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Motivation

* Rapid growth of information => High processing
demand

* Commercial cloud providers can meet demand
— Amazon EC2, EMR, etc.

* lLarge privacy risks with outsourcing processing — =
HIPAA

* Are cryptographic techniques a solution??
— Prohibitively expensive

plaintext ciphertext

— Hard to scale
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Motivation

* Are Hybrid Clouds a solution??

— Split computations

— Send computations over non-sensitive info to
public cloud

— Send computations over sensitive info

* How about using MapReduce on a Hybrid Cloud??
— Designed for a single cloud
— Unaware of data with multiple security levels

— Manual splitting of processing required

* Need framework-level support to facilitate processing
over hybrid clouds
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Sedic - Objectives

* High Privacy Assurance
— Only public data is given to a commercial cloud

* Maximum public cloud utilization

— Move as much computation to the public cloud as possible while
respecting a user’s privacy

* Scalability

— Preserve MapReduce scalability while keeping a low privacy
protection overhead

* Limited inter-cloud transfer
— Since it is expensive
* Easy to use
— Preserve end-user’s MapReduce experience
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Sedic - Design Overview

Table 1: Steps for a Privacy-Aware MapReduce

e Label sensitive data, which can be done through a
data-tagging tool (Section 3.1).
e Submit to Sedic labeled data and a MapReduce job.

Users

e Analyze and transform the reduction structure of the
job (Section 4).

e Partition and replicate the data according to security
labels (Section 3.1).

e Create and schedule mappers across the public/private
clouds (Section 3.2).

e Combine the results on the public cloud and complete
the reduction on the private cloud (Section 3.3).

Sedic
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Sedic — Design
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Sedic — Data Labeling and Replication

Data Labeling Data Replication

Social Security Number: 509-33-1122
First Name: John

Last Name: Smith public cloud private cloud
Email Address: john.smith@mycompany.com

Identified i

Social Security Number: (SiSESonNZD

First Name: John
Last Name: Smith

Email Address [ORR.SMIth@Mmycompany.com

Labeled i

social Security Number [[INEGN .
Sensitive

First Name: John
Last Name: Smith a

Email Address [
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Sedic — Map Task Management

A public taszsk

{{data offset, len),
public data (data offset, len),
sensitive data -
public data

A private task
sensitive data {{data offset, lan),

{(data offset, lan),

public data
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Sedic — Reduction Planning

* Move all public cloud Map outputs to private cloud
— Very large inter-cloud communication

* User sets an upper limit for bandwidth and delay related with
inter-cloud data transfer

— Scheduler stops assigning Map’s to public clouds once limit is reached
— Constrains amount of public cloud computation

* Let public cloud perform Reduce too
— Leverage associative and commutative properties of fold loop’s in Reduce

* Extract loops to create Combiners that process data on public
clouds
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Sedic = Automatic Reducer Analysis and Transformation
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numling++; Intitable tampl = (Intviritable) nextValue.getHead();
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NewCombiner.class NewReducer.class
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Conclusions

* Sedic provides a privacy-aware hybrid computing paradigm

* Sedic schedules Map’s such that tasks on private clouds operate
on sensitive data while tasks on public clouds operate on non-
sensitive data

* Sedic automatically extracts Combiner’s from Reduce functions
that allow public clouds to process data
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