One-way/Trapdoor Functions

% For public key cryptography, we need functions
» Lasy to calculate, given the secret
» Hard to invert if you do not know the secrets

Yy We have tew candidates

» Discrete Logarithm
» Factorization
» Linear decoding

Discrete Logarithm Related

Problems

% Let G be a cyclic group where |G| = m]
% Let g € G be a generator of G
% Discrete Logarithm function DLogg 4 : G — Z,,

DLogg 4(a) = i: if ¢’ :_a

O r) -
4 , ..)Y
Problem Given Figure out
Discrete logarithm (DL) g* T
Computational Diffie-Hellman (CDH) || g%, ¢* g*y
Decisional Diffie-Hellman (DDH) g . ¢, | Isz=2y (mod |G|)?
k.

/2:‘0 lo (;0(2 (,eog(/m))

Discrete Logarithm Problem

% Let G be a cyclic group where |G| =m
% Let g € G be a generator of G

% Let A be an algorithm that returns ¢ € Z,,
% We consider the following experiment:

Experiment Exp%]-_g (A)
i F s X —g®
T— A(X)
If ¢* = X then return 1 else return 0
The di-advantage of A is defined as

Aciv:flj]_g[fl"] = Pr [E}q}‘l?__-]lg[_{u:I |

Diffle-Hellman Key Exchange

% Let G be a cyclic group where |G| =

% Let g € G be a generator of G

P(\JQQQ

% Alice announces@ Jj/for random € 7,
3

()d\o\(Q.

% Bob announces g@tfor random y € Z,,

S PliJect e

% Alice and Bob set ¢*Y as the joint key
Note X¥ =Y" = ¢g*¥

m—t——

% Diflie-Hellman assumption: 3 a 9 J

» Hard to calculate ¢g*¥ from X and Y

——

Computational Diffie-Hellman

% Let G be a cyclic group where |G| =
% Let g € G be a generator of G

% Let A be an algorithm that returns b € GG
% We consider the following experiment:

Experiment E}ipfdhl A)

-"-‘_H-Z*.'H:UFZ
X—g': Y «— g
Ef—_‘lf’i Y)

If Z = g™ then return 1 else return 0

The edh-advantage of A is defined as

AdviR(4) = Pr [E:{p'““‘lf&}=l]. i

UT D Decisional Diffie-Hellman

problem
% Let G be a cyclic group where |G| =

% Let g € GG be a generator of G

% Adversary is given X = g%, Y = ¢¥ for

random z,y € Z,, and Z S 2%
3y = 3

% In world O: (3 15 ,;‘:s) e—wolldl

» 2 = g° for random z € Z,,
63\(/"3 %/1 ek o

rcwtd

Yy In world 1:
» L =g"

UT D Decisional Diffie-Hellman

Problem

% Let G be a cyclic group where |G| = m
% Let g € G be a generator of G

% A returns a bit b € {0,1}
% We consider the following experiment:

Experiment Exp ,?l_-fs'l (A) Experiment Ex])gﬂ“ﬂ (A)
Iz L &+ Ly
U - L Y s Lm
> +(@y mod 1D 5 P

Xoeegh p¥ gl s s g Xr—s‘rr;i’:—.ﬂuiz

d— A(X,Y,Z) @ d — A(X,Y,Z)

Return Return

The ddh-advantage of A is defined as

AQVES(A) = P [Bxplrt(4) = 1] - Pr [Bxpt0(a) = 1] . B

UT D Relationships between

Problems
% Let G be a cyclic group where |G| =m
% Let g € G be a generator of G I =R
% Let A, be an adversary against DL problem
% Let A.4, be an adversary against CDH problem.
% Let Ag4, be an adversary against DDH proble@
% Proposition 7.4: 3’4/3‘3 — o3 &

5% 93, 973) (854 /:ﬁ—t‘@«f)
AdV (Adl) < AdUth(Acdh) < Advddh(Addh) T |G|

1 Proof of Proposition 7.4

* Define Acdh given Adl
AdV@I‘S&I'y Acdh (X, Y)
T <— Ay (X) _
Return & \px
% If Ay is successful then Y% = Y% = (g¥)" = g*¥
% Define Agqp, given A gp
AdVGI'S&I'y Addh (X, Y, Z)
Z < Acdh (X, Y)
Return (Z = Z)

