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Computing Arbitrary Functions 
of Encrypted Data
By Craig Gentry

Abstract
Suppose that you want to delegate the ability to process your 
data, without giving away access to it. We show that this 
separation is possible: we describe a “fully homomorphic” 
encryption scheme that keeps data private, but that allows a 
worker that does not have the secret decryption key to com-
pute any (still encrypted) result of the data, even when the 
function of the data is very complex. In short, a third party 
can perform complicated processing of data without being 
able to see it. Among other things, this helps make cloud 
computing compatible with privacy.

1. INTRODUCTION
Is it possible to delegate processing of your data without giv-
ing away access to it?

This question, which tests the tension between conve-
nience and privacy, has always been important, but seems 
especially so now that we are headed toward widespread use 
of cloud computing. To put everything online “in the cloud,” 
unencrypted, is to risk an Orwellian future. For certain types 
of data, such as medical records, storing them off-site unen-
crypted may be illegal. On the other hand, encrypting one’s 
data seems to nullify the benefits of cloud computing. Unless 
I give the cloud my secret decryption key (sacrificing my pri-
vacy), what can I expect the cloud to do with my encrypted 
data except send it back to me, so that I can decrypt it and 
process it myself?

Fortunately, this is a false dilemma, or at least conve-
nience and privacy can be reconciled to a large extent. 
For data that is encrypted with an “ordinary” encryption 
scheme, it is virtually impossible for someone without the 
secret decryption key (such as the cloud) to manipulate the 
underlying data in any useful way. However, some encryp-
tion schemes are homomorphic or malleable. They let anyone 
manipulate (in a meaningful way) what is encrypted, even 
without knowing the secret key!

In this paper, we describe the first fully homomorphic 
encryption (FHE) scheme, where “fully” means that there 
are no limitations on what manipulations can be per-
formed. Given ciphertexts c1, …, ct that encrypt m1, …, mt with 
our scheme under some key, and given any efficiently com-
putable function f, anyone can efficiently compute a cipher-
text (or set of ciphertexts) that encrypts f (m1, …, mt) under 
that key. In short, this permits general computations on 
encrypted data. No information about m1, …, mt or the value 
of f (m1, …, mt) is leaked.

This means that cloud computing is consistent with 
privacy. If I want the cloud to compute for me some func-
tion f of my (encrypted) data m1, …, mt—for example, 

this function could be “all files containing ‘CACM’ or 
‘Communications’ within three words of ‘ACM’ ”—I send  
a description of f to the cloud, which uses the scheme’s 
malleability to compute an encryption of f(m1, …, mt), which  
I decrypt. The cloud never sees any unencrypted data.  
If I want, I can even use the scheme to encrypt a descrip-
tion of f, so that the cloud does not even see what I am 
searching for.

Rivest, Adleman, and Dertouzos5 suggested that fully 
homomorphic encryption may be possible in 1978, shortly 
after the invention of the RSA cryptosystem,6 but were unable 
to find a secure scheme. As an application, they described our 
private cloud computing scenario above, though of course 
they used different terminology. There are many other appli-
cations. Homomorphic encryption is useful whenever it is 
acceptable if a response (e.g., to a search engine query) is 
encrypted.

Below, we begin by describing homomorphic encryp-
tion in more detail. Then, we describe a concrete scheme 
due to van Dijk, Gentry, Halevi, and Vaikuntanathan,9 
which uses only simple integer operations, and is a con-
ceptually simpler version of the first scheme by Gentry,2, 3  
which uses lattices. Toward the end, we discuss the 
scheme’s (rather slow) performance. Throughout, we try 
to make the ideas more tangible by constantly return-
ing to a physical analogy: a jewelry store owner, Alice, 
who wants her workers to process raw precious materials 
into intricately designed rings and necklaces, but who is 
afraid to give her workers complete access to the materials 
for fear of theft.

2. HOMOMORPHIC ENCRYPTION

2.1. Alice’s jewelry store
At first, the notion of processing data without having 
access to it may seem paradoxical, even logically impos-
sible. To convince you that there is no fallacy, and to give 
you some intuition about the solution, let us consider an 
analogous problem in (a fictional version of) the “physical 
world.”

Alice owns a jewelry store. She has raw precious mate-
rials—gold, diamonds, silver, etc.—that she wants her 
workers to assemble into intricately designed rings and 

This paper draws from the STOC 2009 paper “Fully 
Homomorphic Encryption Using Ideal Lattices,” my 
thesis, and a recent manuscript co-authored with van 
Dijk, Halevi, and Vaikuntanathan.
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case. It has a fourth algorithm Evaluatee, which is associ-
ated to a set Fe of permitted functions. For any function f in 
Fe and any ciphertexts c1, …, ct with ci ¬ Encrypte (pk, mi), 
the algorithm Evaluatee(pk, f, c1, …, ct) outputs a ciphertext 
c that encrypts f(m1, …, mt)—i.e., such that Decrypte(sk, c) = 
f(m1, …, mt). (For convenience, we will assume that f has one 
output. If f has k outputs, then Evaluatee outputs k cipher-
texts that encrypt f (m1, …, mt) collectively.) As shorthand, we 
say that e can handle functions in Fe. For a function f not 
in Fe, there is no guarantee that Evaluatee will output any-
thing meaningful. Typically Evaluatee is undefined for such 
a function.

As described thus far, it is trivial to construct an encryp-
tion scheme that can handle all functions. Just define 
Evaluatee as follows: simply output c ¬ ( f, c1, …, ct), without 
“processing” the ciphertexts at all. Modify Decrypte slightly: 
to decrypt c, decrypt c1, …, ct to obtain m1, …, mt, and then 
apply f to these messages.

But this trivial solution obviously does not conform to the 
spirit of what we are trying to achieve—to delegate the data 
processing (while maintaining privacy). The trivial solution 
is as if, in Alice’s jewelry store, the worker simply sends the 
box (which need not have gloves) back to Alice without doing 
any work on the raw precious materials, and Alice unlocks 
the box, extracts the materials, and assembles the ring or 
necklace herself.

