-
lar to our scheme e), then the approximate gcd problem seems
to remain hard even if we are given arbitrarily many samples
xi = si + p • qi, rather than just two. For these parameters,
known attacks—including those using continued fractions
and simultaneous diophantine approximation—take time
essentially exponential in l.

102 communications of the acm | march 2010 | vol. 53 | no. 3

research highlights

respectively, under pk1, and we compute c—1 and c—2 as before,
as ciphertexts encrypting the bits of the ciphertexts under
pk2, then we have that

c ¬ Evaluatee (pk2, DAdd, sk1, c—1 , c—2)

is an encryption under pk2 of m1 Å m2.
By recursing this process, we get a fully homomor-

phic encryption scheme. The public key in e† consists of
a sequence of public keys (pk1, …, pk

+1) and a chain of
encrypted secret keys sk1, ..., sk


, where ski is encrypted

under pki+1. To evaluate a function f in e†, we express f as
a circuit, topologically arrange its gates into levels, and
step through the levels sequentially. For a gate at level i + 1
(e.g., an Add gate), we take as input the encrypted secret key
ski and a couple of ciphertexts associated to output wires
at level i that are under pki, and we homomorphically evalu-
ate DAdd to get a ciphertext under pki+1 associated to a wire at
level i + 1. Finally, we output the ciphertext associated to the
output wire of f.

Putting the encrypted secret key bits sk1, ..., sk

 in e†’s

public key is not a problem for security. These encrypted
secret-key bits are indistinguishable from encryptions of 0
as long as e is semantically secure.

4.4. Circular security
Strictly speaking, e† does not quite meet our definition of
fully homomorphic encryption, since the complexity of
KeyGene† grows linearly with the maximum circuit depth we
want to evaluate. (Fortunately, Encrypte† and Decrypte† do
not depend at all on the function f being evaluated.)

However, suppose that e is not only bootstrappable, but
also circular-secure—that is, it is “safe” to reveal the encryp-
tion of a secret key ski under its own associated public key
pki. Then, we can simplify KeyGene

†. We do not need distinct
public keys pki for each circuit level and an acyclic chain of
encrypted secret keys. Instead, the public key in e† can con-
sist merely of a single public key pk and a single encrypted
secret key sk (sk under pk), where pk is associated to all lev-
els of the circuit. This approach has the additional advan-
tage that we do not need to decide beforehand the maximal
circuit depth complexity of the functions that we want to be
able to evaluate.

For most encryption schemes, including our some-
what homomorphic scheme (as far as we know), revealing
an encryption of sk under pk does not lead to any attack.
However, it is typically difficult to prove that an encryption
scheme is circular-secure.

The issue of circular security also fits within our physical
analogy. Suppose that a key is locked inside the very same
box that the key could open from the outside. Is it possible to
use the gloves and key to open the box from the inside? If so, it
would be a strange lock. Similarly, encryption schemes that
are insecure in this setting tend to be contrived.

5. SOMEWHAT HOMOMORPHIC TO
BOOTSTRAPPABLE
Is our somewhat homomorphic encryption scheme from
Section 3 already bootstrappable? Can it handle its own

If e has this self-referential property of being able to
handle its own decryption function (augmented by a single
gate), we say that it is bootstrappable. As we will show, if e
is bootstrappable, then one can use e to construct a fully
homomorphic encryption scheme e †.

4.3. Bootstrappable to fully homomorphic
Suppose that e is bootstrappable. In particular, suppose that
e can handle the following four functions: the decryption
function, expressed as a circuit De of size polynomial in l, as
well as De augmented by an Add, Sub, or Mult gate modulo 2.
(De augmented by Add consists of two copies of De connected
by an Add gate.) We will show that this is a complete set of cir-
cuits, in the sense that if these four circuits are in Fe, then one
can construct from e a scheme e† that is fully homomorphic.

As a warm-up, suppose that ciphertext c1 encrypts the bit
m under key pk1. Suppose also that we have an encrypted
secret key: let sk1 be a vector of ciphertexts that encrypt the
bits of sk1 under pk2 via Encrypte(pk2, sk1j). Consider the fol-
lowing algorithm.

Recrypte(pk2, De, sk1, c1).