% Claim: |
Pr [E}i_lil%acllg_l[_-‘-l.jd];j = 1] = idvcg':{g[::zhido‘ "
Pr|Bxpddh-0rg. .. y—1| = — v oA = Ady(

The Choice of the Group

% For any reasonable (G, an algorithm:
» Finds the Discrete Logarithm in O(]G\%) ~ ol @>
Trivea [(upng O([él)
% Two important algorithms for general groups
» Pollards algorithm
» Shanks baby-step giant-step algorithm

% We will explore Shanks algorithm as an example

Algorithm Apgge (X))
n+— [vm]; N —g"

Forb=0.,....ndo B .Tg_h? — b -b
Fora=0.....n do [- & f Y:l = 6 D(fx

¥ w2

If B[Y] is defined then xp — B[Y]: 71 — a =N
Return ary + xy Y= x q ©

1 Shank’s DL Algorithm

* Given |G| =m and n + [/(m)]

>
% Let N « g" < = 3@
% Note that for any x € Z,,, Yoo X =>K

(z =nz —I—@forOga:O,a:l <n

* g% = g"*itTo = X implies@g—wO — g"ﬂ

% Shanks Algorithms Idea:
>F1ndabsté)g_b g/d@)

% Running time is O(|G|?)

Ut D

Integer modulo a prime

% Let G = Z] and g is a generator of G
% Solving DDH is easy in Z

% For any p > 3, there exists A attacking DDH problem s.t. A has
» running time O(|p|°)

> AdvE"(A) =

N |~

% Currently best known solution for CDH is through solving DL
% There may be other solutions for CDH without solving DL

% General Number Field Sieve finds DL in MOt ()”(j Cﬂoyp))

O(elCHe)). ln(p)l/?’.(ln(ln(p)))l/?»)

Ut D

Integer modulo a prime

% If the factorization of p — 1 has all small factors then
DL is easy to solve

% In Practice, make sure that p — 1 has a large prime divisor

% Common choice:
» p =359+ 1 for s > 2 and q is prime

% Constants are important in practice

% Parallel and distributed implementations can
decrease running time

% 1024 bit p are needed /recommended in commercial applications

1 The RSA System

% Let N = pq for primes p and q

* Let ed =1 mod ¢(N)

* RSAn.:Z% — Z% st RSAy.(m) =(@Dmod N
% Note that
RSAN o(RSAN (z) = (2°) mod N
= 2°“mod N

= P+l med N
= & X

The RSA System

% RSA assumption:
» Given e, N, RSAN (m), it is hard to find m

2, N | Mm% sk N 27/ M

% Note that given e and ¢(INV), it is easy to find d

% In practice, we need efficient ways to find
» £k bit long primes p and ¢

Miller-Rabin Primality Test

% Primality test can be done in
deterministic polynomial time

% Deterministic primality test is slow in practice

Y Miller-Rabin Test is a randomized test

% Note that for prime p and p —1=2°m and a € Z]
» o =1modp
> orazjm:—lmodpforOﬁjgs—l

Miller-Rabin Primality Test

% N is odd composite number where N — 1 = 2°r

Ay
* Let a € {07'\}_1} ()(iq ()aSS?) ‘(05-(- l @(fn«e]:{
. . . (Lo “lArs
% a is strong witness if L = ,Q,M postle S |
> o’ F 1 «
> ,@faQJr;é—lmodeorOSjﬁs—l
u/\fk

% a is a strong liar if it is not a strong witness

% For composite NV, there are at most@strong liars

Miller-Rabin Primality Test

MILLER-RABIN(n.t)
INPUT: an odd mteger n = 3 and security parameter ¢ = 1.
OUTPUT: an answer “prime of composite” to the question: “Is n prime?™
1. Writ¢ém — 1 = 2°n)such that r is odd.
2. For1 from 1 to ¢ do the following:
2.1 Choose a random integera. 2 = a < n — 2.
2.2 Compute y = a” mod n using Algorithm 2.143.
23 Ify# 1andy # n— 1 then do the following:
7+1.
While 7 < s — 1 and ¥ # n — 1 do the following:
Compute y+y° mod 7.
If ¥ = 1 then return(composite).
J=g + 1
Ify # n— 1 then retum (composite™).

3. Remumn(prime ™).
% For any n comp081te the error probablhty of Miller-Rabin
is less than O(3) g)