So, how do we formalize what it means to delegate? 
Intuitively, the purpose of delegation is to reduce one’s 
workload. We can formalize this in terms of the running 
times (i.e., complexity) of the algorithms. Specifically, we 
require that decrypting c (the ciphertext output by Evaluatee) 
takes the same amount of computation as decrypting c1 (a 
ciphertext output by Encrypte). Moreover, we require that c 
is the same size as c1. We refer to these as the compact cipher-
texts requirement. Again, the size of c and the time needed 
to decrypt it do not grow with the complexity of f; rather, they 
are completely independent of f (unless f has multiple out-
puts). Also, of course, the complexity of Decrypte, as well as 
the complexity of KeyGene and Encrypte, must remain poly-
nomial in l.

e is fully homomorphic if it can handle all functions, has 
compact ciphertexts, and Evaluatee is efficient in a way that 
we specify below. The trivial solution above certainly is not 
fully homomorphic, since the size of the ciphertext output 
by Evaluatee, as well as the time needed to decrypt it, depend 
on the function being evaluated. In terms of Alice’s jewelry 
store, our definition of fully homomorphic captures the best-
case scenario for Alice: her workers can assemble arbitrarily 
complicated pieces inside the box, but the work needed to 
assemble has no bearing on the work Alice needs to do to 
unlock the box and extract the piece.

We want our fully homomorphic scheme to be efficient 
for the worker, as well. In particular, we want the complex-
ity of Evaluatee—like the other algorithms of e—to depend 
only polynomially on the security parameter. But clearly its 
complexity must also depend on the function being evalu-
ated. How do we measure the complexity of f ? Perhaps the 
most obvious measure is the running time Tf of a Turing 
machine that computes f. We use a related measure, the size 

necklaces. But she distrusts her workers and assumes that 
they will steal her jewels if given the opportunity. In other 
words, she wants her workers to process the materials into 
finished pieces, without giving them access to the materials. 
What does she do?

Here is her plan. She uses a transparent impenetrable 
glovebox, secured by a lock for which only she has the key. 
She puts the raw precious materials inside the box, locks it, 
and gives it to a worker. Using the gloves, the worker assem-
bles the ring or necklace inside the box. Since the box is 
impenetrable, the worker cannot get to the precious materi-
als, and figures he might as well return the box to Alice, with 
the finished piece inside. Alice unlocks the box with her key 
and extracts the ring or necklace. In short, the worker pro-
cesses the raw materials into a finished piece, without hav-
ing true access to the materials.

The locked impenetrable box, with raw precious materials 
inside, represents an encryption of the initial data m1, …, mt,  
which can be accessed only with the secret decryption key. 
The gloves represent the homomorphism or malleability 
of the encryption scheme, which allows the raw data to be 
manipulated while it is inside the “encryption box.” The 
completed ring or necklace inside the box represents the 
encryption of f(m1, …, mt), the desired function of the ini-
tial data. Note that “lack of access” is represented by lack of 
physical access, as opposed to lack of visual access, to the 
jewels. (For an analogy that uses lack of visual access, con-
sider a photograph developer’s darkroom.)

Of course, Alice’s jewelry store is only an analogy.  
It does not represent some aspects of homomorphic 
encryption well, and taking it too literally may be more 
confusing than helpful. We discuss some flaws in the anal-
ogy at the end of this section, after we describe homomor-
phic encryption more formally. Despite its flaws, we return 
to the analogy throughout, since it motivates good ques-
tions, and represents some aspects of our solution quite 
well—most notably, “bootstrapping,” which we discuss in 
Section 4.

2.2. Homomorphic encryption: functionality
An encryption scheme e has three algorithms: KeyGene, 
Encrypte, and Decrypte, all of which must be efficient—that 
is, run in time poly(l), polynomial in a security parameter 
l that specifies the bit-length of the keys. In a symmetric, or 
secret key, encryption scheme, KeyGene uses l to generate a 
single key that is used in both Encrypte and Decrypte, first to 
map a message to a ciphertext, and then to map the cipher-
text back to the message. In an asymmetric, or public key, 
encryption scheme, KeyGene uses l to generate two keys—a 
public encryption key pk, which may be made available to 
everyone, and a secret decryption key sk. As a physical anal-
ogy for an asymmetric encryption scheme, one can think of 
Alice’s public key as a padlock, which she constructs and 
distributes, that can be locked without a key. Anyone can put 
a message inside a box secured by Alice’s padlock (encrypt), 
and mail it via a public channel to Alice, but only Alice has 
the key needed to unlock it (decrypt).

A homomorphic encryption scheme can be either sym-
metric or asymmetric, but we will focus on the asymmetric 
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ciphertext c that encrypts unknown message m under pk, it 
should be “hard” to output m. “Hard” means that any algo-
rithm or “adversary” A that runs in poly(l) time has a negligi-
ble probability of success over the choices of pk and m (i.e., the 
probability it outputs m is less than 1/lk for any constant k).

Nowadays, we typically require an encryption scheme to 
have a stronger security property, called semantic security 
against chosen-plaintext attacks (CPA)4: given a ciphertext c 
that encrypts either m0 or m1, it is hard for an adversary to 
decide which, even if it is allowed to choose m0 and m1. Here, 
“hard” means that if the adversary A runs in polynomial 
time and guesses correctly with probability 1/2 + Œ, then Œ, 
called A’s advantage, must be negligible. If this advantage 
is nonnegligible, then we say (informally) that the adversary 
breaks the semantic security of the encryption scheme.

If an encryption scheme is deterministic—i.e., if there is 
only one ciphertext that encrypts a given message—then it 
cannot be semantically secure. An attacker can easily tell 
whether c encrypts m0, by running c0 ¬ Encrypt(pk, m0) and 
seeing if c and c0 are the same. A semantically secure encryp-
tion scheme must be probabilistic—i.e., there must be many 
ciphertexts that encrypt a given message, and Encrypte must 
choose one randomly according to some distribution.