Generate c—1 via Encrypte (pk2, c1j) over the bits of c1
	 Output c ¬ Evaluatee (pk2, De, sk1, c—1)

The decryption circuit De has input wires for the bits of a
secret key and the bits of a ciphertext. Above, Evaluatee takes
in the bits of sk1 and c1, each encrypted under pk2. Then, e is
used to evaluate the decryption circuit homomorphically. As
long as e can handle De, the output c is an encryption under
pk2 of Decrypte(sk1, c1) = m. Recrypte therefore outputs a new
encryption of m, but under pk2.

One fascinating thing about Recrypte is that the mes-
sage m is doubly encrypted at one point, first under pk1
and next under pk2. Ordinarily, the only thing one can do
with a doubly encrypted message is to peel off the outer
encryption first, and then decrypt the inner layer. However,
in Recrypte, the Evaluatee algorithm is used to remove the
inner encryption, just like Alice unlocks box #i while it is
inside box #(i + 1).

It is also useful to imagine that e is our somewhat homo-
morphic encryption scheme from Section 3, and consider
what Recrypte does to the noise of the ciphertexts. Evaluating
De removes the noise associated to the first ciphertext
under pk1 (because, of course, decryption removes noise),
but Evaluatee simultaneously introduces new noise while
evaluating the ciphertexts under pk2. As long as the new
noise added is less than the old noise removed, we have
made “progress.” A similar situation holds in Alice’s jewelry
store. When the worker extracts the piece from the used-
up glovebox #i, this process simultaneously uses up the
gloves of box #(i + 1). We have made “progress” as long as
the process does not leave box #(i + 1)’s gloves completely
used-up.

Of course, our goal is to perform actual operations on
underlying messages, not merely to obtain a new encryption
of the same message. So, suppose that e can handle De aug-
mented by some gate—e.g., Add; call this augmented circuit
DAdd. If c1 and c2 are two ciphertexts that encrypt m1 and m2,

march 2010 | vol. 53 | no. 3 | communications of the acm 103

P-bit numbers, a bit of the result may be a high-degree poly-
nomial of the input bits; this degree is also roughly P. We
saw that e can handle an elementary symmetric polynomial
in t variables of degree (roughly) d < P/(N • log t). However,
e cannot handle even a single monomial of degree P,
where the noise of output ciphertext is upper-bounded
by (2N)P » pN >> p/2. Consequently, e does not seem to be
bootstrappable.

However, if we are willing to get our hands dirty by tin-
kering with e to make the decryption function simpler,
we eventually get a scheme e* that is bootstrappable. The
main idea of the transformation is to replace e’s decryp-
tion function, which multiplies two long numbers, with
a decryption function that adds a fairly small set of num-
bers. In terms of the bits of the addends, this summation
corresponds to a polynomial of fairly low degree that e* can
handle.

Let us go through the transformation step by step, begin-
ning with KeyGene*. The transformation uses a couple of
integer parameters: 0 < a < b.

•	 KeyGene*(l): Run KeyGene(l) to obtain keys (pk, sk),
where sk is an odd integer p. Generate a set y® =
áy1, …, ybñ of rational numbers in [0, 2) such that there
is a sparse subset S Ì {1, …, b} of size a with SiŒS yi » 1/p
mod 2. Set sk* to be the sparse subset S, encoded as
a vector s Î {0, 1}b with Hamming weight a. Set pk* ¬
(pk, y®).

The important difference between KeyGene* and KeyGene
is that KeyGene* includes a hint about the secret integer
p—namely, a set of numbers y® that contains a (hidden) sparse
subset that sums to 1/p (to within a very small error, and up
to addition by an even number). This hint is the “grease,”
which will be used in Encrypte* and Decrypte*. Although it is
technically not the decryption key sk*, the integer p still can
be used to decrypt a ciphertext output by Encrypte*, so reveal-
ing this hint obviously impacts security, a point we elaborate
on in Section 5.4.

•	 Encrypte*(pk*, m): Run Encrypte(pk, m) to obtain
ciphertext c. For i Î {1, …, b}, set zi ¬ c • yi mod 2 keep-
ing only about log a bits of precision after the binary
point for each zi. The ciphertext c* consists of c and
z® = áz1, …, zbñ.

The important point here is that the hint y® is used to
postprocess a ciphertext c output by Encrypte, with the objec-
tive of leaving less work remaining for Decrypte* to do.

