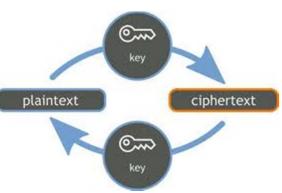
Sedic: Privacy-Aware Data Intensive Computing on Hybrid Clouds

K. Zhang, X. Zhou, Y. Chen, X. Wang, Y. Ruan

Motivation


Rapid growth of information ⇒ High processing demand

- Commercial cloud providers can meet demand
 - Amazon EC2, EMR, etc.
- Large privacy risks with outsourcing processing HIPAA


- Are cryptographic techniques a solution??
 - Prohibitively expensive
 - Hard to scale

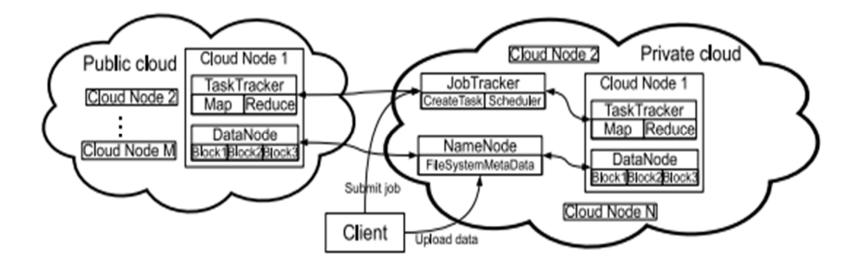
Motivation

- Are Hybrid Clouds a solution??
 - Split computations
 - Send computations over non-sensitive info to public cloud
 - Send computations over sensitive info

- How about using MapReduce on a Hybrid Cloud??
 - Designed for a single cloud
 - Unaware of data with multiple security levels
 - Manual splitting of processing required

Sedic – Objectives

- High Privacy Assurance
 - Only public data is given to a commercial cloud
- Maximum public cloud utilization
 - Move as much computation to the public cloud as possible while respecting a user's privacy
- Scalability
 - Preserve MapReduce scalability while keeping a low privacy protection overhead
- Limited inter-cloud transfer
 - Since it is expensive
- Easy to use
 - Preserve end-user's MapReduce experience



Sedic – Design Overview

Table 1: Steps for a Privacy-Aware MapReduce

Users	Label sensitive data, which can be done through a data-tagging tool (Section 3.1). Submit to Sedic labeled data and a MapReduce job.
Sedic	 Analyze and transform the reduction structure of the job (Section 4). Partition and replicate the data according to security labels (Section 3.1). Create and schedule mappers across the public/private clouds (Section 3.2). Combine the results on the public cloud and complete the reduction on the private cloud (Section 3.3).

Sedic - Design

Sedic – Data Labeling and Replication

Data Labeling

Social Security Number: 509-33-1122

First Name: John Last Name: Smith

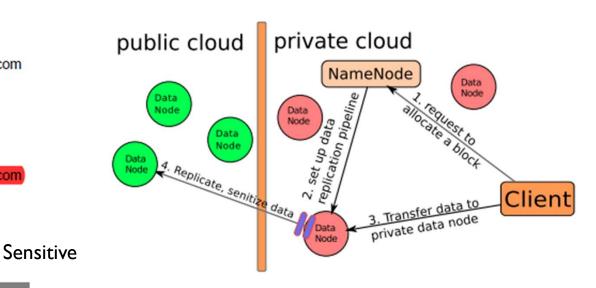
Email Address: john.smith@mycompany.com

Identified

Social Security Number: 509-33-1122

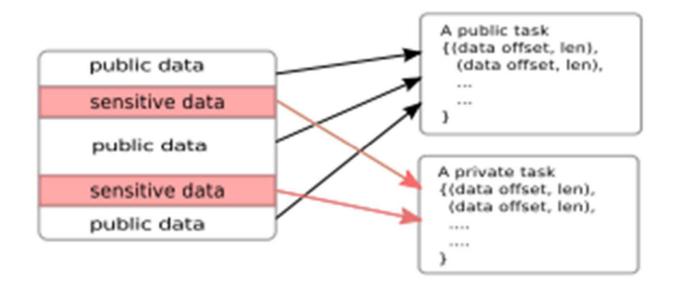
First Name: John Last Name: Smith

Email Address: john.smith@mycompany.com


Labeled

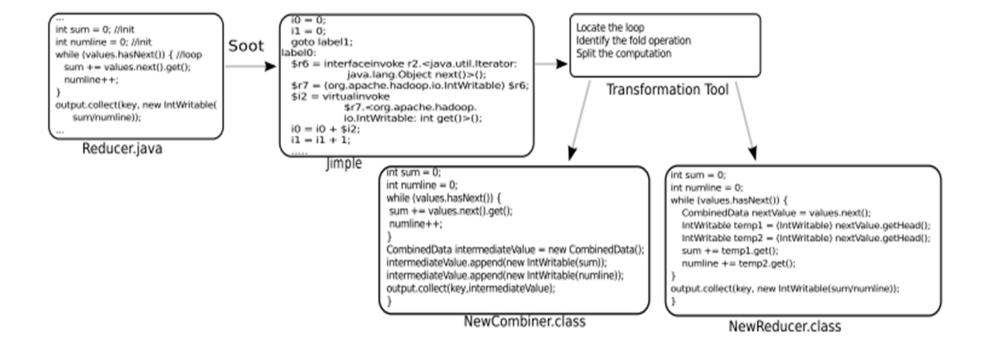
Social Security Number

First Name: John Last Name: Smith


Email Address

Data Replication

Sedic – Map Task Management



Sedic – Reduction Planning

- Move all public cloud Map outputs to private cloud
 - Very large inter-cloud communication
- User sets an upper limit for bandwidth and delay related with inter-cloud data transfer
 - Scheduler stops assigning Map's to public clouds once limit is reached
 - Constrains amount of public cloud computation
- Let public cloud perform Reduce too
 - Leverage associative and commutative properties of fold loop's in Reduce
- Extract loops to create Combiners that process data on public clouds

Sedic - Automatic Reducer Analysis and Transformation

Conclusions

- Sedic provides a privacy-aware hybrid computing paradigm
- Sedic schedules Map's such that tasks on private clouds operate on sensitive data while tasks on public clouds operate on nonsensitive data
- Sedic automatically extracts Combiner's from Reduce functions that allow public clouds to process data