One can prove the (conditional) one-wayness or semantic 
security of an encryption scheme by reducing a hard prob-
lem to breaking the encryption scheme. For example, sup-
pose one shows that if there is an efficient algorithm that 
breaks the encryption scheme, then this algorithm can be 
used as a subroutine in an efficient algorithm that factors 
large numbers. Then, under the assumption that factor-
ing is hard—i.e., that no poly(l)-time algorithm can factor 
l-bit numbers—the reduction implies that the encryption 
scheme must be hard to break.

Semantic security of a homomorphic encryption scheme 
is defined in the same way as for an ordinary encryption 
scheme, without reference to the Evaluatee algorithm. If 
we manage to prove a reduction—i.e., that an attacker that 
breaks e can be used to solve a hard problem like factoring—
then this reduction holds whether or not e has an Evaluatee 
algorithm that works for a large set of functions.

To understand the power of semantic security, let us 
reconsider our cloud computing application. Sometime 
after storing her encrypted files in the cloud, Alice wants the 
cloud to retrieve the files that have a certain combination 
of keywords. Suppose that in its response, the cloud sends 
ciphertexts that encrypt the first three files. Can’t the cloud 
just see that the first three encrypted files that it is storing 
for Alice happen to encrypt the same content as the three 
files that it sends to Alice? Not if the scheme is semantically 
secure. Even though some of the stored ciphertexts encrypt 
the same content as the sent ciphertexts, the cloud cannot 
see this, because semantic security guarantees that it is hard 
to tell whether two ciphertexts encrypt the same content.

Intuitively, it seems like the Evaluatee algorithm should 
make e easier to break, simply because this additional algo-
rithm gives the attacker more power. Or, to put it in terms of 
the physical analogy, one would think that the easiest way 
to get inside the glovebox is to cut through the gloves, and 
that, the more flexible the gloves are, the easier the glovebox 

Sf of a boolean circuit (i.e., the number of AND, OR, and NOT 
gates) that computes f. Any function that can be computed 
in Tf steps on a Turing machine can be expressed as a circuit 
with about Tf gates. More precisely, Sf < k • Tf • log Tf for some 
small constant k. Overall, we say that Evaluatee is efficient if 
there is a polynomial g such that, for any function f that is 
represented by a circuit of size Sf , Evaluatee(pk, f, c1, …, ct) has 
complexity at most Sf • g(l).

The circuit representation of f is also useful because it 
breaks the computation of f down into simple steps—e.g., 
AND, OR, and NOT gates. Moreover, to evaluate these gates, 
it is enough to be able to add, subtract, and multiply. (In 
fact, it is enough if we can add, subtract and multiply mod-
ulo 2.) In particular, for x, y Î {0, 1}, we have AND(x, y) = xy,  
OR(x, y) = 1 − (1 − x)(1 − y) and NOT(x) = 1 − x. So, to obtain 
a fully homomorphic encryption scheme, all we need is a 
scheme that operates on ciphertexts so as to add, subtract, 
and multiply the underlying messages, indefinitely.

But is the circuit representation of f—or some arithmetized 
version of it in terms of addition, subtraction, and multiplica-
tion—necessarily the most efficient way to evaluate f ? In fact, 
some functions, like binary search, take much longer on a 
Turing machine or circuit than on a random access machine. 
On a random access machine, a binary search algorithm on t 
ordered items only needs to “touch” O(log t) of its inputs.

A moment’s thought shows that random-access speed-
ups cannot work if the data is encrypted. Unless we know 
something a priori about the relationship between f and 
m1, …, mt, the algorithm Evaluatee(pk, f, c1, …, ct) must touch 
all of the input ciphertexts, and therefore have complexity 
at least linear in the number of inputs. To put it another 
way, if Evaluatee (for some reason) did not touch the second 
half of the ciphertexts, this would leak information about 
the second half of the underlying messages—namely, their 
irrelevance in the computation of f—and this leakage would 
contradict the security of the encryption scheme. While 
Evaluatee must have running time at least linear in t as an 
unavoidable cost of the complete privacy that homomorphic 
encryption provides, a trade-off is possible. If I am willing to 
reveal—e.g., in the cloud computing context—that the files 
that I want are contained in a certain 1% of my data, then  
I may help the cloud reduce its work by a factor of 100.

Another artifact of using a fixed circuit representation of 
f is that the size of the output—i.e., the number of output 
wires in the circuit—must be fixed in advance. For example, 
when I request all of my files that contain a combination 
of keywords, I should also specify how much data I want 
retrieved—e.g., 1MB. From my request, the cloud will gener-
ate a circuit for a function that outputs the first megabyte of 
the correct files, where that output is truncated (if too much 
of my data satisfies my request), or padded with zeros (if too 
little). A moment’s thought shows that this is also unavoid-
able. There is no way the cloud can avoid truncating or 
padding unless it knows something a priori about the rela-
tionship between the function and my data.

2.3. Homomorphic encryption: security
In terms of security, the weakest requirement for an encryp-
tion scheme is one-wayness: given the public key pk and a 
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3.2. Our somewhat homomorphic scheme
Our somewhat homomorphic encryption scheme e, 
described below, is remarkably simple.9 We describe it first 
as a symmetric encryption scheme. As an example param-
eter setting, for security parameter l, set N = l, P = l2 and 
Q = l5.

An Encryption Scheme:

KeyGene(l): The key is a random P-bit odd integer p.
Encrypte(p, m): To encrypt a bit m Î {0, 1}, set m¢ to be a 

random N-bit number such that m¢ = m mod 2. Output 
the ciphertext c ¬ m¢ + pq, where q is a random Q-bit 
number.

Decrypte(p, c): Output (c mod p) mod 2, where (c mod p) is 
the integer c¢ in (−p/2,p/2) such that p divides c − c¢.