This sort of two-phase approach to decryption has
been used before in server-aided cryptography. (See cites in
Gentry2.) In that setting, a user wants to minimize its cryp-
tographic computation—e.g., because it is using a con-
strained device, such as a smartcard or handheld. So, it
outsources expensive computations to a server. To set up
this arrangement, the user (in some schemes) must give the
server a hint y→ that is statistically dependent on its secret
key sk, but which is not sufficient to permit the server to
decrypt efficiently on its own. The server uses the hint to

decryption circuit? Unfortunately, as far as we can tell, e
can almost handle De, but not quite. So, we modify e slightly,
constructing a new (but closely related) somewhat homo-
morphic scheme e* that can handle essentially the same
functions that e can, but whose decryption circuit is simple
enough to make e* bootstrappable.

5.1. Alice gets her hands dirty
After her dream, Alice rushes to her store to see if her idea
works. She locks box #1 and puts it inside box #2. Working
with the gloves of box #2, she tries to unlock box #1 in less
than 1 min. The thickness of the gloves and the stickiness of
the lock combine to make it impossible.

She is despondent until she remembers that she has a
special grease that makes her locks less sticky. This time,
she locks box #3 and puts it inside box #4. She also puts her
bottle of grease inside box #4. Working with the gloves of
box #4, she squirts some grease on the lock and then tries to
unlock it. But the gloves stiffen before she can finish.

Then, she thinks: why didn’t I grease the box’s lock before
putting it inside the other box? That way, I wouldn’t waste
my valuable time with the gloves greasing the lock.

She locks box #5, greases its lock, and then puts it inside
box #6. Working with gloves, she tries the lock again. This
time it works, despite the clumsiness of the gloves!

At last, she has a system that lets her securely delegate the
processing of her precious materials into arbitrarily compli-
cated pieces! Her workers just need to apply the grease to
each box before they put it inside the next box. She can hardly
wait to put the system in place the following morning.

5.2. Greasing the decryption circuit
In our somewhat homomorphic encryption scheme e from
Section 3, the decryption function is:

m ¬ (c mod p) mod 2

Equivalently, but more simply, the equation is:

m ¬ LSB(c)  XOR  LSB( ëc/pù ),

where LSB takes the least significant bit and ë•ù rounds to the
nearest integer. This is equivalent, since (c mod p) = c − p •
ëc/pù. Since p is odd, we have that (c mod p) mod 2 = c − ëc/pù
mod 2. This is just the XOR of the least significant bits of c
and ëc/pù.

In the decryption circuit De, computing the LSB is imme-
diate: the circuit simply does not have output wires for the
more significant bits. Computing an XOR also takes only
one gate. If the decryption function is complicated, it must
be because computing ëc/pù is complicated. Is the function
f(p, c) = ëc/pù (with the few steps afterward) something that
e can handle? If so, e is bootstrappable, and can be used to
construct a fully homomorphic encryption scheme.

Unfortunately, even a single multiplication of long
numbers—namely, c with 1/p—seems to be too complex
for e to handle. The reason is that c and 1/p each need to be
expressed with at least P » log p bits of precision to ensure
that f(p, c) is computed correctly. When you multiply two

104 communications of the acm | march 2010 | vol. 53 | no. 3

research highlights

The final step of computing the sum of the bj’s does not
require much computation, since there are only l + 1 = O(log
a) of them. We get that a ciphertext encrypting a bit of the
overall sum has noise of at most N • a • g(log a) bits for some
polynomial g of low degree. If the final sum modulo 2 is
(b¢0, b¢–1, . . .) in binary, then the rounding operation modulo
2 is simply b¢0 XOR b¢–1. With the additional XOR operation
in decryption, and possibly one more gate, the noise after
evaluating the decryption function plus a gate has at most
N • a • h(log a) bits for some polynomial h.

The scheme e* becomes bootstrappable when this noise
has at most log(p/16) = P − 4 bits. For example, this works
when a = l/polylog(l), N = l, and P = l2.

5.4. Security of the transformed scheme
The encryption key of e* contains a hint about the secret p.
But we can prove that e* is semantically secure, unless either
it is easy to break the semantic security of e (which implies
that the approximate gcd problem is easy), or the following
sparse (or low-weight) subset sum problem (SSSP) is easy:
given a set of b numbers yy® and another number s, find the
sparse (a-element) subset of y® whose sum is s.

The SSSP has been studied before in connection with
server-aided cryptosystems. If a and b are set appropriately,
the SSSP is a hard problem, as far as we know. In particular,
if we set a to be about l, it is hard to find the sparse subset
by “brute force,” since there are (b

a) » ba possibilities. If the
sparse subset sum is much closer to 1/p than any other sub-
set sum, the problem yields to a lattice attack. But these
attacks fail when we set b large enough (but still polynomial
in l) so that an exponential (in l) number of subset sums are
as close to 1/p as the sparse subset. Concretely, we can set
b = l5 • polylog(l).

