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UT D Secrecy does not Imply
Authenticity/Integrity

e Encryption only provides secrecy
e |n many cases we want
authenticity/integrity
— Financial transactions

e Our goal: Ensure the authenticity / integrity
of the messages

« Assumptions: Shared secret key between
parties




1 Example: CTR Mode

« Remember in CTR encryption
C; = EK(CtT + Z) D M,

e An attacker can reverse any bit without
being detected

* Note that
Dg(Ci®a)=(C;da)d Ectr+1i) =M, Da



Message Authentication Code
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 We need three algorithms:
— Key generation ( K)
K&K
— Message authentication coge generator (MAC)
Tag <+ MACK(M)
— Verifier (VF)
d+ VFEg(M,Tag) where d € {0,1}



1 Security for MACs

« Key generation algorithm will pick random
Keys from the key space.

o Deterministic MAC implies that

algorithm VFg (M, Tag)
Tag' — MACk(M)
if (Tag = Tag' and Tag' # L) then return 1 else return 0.

« MAC and VF algorithms are assumed to
be stateless



Towards defining security of
MACSs

e Adversary iIs allowed to see some message and
tag pairs

e Security against key recovery is not enough
about the message space

 We do not consider replay attacks
— I.e., Adversary must forge an unseen message M

e Adversary could adaptively chose messages to
be tagged.

o Adversary could query whether a given tag Is



MAC Security
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 Adversary is given MAC-generation and MAC-
verification oracles.

« Adversary tries to generate (M, Tag) such that M

IS oracle but (M,
Tag) is accepted by MAC-verification oracle.



MAC Security

Experiment Expﬁf'ﬂ““ (4)
K&K
Run AMACK() VFk()
If A made a verification query (M, Tag) such that the following are true
—  The verification oracle returned 1
— A did not, prior to making verification query (M, Tag),
make signing query M
Then return 1 else return 0

The uf-ema advantage of A is defined as

AdviFema (4) = Pr[Expﬁf":“"“(Ajzll .|



Ut D

Examples

We fix a PRF F: {0,1}* x {0,1} s {0,1}*
Let 1II; = (K,MAC)

algorithm MAC (M)
if (|M|mod?#0or |M|=0)then return L
Break M into ¢ bit blocks M = MTJ1]...M[n]
for i=1,....ndo y — Fr(M[i])
Tag — w1 & - B yn
return Tag

MACH() VF (-
Adversary A}ACKOVERE)

Let o be some f£-bit string

M—z|=z wf—cma B
Tag — OF Note that Advy (A1) =1
d+— VFp (M, Tag)



Ut D

Example

Note that A; does not work for Il, = (K, M AC)

algorithm MAC g (M)
l—f—m
if (|[M|modl#£0or |M|=0or |M|/l>=2") then return L
Break M into ! bit blocks M = M[1]...M[n]
for i=1,...,n doy; — Fg([i], || M[i])
Tag— gy & +++ B Yn
return Tag

MAC (-
Adversary A, X )

Let a1.by be distinet, { — m bit strings

Let a9, by be distinet £ — m hit strings

Tag, — MACk (a1ag) ; Tagy — MACk (a1hy): Tags — MACK (bag)
Tag — Tagy & Tagy & Tag,

d — VF g (bihy, Tag)



Ut D

Example
% We can prove that Advﬁg T (Ag) =1
% Note that
Tagi = Fr([lmlla1)® Fx(12]m|laz)
Tagy = Fr([lmlla1) ® Fr([2]m[b2)
Tags = Fr([1m|lb1) ® Fr([2lm|laz)
% We can easily find M ACKk (b1b2)

Tagy ®Tag, D Tags
Fr([1]m]]b1) ® Fr ([2]m]]b2)

MACK (bib)



Security of MACs

Our attacks do not depend on the
oroperties of the underlying PRF

Jsing even random functions would not
nelp

Perfect ingredients + Bad recipe => Bad
~00d

Good crypto primitives + Bad design =>
Insecure systems




PRF as a MAC Paradigm

We fix a PRF F: {0,1}* x {0,1}! — {0,1}*
Let II=(K,MAC)

algorithm X | algorithm MACx (M)
K <& Keys if (M £ ) then return L
return Tag «— Fp (M)

Return Tag

Proposition 6.3 Let F: Keys x D — {0,1}7 be a family of functions and let
I1 = (K. MAC) be the associated message authentication code as defined above. Let
A by any adversary attacking II, making q. MAC-generation queries of total length
ttey Gy MAC-verification queries of total length pi,,, and having running time f. Then
there exists an adversary B attacking F' such that
f- ; prf G T
Advi ™™ (A) < Advy (B) e (6.1)
Furthermore B makes gs + g+ oracle queries of total length pt: + gy and has running
time ¢,



PRF as a MAC Paradigm

* Proof of the Proposition:

Adversary Bf
de—0: 5«4
Kun A
When A asks its signing oracle some query M:
Answer f(M)to A ; S— SU{M}
When A asks its verification oracle some query (M, Tag):
if f(M) = Tag then
answer 1 to 4; if M € 5 thend «— 1
else answer 0 to A
Until A halts
return

Pr [Expfgf'l (B) = 1]

Advif ™ (4)

Pr [E:{]}F;M(B] = 1] o g’r .

A



UT D Universal Hash-then-PRF
Paradigm

« Candidate PRF functions (DES,AES) have fixed
Input length

 We want to MACs to work on arbitrary length
Inputs

e |dea: MACK1||K2(M) — FKQ(HK]_ (M))

 Universal Hash Functions:
VM, M, € D, Pr[H(K, M) = H(K, M) = &

* Proof Idea: If the Hash function is universal then
Fr,(Hg,(M)) is also a secure PRF. Then use
prf as a MAC paradigm.




Ul D CBC MAC

e Basic Version: II=(K,MAC)

Algorithm MAC g (M)
It M & Messages then return L
Break M into n-bit blocks M[1] « -+ M[m]
Clo] — 0
Fori=1,...,m do C[i] — Ex(C[i — 1] & M[i})
Return Clm]

o Security: It I1s secure If we use fixed
message length. It is hard to get it right In
practice.



Ul D HASH Based MACs

. Remember SHA-1 {0,1}<*"  {0,1}16

e SHA-1 iIs believed to be collision resistant but
how use SHA-1 for secure MACs construction?

e Some incorrect starts:
MAC(K,M) = H(K||M)
= H(M|K)
= H(K[|M||K)

Provable secure version:
H(K ®al|H(K & b||M))



Which MAC to use In practice?

« CBC-MAC is hard to get correct In
oractice.

« UMACs Is provably secure but needs
olatform specific modifications for
efficiency

« HMACSs is provably secure and can be

easily implemented using standard crypto
library.