Ciphertexts from e are near-multiples of p. We call (c mod p)  
the noise associated to the ciphertext c. It is the distance 
to the nearest multiple of p. Decryption works because the 
noise is m¢, which has the same parity as the message. We 
call a ciphertext output by Encrypt a fresh ciphertext, since it 
has small (N-bit) noise.

How is the scheme homomorphic? By simply adding, 
subtracting, or multiplying the ciphertexts as integers, we 
can add, subtract, or multiply (modulo 2) the underlying 
messages. However, complications arise, because these 
operations increase the noise associated to resulting cipher-
texts. Eventually, the noise become so large that decryption 
no longer reliably returns the correct result.

Homomorphic Operations:

Adde(c1, c2), Sube(c1, c2), Multe(c1, c2): the output ciphertext c 
is c1 + c2, c1 − c2, or c1 • c2.

Evaluatee( f, c1, …, ct): Express the boolean function f as a 
circuit C with XOR and AND gates. Let C† be the same 
circuit as C, but with XOR and AND gates replaced by 
addition and multiplication gates over the integers. 
Let f † be the multivariate polynomial that corresponds 
to C †. Output c ¬ f †(c1, …, ct).

Let us check that ciphertexts output by Evaluatee decrypt 
correctly. As a warm-up, let us consider Multe. Let c = c1 • c2, 
where ci’s noise is m¢i, which has the same parity as the mes-
sage mi. We have that

c = m¢1 • m¢2 + pq¢

for some integer q¢. As long as the noises are small enough 
so that |m¢1 • m¢2|< p/2, we have that

(c mod p) = m¢1 • m¢2

and therefore (c mod p) mod 2 = m1 • m2, as it should be. We 
will consider the evaluation of more complicated functions 
momentarily, in Section 3.3.

So far we only described a symmetric homomorphic 
encryption scheme. Turning it into a public-key scheme is 
easy, but adds some complexity. As before, the secret key 
is p. The public key consists of a list of integers that are 

is to compromise; this suggests that, the more malleable 
the encryption scheme is, the easier it is to break. There is 
some truth to this intuition. Researchers1, 8 showed that if  
e is a deterministic fully homomorphic encryption scheme 
(or, more broadly, one for which it is easy to tell whether two 
ciphertexts encrypt the same thing), then e can be broken 
in subexponential time, and in only polynomial time (i.e., 
efficiently) on a quantum computer. So, malleability seems 
to weaken the security of deterministic schemes. But these 
results do not apply to semantically secure schemes, such 
as ours.

2.4. Some flaws in the physical analogy
The physical analogy represents some aspects of homomor-
phic encryption poorly. For example, the physical analogy 
suggests that messages that are encrypted separately are in 
different “encryption boxes” and cannot interact. Of course, 
this interaction is precisely the purpose of homomorphic 
encryption. To fix the analogy, one may imagine that the 
gloveboxes have a one-way insertion slot like the mail bins 
used by the post office. Then, messages can be added to 
the same encryption box as they arrive. (Even this fix is not 
entirely satisfactory.)

Another flaw is that the output f(m1, …, mt) may have signifi-
cantly fewer bits than m1, …, mt, whereas in the analogy (absent 
significant nuclear activity inside the glovebox) the conserva-
tion of mass dictates that the box will have at least as much 
material inside when the worker is done as when he started. 
Finally, in Alice’s jewelry store, even though a worker cannot 
extract the materials from a locked glovebox, he can easily tell 
whether or not a box contains a certain set of materials—i.e., 
the gloveboxes do not provide “semantic security.”

3. A SOMEWHAT HOMOMORPHIC ENCRYPTION 
SCHEME
On our way to fully homomorphic encryption, we begin by 
constructing a somewhat homomorphic encryption scheme 
e that can handle a limited class Fe of permitted functions. 
Evaluatee (pk, f, c1, …, ct) does not work for functions f that 
are too complicated. Later, we will show to use e to obtain 
fully homomorphic encryption.

3.1. Meanwhile in Alice’s jewelry store
After figuring out how to use locked gloveboxes to get her 
workers to process her precious materials into fancy rings 
and necklaces, Alice puts in an order with Acme Glovebox 
Company. Unfortunately, the gloveboxes she receives are 
defective. After a worker uses the gloves for 1 min, the gloves 
stiffen and become unusable. But some of the fanciest 
pieces take up to an hour to assemble. Alice sues Acme, but 
meanwhile she wonders: Is there some way I can use these 
defective boxes to get the workers to securely assemble even 
the most complicated pieces?

She notices that the boxes, while defective, do have a 
property that might be useful. As expected, they have a one-
way insertion slot, like post office mail bins. But they are also 
flexible enough so that it is possible to put one box inside 
another through the slot. She wonders whether this property 
might play a role in the solution to her problem, etc.
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Moreover, we can reduce the approximate gcd problem 
to the security of our somewhat homomorphic encryption 
scheme. That is, we can prove that an attacker cannot effi-
ciently break the semantic security of our encryption scheme 
unless the approximate gcd problem is easy.

4. BOOTSTRAPPABLE ENCRYPTION

4.1. Alice’s eureka moment
One night, Alice dreams of immense riches, caverns piled 
high with silver, gold, and diamonds. Then, a giant dragon 
devours the riches and begins to eat its own tail! She awakes 
with a feeling of peace. As she tries to make sense of her 
dream, she realizes that she has the solution to her prob-
lem. She knows how to use her defective boxes to securely 
delegate the assembly of even the most intricate pieces!

Like before, she gives a worker a glovebox, box #1, con-
taining the raw materials. But she also gives him several addi-
tional gloveboxes, where box #2 contains (locked inside) the 
key to box #1, box #3 contains the key to box #2, and so on. 
To assemble an intricate design, the worker manipulates the 
materials in box #1 until the gloves stiffen. Then, he places 
box #1 inside box #2, where the latter box already contains a 
the key to box #1. Using the gloves for box #2, he opens box 
#1 with the key, extracts the partially assembled trinket, and 
continues the assembly within box #2 until its gloves stiffen. 
He then places box #2 inside box #3, and so on. When the 
worker finally finishes his assembly inside box #n, he hands 
the box to Alice.