6. CONCLUSIONS
We now know that FHE is possible. We already have the
scheme presented here, the lattice-based scheme by
Gentry,2, 3 and a recent scheme by Smart and Vercauteren.7

There is still work to be done toward making FHE truly
practical. Currently, all known FHE schemes follow the blue-
print above: construct a bootstrappable somewhat homo-
morphic encryption scheme e, and obtain FHE by running
Evaluatee on e’s decryption function. But this approach is
computationally expensive. Not only is the decryption func-
tion expressed (somewhat inefficiently) as a circuit, but then
Evaluatee replaces each bit in this circuit with a large cipher-
text that encrypts that bit. Perhaps someone will find a more
efficient blueprint.

The scheme presented here, while conceptually simpler,
seems to be less efficient than the lattice-based scheme.
To get 2l security against known attacks—e.g., on the the
approximate gcd problem—ciphertexts are l5 • polylog(l)
bits, which leads to l10 • polylog(l) computation to evalu-
ate the decryption function. The lattice-based scheme
with comparable security has l6 • polylog(l) computation.
This is high, but not totally unreasonable. Consider: to
make RSA 2l-secure against known attacks—in particu-
lar, against the number field sieve factoring algorithm—
you need to use an RSA modulus with approximately l3

process a ciphertext directed to the user, leaving less work
for the user to do. In our setting, the encrypter or evaluator
plays the role of the server, postprocessing the ciphertext so
as to leave less work for the decryption algorithm to do.

•	 Decrypte*(sk*, c*): Output LSB(c) XOR LSB(ëSi siziù).
Decryption works, since (up to small precision errors)
Si sizi = Si c • siyi = c/p mod 2.

To ensure that the rounding is correct despite the
low precision, we need c to be closer (than the trivial p/2)
to a multiple of p (say, within p/16). This makes Fe* smaller
than Fe, since Fe* is limited to functions where | f(a1, …,
at)| < p/16 when the ai are N bits. This makes only a small
difference.

The important point regarding Decrypte* is that we replace
the multiplication of c and 1/p with a summation that con-
tains only a nonzero terms. The bits of this summation can
be computed by a polynomial of degree a • polylog(a), which
e* can handle if we set a to be small enough.

•	 Adde* (pk*, c*1, c*2): Extract c1 and c2 from c*1 and c*2. Run c
¬ Adde(pk, c1, c2). The output ciphertext c* consists of c,
together with the result of postprocessing c with
y®

• Multe*(pk*, c*1, c*2) is analogous.

5.3. How to add numbers
To see that e* can handle the decryption function plus an
additional gate when a is set small enough, let us consider the
computation of the sum Si si zi. In this sum, we have b num-
bers a1, …, ab, each ai expressed in binary (ai,0, …, ai, −l

) with
l = O(log a), where at most a of the ai’s are nonzero (since the
Hamming weight of s is a). We want to express each bit of the
output as a polynomial of the input bits, while minimizing
the degree of the polynomial and the number of monomials.

Our approach to the problem is to add up the column
of LSBs of the numbers—computing the Hamming weight
of this column—to obtain a number in binary representa-
tion. Then, we add up the column of penultimate bits, etc.
Afterward, we combine the partial results. More precisely,
for j Î [0, −l], we compute the Hamming weight bj, repre-
sented in binary, of (a1,j, …, ab,j). Then, we add up the l + 1
numbers b0, …, 2−lb−l

 to obtain the final correct sum.
Conveniently, the binary representation of the Hamming

weight of any vector x® Î {0,1}t is given by

(e2 ëlog tû (x1, ..., xt) mod 2, ..., e20 (x1, ..., xt) mod 2)

where ei(x1, …, xt) is the ith elementary symmetric polyno-
mial over x1, …, xt. These polynomials have degree at most t.
Also, we know how to efficiently evaluate the elementary
symmetric polynomials. They are simply coefficients of the
polynomial p(z) = Õt

i=1 (z – xi). An important point is that, in
our case, we only need to evaluate the polynomials up to
degree a, since we know a priori that each of the Hamming
weights is at most a. We saw in Section 3.3 that we can
handle elementary symmetric polynomials in t variables
of degree up to about l/log t = W(l/log l) for our suggested
parameters. We can set a to be smaller than this.

march 2010 | vol. 53 | no. 3 | communications of the acm 105

bits. Then, RSA decryption involves exponentiation by a
l3-bit exponent—i.e., about l3 multiplications. Even if
one uses fast Fourier multiplication, this exponentiation
requires l6 • polylog(l) computation. Also, unlike RSA, the
decryption function in our scheme is highly paralleliz-
able, which may make an enormous difference in some
implementations.

