UT DALLAS Erik Jonsson School of Engineering & Computer Science

Sedic: Privacy-Aware Data Intensive
Computing on Hybrid Clouds

K. Zhang, X. Zhou, Y. Chen, X. Wang, Y. Ruan

FEARLESS engineering m

Motivation

* Rapid growth of information => High processing
demand

* Commercial cloud providers can meet demand
— Amazon EC2, EMR, etc.

* lLarge privacy risks with outsourcing processing — =
HIPAA

* Are cryptographic techniques a solution??
— Prohibitively expensive

plaintext ciphertext

— Hard to scale

FEARLESS engineering

Motivation

* Are Hybrid Clouds a solution??

— Split computations

— Send computations over non-sensitive info to
public cloud

— Send computations over sensitive info

* How about using MapReduce on a Hybrid Cloud??
— Designed for a single cloud
— Unaware of data with multiple security levels

— Manual splitting of processing required

* Need framework-level support to facilitate processing
over hybrid clouds

FEARLESS engineering m

Sedic - Objectives

* High Privacy Assurance
— Only public data is given to a commercial cloud

* Maximum public cloud utilization

— Move as much computation to the public cloud as possible while
respecting a user’s privacy

* Scalability

— Preserve MapReduce scalability while keeping a low privacy
protection overhead

* Limited inter-cloud transfer
— Since it is expensive
* Easy to use
— Preserve end-user’s MapReduce experience

FEARLESS engineering m

Sedic - Design Overview

Table 1: Steps for a Privacy-Aware MapReduce

e Label sensitive data, which can be done through a
data-tagging tool (Section 3.1).
e Submit to Sedic labeled data and a MapReduce job.

Users

e Analyze and transform the reduction structure of the
job (Section 4).

e Partition and replicate the data according to security
labels (Section 3.1).

e Create and schedule mappers across the public/private
clouds (Section 3.2).

e Combine the results on the public cloud and complete
the reduction on the private cloud (Section 3.3).

Sedic

FEARLESS engineering m

Sedic — Design

1] \ 1 /] 1
Public cloud | Cloud Node 1 - Cloud Node 2 Private cloud
Task | racker JobTracker Cloud Node 1
oud Node 2
. alaNode Map [Reduce]
d Node N K Block ook, NameNode
FloSystemMetaData DataNode

FEARLESS engineering m

Sedic — Data Labeling and Replication

Data Labeling Data Replication

Social Security Number: 509-33-1122
First Name: John

Last Name: Smith public cloud private cloud
Email Address: john.smith@mycompany.com

Identified i

Social Security Number: (SiSESonNZD

First Name: John
Last Name: Smith

Email Address [ORR.SMIth@Mmycompany.com

Labeled i

social Security Number [[INEGN .
Sensitive

First Name: John
Last Name: Smith a

Email Address [

FEARLESS engineering

Sedic — Map Task Management

A public taszsk

{{data offset, len),
public data (data offset, len),
sensitive data -
public data

A private task
sensitive data {{data offset, lan),

{(data offset, lan),

public data

FEARLESS engineering m

Sedic — Reduction Planning

* Move all public cloud Map outputs to private cloud
— Very large inter-cloud communication

* User sets an upper limit for bandwidth and delay related with
inter-cloud data transfer

— Scheduler stops assigning Map’s to public clouds once limit is reached
— Constrains amount of public cloud computation

* Let public cloud perform Reduce too
— Leverage associative and commutative properties of fold loop’s in Reduce

* Extract loops to create Combiners that process data on public
clouds

FEARLESS engineering m

Sedic = Automatic Reducer Analysis and Transformation

' N\ 0 = 0;

int sum = 0; /Mnit (11 = 0:) Locate the loop

int numline = 0; /Anit Soot Qoto labell; Identify the fold operation

while (values hasNext()) { /foop labelO: Split the computation

sum += valuas.next().gat(); » $6 = mtcrfa{emvoke t'_z.-c;nvo util. Iterator »
numiina++ 817 = {oro.aps lr:.‘:fm (:2:;; mlm::')f-r‘lt,;bl) 816
’ r7 = {org.apache.ha oIy able) $r6, :
} 312 = v oot Transformation Tool
output.collect(key, new IntViritable(37 . =org.apache.hadoop
surmynumlineg)); lo.intWritable: Int get()=();
. W) = 0 + $i2;
\. , - =il 1;
Reducer.java it J 4 A |
imple
Jimp ZInt sum = U, N\ [fint sum =0, A
int rumline = 0; Int numiine = 0;
while {values.hashaxt()) while (volues hasNext()) {
sum += values.next{).get(); CombinedData nextValue = values nexty();
numling++; Intitable tampl = (Intviritable) nextValue.getHead();
IntWitable temp2 = (IntWiritable) nextValue.getHead|),
CombinedData intermedateValue = new CombinedDatal); sum += templ.geti);
intermediataValue append(new IntVirtable(sum)); numline += temp2.get();
intermediateValue. append(new IntViritable(rumiine)); }
output.collect{key,intermediateValue), output collect (key, new INtVAiLable(surynumiineg));
\J J U y,

NewCombiner.class NewReducer.class

FEARLESS engineering

Conclusions

* Sedic provides a privacy-aware hybrid computing paradigm

* Sedic schedules Map’s such that tasks on private clouds operate
on sensitive data while tasks on public clouds operate on non-
sensitive data

* Sedic automatically extracts Combiner’s from Reduce functions
that allow public clouds to process data

FEARLESS engineering m