Of course, Alice observes, this trick does not work unless 
the worker can open box #i within box #(i + 1), and still 
have time to make a little bit of progress on the assembly, 
all before the gloves of box #(i + 1) stiffen. But as long as the 
unlocking operation (plus a little bit of assembly work) takes 
less than a minute, and as long as she has enough defective 
gloveboxes, then it is possible to assemble any piece, no 
matter how complicated!

4.2. A dream deciphered
In the analogy, the defective gloveboxes represent our some-
what homomorphic encryption scheme, which can perform 
Add, Sub, and Mult operations on ciphertexts for a little 
while—it can handle functions in a limited set Fe—until the 
noise becomes too large. What we would like to do is use this 
somewhat homomorphic scheme to construct a fully homo-
morphic one.

As before, box #1 with the precious materials inside 
represents the ciphertexts that encrypt the initial data. Box  
#(i + 1) with the key for box i inside represents an encrypted 
secret decryption key—i.e., ski encrypted under pki+1.

In the analogy, Alice discovers that there is only one thing 
that her workers really need to be able to do in less than 
1 min with the gloves, aside from performing a very small 
operation on the piece: unlock box #i within box #(i + 1) and 
extract the piece. It will turn out that there is only one func-
tion that our scheme e really needs to be able to handle, with 
a tiny bit of room left over to perform one more Add, Sub, 
or Mult: the decryption function (which is like unlocking the 
“encryption box”).

essentially “encryptions of zero.” The list has length poly-
nomial in l. To encrypt a bit m, the ciphertext c is (essen-
tially) m plus a random subset sum of the ciphertexts in the 
public key. If these ciphertexts have very small noise, the 
resulting ciphertext will also have small noise, and decryp-
tion will work properly: (c mod p) mod 2 will equal m, as 
before.

3.3. How homomorphic is it?
What is the set of permitted functions that our homomor-
phic encryption scheme e can handle?

To answer this question, we need to analyze how the 
noise grows as we add and multiply ciphertexts. Encrypte 
outputs a fresh ciphertext with a small noise, at most N bits. 
As we Adde, Sube, or Multe ciphertexts, the output ciphertext 
becomes more noisy. Multiplication tends to increase the 
noise faster than addition or subtraction. In particular, for 
ciphertexts c1 and c2 with k1- and k2-bit noises, the ciphertext 
c ¬ c1 • c2 has (roughly) (k1 + k2)-bit noise.

What happens when we perform many Adde, Sube, and 
Multe operations, as prescribed by the circuit representing 
a function f ? Similar to what we saw above with multiplica-
tion, we have

f †(c1, ..., ct) =  f †(m¢1, ..., m¢t) + pq¢

for some integer q¢, where m¢t is the noise associated to ci.  
If | f †(m¢1, ..., m¢t)| < p/2, then ( f †(c1, …, ct) mod p) equals  
f †(m¢1, ..., m¢t). And if we reduce this result modulo 2, we  
obtain the correct result: f (m1, …, mt).

In short, the functions that e can handle are those for 
which | f † (a1, …, at)| is always less than p/2 if all of the ai are 
at most N bits.

e is already quite powerful. As an example, it can han-
dle an elementary symmetric polynomial of degree d in t 
variables, as long as 2Nd • ( t

d) < p/2, which is true (roughly) 
when d < P/(N • log t). For our suggested parameters, this 
degree can be quite large: l/(log t) = W(l/log l). That e can 
evaluate polynomials of such high degree makes it “homo-
morphic enough” for many applications. For example, it 
works well when f is a highly parallelizable function—e.g., 
a basic keyword search—in which case f has fairly low 
degree.

3.4. Semantic security and approximate GCDs
Euclid showed that, given two integers x1 and x2, it is easy to 
compute their greatest common divisor (gcd). But suppose 
that x1 = s1 + p • q1 and x2 = s2 + p • q2 are near-multiples of p, 
with s1 and s2 much smaller than p. When p is only an approx-
imate gcd, is it still possible to compute p efficiently—i.e., in 
time polynomial in the bit-lengths of x1 and x2? Not in gen-
eral, as far as we know.

In fact, if we sample si, p and qi with l, l2, and l5 bits (simi-
lar to our scheme e), then the approximate gcd problem seems 
to remain hard even if we are given arbitrarily many samples 
xi = si + p • qi, rather than just two. For these parameters, 
known attacks—including those using continued fractions 
and simultaneous diophantine approximation—take time 
essentially exponential in l.
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respectively, under pk1, and we compute c—1  and c—2 as before, 
as ciphertexts encrypting the bits of the ciphertexts under 
pk2, then we have that

c ¬ Evaluatee (pk2, DAdd, sk1, c—1 , c—2 )

is an encryption under pk2 of m1 Å m2.
By recursing this process, we get a fully homomor-

phic encryption scheme. The public key in e† consists of 
a sequence of public keys (pk1, …, pk

+1) and a chain of 
encrypted secret keys sk1, ..., sk


, where ski is encrypted 

under pki+1. To evaluate a function f in e†, we express f as 
a circuit, topologically arrange its gates into levels, and 
step through the levels sequentially. For a gate at level i + 1 
(e.g., an Add gate), we take as input the encrypted secret key  
ski and a couple of ciphertexts associated to output wires  
at level i that are under pki, and we homomorphically evalu-
ate DAdd to get a ciphertext under pki+1 associated to a wire at 
level i + 1. Finally, we output the ciphertext associated to the 
output wire of f.

Putting the encrypted secret key bits sk1, ..., sk

 in e†’s 

public key is not a problem for security. These encrypted 
secret-key bits are indistinguishable from encryptions of 0 
as long as e is semantically secure.