7. EPILOGUE
The morning after her dream, Alice explains her glovebox
solution to her workers. They are not happy, but they wish
to remain employed. As the day progresses, it becomes clear
that the gloveboxes are slowing down the pace of jewelry
construction considerably. The main problem seems to be
the thick gloves, which multiply the time needed for each
assembly step. After a few days of low output, Alice curtails
her use of the gloveboxes to pieces that contain the most
valuable diamonds.

Alice loses her suit against Acme Glovebox Company,
because, as far as anyone knows in Alice’s parallel world,
gloves in gloveboxes are always very stiff and stiffen com-
pletely after moderate use. The old judge explains this to her
in a patronizing tone.

But Alice refuses to give up. She hires a handsome young
glovebox researcher, and tasks him with developing a glove
flexible enough to permit the nimble assembly of jewels and
unlocking of boxes, but sturdy enough to prevent the boxes
from being easily compromised. The researcher, amazed at
his good fortune, plunges into the problem.�

	 1.	B oneh, D., Lipton, R.J. Algorithms for
black-box fields and their application
to cryptography (extended abstract).
In CRYPTO (1996), 283–297.

	 2.	 Gentry, C. A fully Homomorphic
Encryption Scheme. Ph.D. thesis,
Stanford University, 2009. crypto.
stanford.edu/craig.

	 3.	 Gentry, C. Fully homomorphic
encryption using ideal lattices. STOC.
M. Mitzenmacher ed. ACM, 2009,
169–178.

	 4.	 Goldwasser, S., Micali, S. Probabilistic
encryption. J. Comp. Syst. Sci. 28, 2
(1984), 270–299.

	 5.	R ivest, R.L., Adleman, L.M., Dertouzos,
M.L. On data banks and privacy
homomorphisms. In Foundations of
Secure Computations (1978), 169–180.

	 6.	R ivest, R.L., Shamir, A., Adleman,
L.M. A method for obtaining
digital signatures and public-key
cryptosystems. Commun. ACM 21, 2
(1978), 120–126.

	 7.	S mart, N.P., Vercauteren, F. Fully
homomorphic encryption with
relatively small key and ciphertext
sizes, 2009. http://eprint.iacr.
org/2009/571.

	 8.	 van Dam, W., Hallgren, S., Ip, L.
Quantum algorithms for some hidden
shift problems. SIAM J. Comp. 36, 3
(2006), 763–778.

	 9.	 van Dijk, M., Gentry, C., Halevi, S.,
Vaikuntanathan, V. Fully homomorphic
encryption over the integers,
2009. http://eprint.iacr.org/2009/
616.

References

© 2010 ACM 0001-0782/10/0300 $10.00

Craig Gentry (cbgentry@us.ibm.com),
IBM T.J. Watson Research Center,
Hawthorne, NY.

ACM and its Partners are Proud to Announce

Computer Science EducationWeek

To encourage increased participation in
computer science at all educational levels

December 6 -12, 2009

Join the Conversation at:

CSEDWEEK.ORG

The ACM Career & Job Center offers ACM members
a host of career-enhancing benefits!:
• A highly targeted focus on job opportunities in the computing industry

• Access to hundreds of corporate job postings

• Resume posting – stay connected to the employment market and maintain full control over
your confidential information

• An advanced Job Alert system that notifies you of new opportunities matching your criteria

• Live career advice to assist you in resume development, creating cover letters,
company research, negotiating an offer and more

Are you looking for your next IT job? Do you need Career Advice?

Visit ACM’s newest career resource at http://www.acm.org/careercenter

AnnouncingACM’sNew

Career & Job Center!

The ACM Career & Job Center is the perfect place to
begin searching for your next employment opportunity!

Visit today at http://www.acm.org/careercenter

�

�

�
��

�

�

�

�

� �

�

CSEWeek_CareerCenterAd.qxp:ComputerScienceEducationAd 11/10/09 4:44 PM Page 1