4.4. Circular security
Strictly speaking, e† does not quite meet our definition of 
fully homomorphic encryption, since the complexity of 
KeyGene† grows linearly with the maximum circuit depth we 
want to evaluate. (Fortunately, Encrypte† and Decrypte† do 
not depend at all on the function f being evaluated.)

However, suppose that e is not only bootstrappable, but 
also circular-secure—that is, it is “safe” to reveal the encryp-
tion of a secret key ski under its own associated public key 
pki. Then, we can simplify KeyGene

†. We do not need distinct 
public keys pki for each circuit level and an acyclic chain of 
encrypted secret keys. Instead, the public key in e† can con-
sist merely of a single public key pk and a single encrypted 
secret key sk (sk under pk), where pk is associated to all lev-
els of the circuit. This approach has the additional advan-
tage that we do not need to decide beforehand the maximal 
circuit depth complexity of the functions that we want to be 
able to evaluate.

For most encryption schemes, including our some-
what homomorphic scheme (as far as we know), revealing 
an encryption of sk under pk does not lead to any attack. 
However, it is typically difficult to prove that an encryption 
scheme is circular-secure.

The issue of circular security also fits within our physical 
analogy. Suppose that a key is locked inside the very same 
box that the key could open from the outside. Is it possible to 
use the gloves and key to open the box from the inside? If so, it 
would be a strange lock. Similarly, encryption schemes that 
are insecure in this setting tend to be contrived.

5. SOMEWHAT HOMOMORPHIC TO  
BOOTSTRAPPABLE
Is our somewhat homomorphic encryption scheme from 
Section 3 already bootstrappable? Can it handle its own 

If e has this self-referential property of being able to 
handle its own decryption function (augmented by a single 
gate), we say that it is bootstrappable. As we will show, if e 
is bootstrappable, then one can use e to construct a fully 
homomorphic encryption scheme e †.

4.3. Bootstrappable to fully homomorphic
Suppose that e is bootstrappable. In particular, suppose that 
e can handle the following four functions: the decryption 
function, expressed as a circuit De of size polynomial in l, as 
well as De augmented by an Add, Sub, or Mult gate modulo 2. 
(De augmented by Add consists of two copies of De connected 
by an Add gate.) We will show that this is a complete set of cir-
cuits, in the sense that if these four circuits are in Fe, then one 
can construct from e a scheme e† that is fully homomorphic.

As a warm-up, suppose that ciphertext c1 encrypts the bit 
m under key pk1. Suppose also that we have an encrypted 
secret key: let sk1 be a vector of ciphertexts that encrypt the 
bits of sk1 under pk2 via Encrypte(pk2, sk1j). Consider the fol-
lowing algorithm.

Recrypte(pk2, De, sk1, c1).

Generate c—1  via Encrypte ( pk2, c1j) over the bits of c1 
	 Output c ¬ Evaluatee (pk2, De, sk1, c—1 )

The decryption circuit De has input wires for the bits of a 
secret key and the bits of a ciphertext. Above, Evaluatee takes 
in the bits of sk1 and c1, each encrypted under pk2. Then, e is 
used to evaluate the decryption circuit homomorphically. As 
long as e can handle De, the output c is an encryption under 
pk2 of Decrypte(sk1, c1) = m. Recrypte therefore outputs a new 
encryption of m, but under pk2.

One fascinating thing about Recrypte is that the mes-
sage m is doubly encrypted at one point, first under pk1 
and next under pk2. Ordinarily, the only thing one can do 
with a doubly encrypted message is to peel off the outer 
encryption first, and then decrypt the inner layer. However, 
in Recrypte, the Evaluatee algorithm is used to remove the 
inner encryption, just like Alice unlocks box #i while it is 
inside box #(i + 1).

It is also useful to imagine that e is our somewhat homo-
morphic encryption scheme from Section 3, and consider 
what Recrypte does to the noise of the ciphertexts. Evaluating 
De removes the noise associated to the first ciphertext 
under pk1 (because, of course, decryption removes noise), 
but Evaluatee simultaneously introduces new noise while 
evaluating the ciphertexts under pk2. As long as the new 
noise added is less than the old noise removed, we have 
made “progress.” A similar situation holds in Alice’s jewelry 
store. When the worker extracts the piece from the used-
up glovebox #i, this process simultaneously uses up the 
gloves of box #(i + 1). We have made “progress” as long as 
the process does not leave box #(i + 1)’s gloves completely 
used-up.

Of course, our goal is to perform actual operations on 
underlying messages, not merely to obtain a new encryption 
of the same message. So, suppose that e can handle De aug-
mented by some gate—e.g., Add; call this augmented circuit 
DAdd. If c1 and c2 are two ciphertexts that encrypt m1 and m2, 
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P-bit numbers, a bit of the result may be a high-degree poly-
nomial of the input bits; this degree is also roughly P. We 
saw that e can handle an elementary symmetric polynomial 
in t variables of degree (roughly) d < P/(N • log t). However, 
e cannot handle even a single monomial of degree P, 
where the noise of output ciphertext is upper-bounded 
by (2N)P » pN >> p/2. Consequently, e does not seem to be 
bootstrappable.

However, if we are willing to get our hands dirty by tin-
kering with e to make the decryption function simpler, 
we eventually get a scheme e* that is bootstrappable. The 
main idea of the transformation is to replace e’s decryp-
tion function, which multiplies two long numbers, with 
a decryption function that adds a fairly small set of num-
bers. In terms of the bits of the addends, this summation 
corresponds to a polynomial of fairly low degree that e* can  
handle.

Let us go through the transformation step by step, begin-
ning with KeyGene*. The transformation uses a couple of 
integer parameters: 0 < a < b.

•	 KeyGene*(l): Run KeyGene(l) to obtain keys (pk, sk), 
where sk is an odd integer p. Generate a set y® =  
áy1, …, ybñ of rational numbers in [0, 2) such that there 
is a sparse subset S Ì {1, …, b} of size a with SiŒS yi » 1/p 
mod 2. Set sk* to be the sparse subset S, encoded as  
a vector s Î {0, 1}b with Hamming weight a. Set pk* ¬ 
(pk, y®).

The important difference between KeyGene* and KeyGene 
is that KeyGene* includes a hint about the secret integer 
p—namely, a set of numbers y® that contains a (hidden) sparse 
subset that sums to 1/p (to within a very small error, and up 
to addition by an even number). This hint is the “grease,” 
which will be used in Encrypte* and Decrypte*. Although it is 
technically not the decryption key sk*, the integer p still can 
be used to decrypt a ciphertext output by Encrypte*, so reveal-
ing this hint obviously impacts security, a point we elaborate 
on in Section 5.4.

•	 Encrypte*(pk*, m): Run Encrypte(pk, m) to obtain 
ciphertext c. For i Î {1, …, b}, set zi ¬ c • yi mod 2 keep-
ing only about log a bits of precision after the binary 
point for each zi. The ciphertext c* consists of c and  
z® = áz1, …, zbñ.

The important point here is that the hint y® is used to 
postprocess a ciphertext c output by Encrypte, with the objec-
tive of leaving less work remaining for Decrypte* to do.

This sort of two-phase approach to decryption has 
been used before in server-aided cryptography. (See cites in 
Gentry2.) In that setting, a user wants to minimize its cryp-
tographic computation—e.g., because it is using a con-
strained device, such as a smartcard or handheld. So, it 
outsources expensive computations to a server. To set up 
this arrangement, the user (in some schemes) must give the 
server a hint y→ that is statistically dependent on its secret 
key sk, but which is not sufficient to permit the server to 
decrypt efficiently on its own. The server uses the hint to  

decryption circuit? Unfortunately, as far as we can tell, e 
can almost handle De, but not quite. So, we modify e slightly, 
constructing a new (but closely related) somewhat homo-
morphic scheme e* that can handle essentially the same 
functions that e can, but whose decryption circuit is simple 
enough to make e* bootstrappable.

5.1. Alice gets her hands dirty
After her dream, Alice rushes to her store to see if her idea 
works. She locks box #1 and puts it inside box #2. Working 
with the gloves of box #2, she tries to unlock box #1 in less 
than 1 min. The thickness of the gloves and the stickiness of 
the lock combine to make it impossible.

She is despondent until she remembers that she has a 
special grease that makes her locks less sticky. This time, 
she locks box #3 and puts it inside box #4. She also puts her 
bottle of grease inside box #4. Working with the gloves of 
box #4, she squirts some grease on the lock and then tries to 
unlock it. But the gloves stiffen before she can finish.

Then, she thinks: why didn’t I grease the box’s lock before 
putting it inside the other box? That way, I wouldn’t waste 
my valuable time with the gloves greasing the lock.

She locks box #5, greases its lock, and then puts it inside 
box #6. Working with gloves, she tries the lock again. This 
time it works, despite the clumsiness of the gloves!

At last, she has a system that lets her securely delegate the 
processing of her precious materials into arbitrarily compli-
cated pieces! Her workers just need to apply the grease to 
each box before they put it inside the next box. She can hardly 
wait to put the system in place the following morning.

5.2. Greasing the decryption circuit
In our somewhat homomorphic encryption scheme e from 
Section 3, the decryption function is:

m ¬ (c mod p) mod 2

Equivalently, but more simply, the equation is:

m ¬ LSB(c)  XOR  LSB( ëc/pù ),

where LSB takes the least significant bit and ë•ù rounds to the 
nearest integer. This is equivalent, since (c mod p) = c − p • 
ëc/pù. Since p is odd, we have that (c mod p) mod 2 = c − ëc/pù 
mod 2. This is just the XOR of the least significant bits of c 
and ëc/pù.

In the decryption circuit De, computing the LSB is imme-
diate: the circuit simply does not have output wires for the 
more significant bits. Computing an XOR also takes only 
one gate. If the decryption function is complicated, it must 
be because computing ëc/pù is complicated. Is the function 
f(p, c) = ëc/pù (with the few steps afterward) something that 
e can handle? If so, e is bootstrappable, and can be used to 
construct a fully homomorphic encryption scheme.

Unfortunately, even a single multiplication of long 
numbers—namely, c with 1/p—seems to be too complex 
for e to handle. The reason is that c and 1/p each need to be 
expressed with at least P » log p bits of precision to ensure 
that f(p, c) is computed correctly. When you multiply two 
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The final step of computing the sum of the bj’s does not 
require much computation, since there are only l + 1 = O(log 
a) of them. We get that a ciphertext encrypting a bit of the 
overall sum has noise of at most N • a • g(log a) bits for some 
polynomial g of low degree. If the final sum modulo 2 is  
(b¢0, b¢–1, . . .) in binary, then the rounding operation modulo 
2 is simply b¢0 XOR b¢–1. With the additional XOR operation 
in decryption, and possibly one more gate, the noise after 
evaluating the decryption function plus a gate has at most  
N • a • h(log a) bits for some polynomial h.

The scheme e* becomes bootstrappable when this noise 
has at most log(p/16) = P − 4 bits. For example, this works 
when a = l/polylog(l), N = l, and P = l2.

5.4. Security of the transformed scheme
The encryption key of e* contains a hint about the secret p. 
But we can prove that e* is semantically secure, unless either 
it is easy to break the semantic security of e (which implies 
that the approximate gcd problem is easy), or the following 
sparse (or low-weight) subset sum problem (SSSP) is easy: 
given a set of b numbers yy® and another number s, find the 
sparse (a-element) subset of y® whose sum is s.

The SSSP has been studied before in connection with 
server-aided cryptosystems. If a and b are set appropriately, 
the SSSP is a hard problem, as far as we know. In particular, 
if we set a to be about l, it is hard to find the sparse subset 
by “brute force,” since there are (b

a) » ba possibilities. If the 
sparse subset sum is much closer to 1/p than any other sub-
set sum, the problem yields to a lattice attack. But these 
attacks fail when we set b large enough (but still polynomial 
in l) so that an exponential (in l) number of subset sums are 
as close to 1/p as the sparse subset. Concretely, we can set  
b = l5 • polylog(l).

6. CONCLUSIONS
We now know that FHE is possible. We already have the 
scheme presented here, the lattice-based scheme by  
Gentry,2, 3 and a recent scheme by Smart and Vercauteren.7

There is still work to be done toward making FHE truly 
practical. Currently, all known FHE schemes follow the blue-
print above: construct a bootstrappable somewhat homo-
morphic encryption scheme e, and obtain FHE by running 
Evaluatee on e’s decryption function. But this approach is 
computationally expensive. Not only is the decryption func-
tion expressed (somewhat inefficiently) as a circuit, but then 
Evaluatee replaces each bit in this circuit with a large cipher-
text that encrypts that bit. Perhaps someone will find a more 
efficient blueprint.

The scheme presented here, while conceptually simpler, 
seems to be less efficient than the lattice-based scheme. 
To get 2l security against known attacks—e.g., on the the 
approximate gcd problem—ciphertexts are l5 • polylog(l) 
bits, which leads to l10 • polylog(l) computation to evalu-
ate the decryption function. The lattice-based scheme 
with comparable security has l6 • polylog(l) computation. 
This is high, but not totally unreasonable. Consider: to 
make  RSA  2l-secure against known attacks—in particu-
lar, against the number field sieve factoring algorithm—
you need to use an RSA modulus with approximately l3 

process a ciphertext directed to the user, leaving less work 
for the user to do. In our setting, the encrypter or evaluator 
plays the role of the server, postprocessing the ciphertext so 
as to leave less work for the decryption algorithm to do.

•	 Decrypte*(sk*, c*): Output LSB(c) XOR LSB(ëSi siziù). 
Decryption works, since (up to small precision errors) 
Si sizi = Si c • siyi = c/p mod 2.

To ensure that the rounding is correct despite the 
low precision, we need c to be closer (than the trivial p/2)  
to a multiple of p (say, within p/16). This makes Fe* smaller 
than Fe, since Fe* is limited to functions where | f(a1, …, 
at)| < p/16 when the ai are N bits. This makes only a small 
difference.

The important point regarding Decrypte* is that we replace 
the multiplication of c and 1/p with a summation that con-
tains only a nonzero terms. The bits of this summation can 
be computed by a polynomial of degree a • polylog(a), which 
e* can handle if we set a to be small enough.

•	 Adde* (pk*, c*1, c*2): Extract c1 and c2 from c*1 and c*2. Run c 
¬ Adde(pk, c1, c2). The output ciphertext c* consists of c, 
together with the result of postprocessing c with  
y® 

• Multe*(pk*, c*1, c*2) is analogous.

5.3. How to add numbers
To see that e* can handle the decryption function plus an 
additional gate when a is set small enough, let us consider the 
computation of the sum Si si zi. In this sum, we have b num-
bers a1, …, ab, each ai expressed in binary (ai,0, …, ai, −l

) with  
l = O(log a), where at most a of the ai’s are nonzero (since the 
Hamming weight of s is a). We want to express each bit of the 
output as a polynomial of the input bits, while minimizing 
the degree of the polynomial and the number of monomials.

Our approach to the problem is to add up the column 
of LSBs of the numbers—computing the Hamming weight 
of this column—to obtain a number in binary representa-
tion. Then, we add up the column of penultimate bits, etc. 
Afterward, we combine the partial results. More precisely, 
for j Î [0, −l], we compute the Hamming weight bj, repre-
sented in binary, of (a1,j, …, ab,j). Then, we add up the l + 1 
numbers b0, …, 2−lb−l

 to obtain the final correct sum.
Conveniently, the binary representation of the Hamming 

weight of any vector x® Î {0,1}t is given by

(e2 ëlog tû (x1, ..., xt) mod 2, ..., e20 (x1, ..., xt) mod 2)

where ei(x1, …, xt) is the ith elementary symmetric polyno-
mial over x1, …, xt. These polynomials have degree at most t.  
Also, we know how to efficiently evaluate the elementary 
symmetric polynomials. They are simply coefficients of the 
polynomial p(z) = Õt

i=1 (z – xi). An important point is that, in 
our case, we only need to evaluate the polynomials up to 
degree a, since we know a priori that each of the Hamming 
weights is at most a. We saw in Section 3.3 that we can 
handle elementary symmetric polynomials in t variables 
of degree up to about l/log t = W(l/log l) for our suggested 
parameters. We can set a to be smaller than this.
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bits. Then, RSA decryption involves exponentiation by a 
l3-bit exponent—i.e., about l3 multiplications. Even if 
one uses  fast Fourier multiplication, this exponentiation 
requires l6 • polylog(l) computation. Also, unlike RSA, the 
decryption function in our scheme is highly paralleliz-
able, which may make an enormous difference in some 
implementations.

7. EPILOGUE
The morning after her dream, Alice explains her glovebox 
solution to her workers. They are not happy, but they wish 
to remain employed. As the day progresses, it becomes clear 
that the gloveboxes are slowing down the pace of jewelry 
construction considerably. The main problem seems to be 
the thick gloves, which multiply the time needed for each 
assembly step. After a few days of low output, Alice curtails 
her use of the gloveboxes to pieces that contain the most 
valuable diamonds.

Alice loses her suit against Acme Glovebox Company, 
because, as far as anyone knows in Alice’s parallel world, 
gloves in gloveboxes are always very stiff and stiffen com-
pletely after moderate use. The old judge explains this to her 
in a patronizing tone.

But Alice refuses to give up. She hires a handsome young 
glovebox researcher, and tasks him with developing a glove 
flexible enough to permit the nimble assembly of jewels and 
unlocking of boxes, but sturdy enough to prevent the boxes 
from being easily compromised. The researcher, amazed at 
his good fortune, plunges into the problem.�
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