

Public Key Cryptography

Murat Kantarcioglu

Definition of Public Key Encryption

- \bigstar A public key encryption is a triple (G,E,D) of PPT algorithm
 - ▶ Given security parameter k, $(e, d) \leftarrow G(1^k)$ where e is the public key and d is the private key
 - ▶ Given message $m, c \leftarrow E(1^k, e, m)$
 - ▶ Given ciphertex $c,m \leftarrow D(1^k,d,c)$
 - ➤ The system is secure!!! (More on this later)
- \bigstar Input size should be polynomial in terms of k
- ★ Encryption and Decryption could be probabilistic

Trapdoor Function Model

- \bigstar Trapdoor function model (G,E,D) are PPT algorithms
- \star $G(1^k \text{ outputs } (f, t_f) \text{ where } f \text{ is a trapdoor function}$
 - ▶ RSA: $G(1^k)$ outputs (e, d, N = pq)
- ★ For every message $m \in M$, E s.t. E(f, m) = f(m) = c $\blacktriangleright RSA: E(f, m) = m^e \mod N$
- ★ Given $c \in E(f, m)$ and t_f , $D(t_f, c) = f^{-1}(c) = m$ ▶ RSA: $D(t_f, c) = D(d, c) = c^e \mod N = m$
- \bigstar For every PPT A, for randomly chosen f and c = f(m)
 - ightharpoonup Pr[A(f,c)=m] is negligible in term of k
 - ightharpoonup RSA: Given c, e, N it is hard to find m

Problems with Trapdoor Function Model

- ★ Trapdoor functions are assumed to be hard to invert on average
- ★ It may be easy to invert them on special message
 - ▶ RSA: For m = 1, $E(m) = m^e \mod N = 1$
- ★ Partial Information may be revealed
 - $ightharpoonup \operatorname{RSA}: J_n(m) = J_n(m^e \bmod N)$
- ★ Relationship between Encrypted Messages
 - ▶ it is easy to detect when message is resend
 - ▶ RSA: If the same exponent e for encrypting fixed m with different Ns, then m could be recovered
- ★ Low exponent attack for RSA (e=3) $c_1 = m^3, c_2 = (m+1)^3 \Rightarrow \frac{c_2 + 2c_1 1}{c_2 c_1 + 2} = m$

Rabin's Public Key System

- \bigstar For Rabins system $G(1^k)$ outputs n = pq, p and q
- \bigstar Define $f_n(m) = m^2 \mod n$
- ★ Define $f^{-1}(m^2) = x$ s.t. $x^2 = m^2 \mod n$
- ★ Note that inverse of rabin function has four outputs
 - $ightharpoonup x^2 = m^2 \mod p$ has two solutions
 - $ightharpoonup x^2 = m^2 \mod q$ has two solutions
 - ▶ Total four solutions due to CRT
- ★ In practice, some additional information is needed for unique inverse
 - ▶ It is easy if Message space M is sparse in Z_n^*

Rabins's Public Key Cryptosystem

- ★ Inverting Rabins function is as hard as factoring
- \bigstar Note if p, q is known inverting the Rabins function is easy
- \bigstar Assume you have an adversary A that inverts Rabins function
- \bigstar Defining adversary B for factorization using A is easy
 - ightharpoonup Adversary B(n)
 - $1 \quad i \stackrel{\$}{\leftarrow} \mathbf{Z}_n^*$
 - $2 \quad y \leftarrow A(i^2 \bmod n, n)$
 - 3 if $y^2 = i^2 \mod n$ and $y \neq \pm i$ then
 - 4 return $gcd(i \pm y, n)$
 - 5 else
 - $6 \quad \text{jump to } [1]$

Rabin's Public Key Cryptosystem

- \bigstar Note if $y^2 = i^2 \mod n$ and $y \neq \pm i$ then
 - $\rightarrow y i \neq 0 \text{ and } y + i \neq 0$
 - $y^2 = i^2 \Rightarrow (y i)(y + i) = 0 \bmod n$
 - ightharpoonup \Rightarrow eitheir $gcd(y+i,n) \neq 0$ or $gcd(y-i,n) \neq 0$

 \bigstar Also existence of B implies chosen ciphertext attacks

Defining Security

★ Goal: Model security as an opaque envelope

★ Indistinguishable Security

Definition 7.2 We say that a Public Key Cryptosystem (G, E, D) is polynomial time indistinguishable if for every PPT M, A, and for every polynomial Q, \forall sufficiently large k

$$Pr(A(1^k, e, m_0, m_1, c) = m \mid (e, d) \stackrel{R}{\leftarrow} G(1^k) ; \{m_0, m_1\} \stackrel{R}{\leftarrow} M(1^k) ; m \stackrel{R}{\leftarrow} \{m_0, m_1\} ; c \stackrel{R}{\leftarrow} E(e, m))$$

$$< \frac{1}{2} + \frac{1}{Q(k)}$$
(7.1)

Polynomial Indistinguishability

- \star The difference between public key and private key encryption is A given the encryption function
- ★ Note that any deterministic scheme fails the security definition ► Given f, m_o, m_1, c where $c \in \{f(m_0), f(m_1)\}$, finding $f^{-1}(c)$ is easy
- \bigstar Even if adversary know either m_o or m_1 is encrypted, could not tell exactly which one is encrypted.

Semantic Security

- ★ Inspired by the Shannons perfect security definition
- ★ It is assumed that adversary is computationally bounded

Definition 7.3 We say that an encryption scheme (G, E, D) is semantically secure if for all PPT algorithms M and A, functions h, polynomials Q there is a PPT B such that for sufficiently large k,

$$\Pr(A(1^{k}, c, e) = h(m) \mid (e, d) \stackrel{R}{\leftarrow} G(1^{k}) \; ; \; m \stackrel{R}{\leftarrow} M(1^{k}) \; ; \; c \stackrel{R}{\leftarrow} E(e, m))$$

$$\leq \Pr(B(1^{k}) = h(m) \mid m \stackrel{R}{\leftarrow} M(1^{k})) + \frac{1}{Q(k)}$$
(7.2)

★ A public key cryptosystem passes Indistinguishable Security iff it passes Semantic Security

UT D

Trapdoor Hardcore Predicates

- ★ Trapdoor predicate model (G,E,D,S) are PPT algorithms and $B: M \mapsto \{0,1\}$
- ★ $G(1^k)$ outputs (f, t_f) where $f: M \mapsto C$ is a trapdoor function ▶ RSA: $G(1^k)$ outputs (e, d, N = pq)
- ★ Given $B: M \mapsto \{0,1\}$, $\exists S(b)$ PPT such that given b, S outputs random $m \in M$ s.t B(m) = b
- ★ For every message $m \in M$, E s.t. E(f, m) = f(m)▶ RSA: $E(f, m) = m^e \mod N$
- \bigstar Given $c \in E(f, m)$ and t_f , $D(t_f, c) = B(m)$
 - \blacktriangleright RSA: Assume B is the least significant bit of m
 - $ightharpoonup RSA: D(t_f, c) = D(d, c) = LSB(m)$
- \bigstar For every PPT A, for randomly chosen f and c = f(m)
 - ▶ Pr[A(f,c) = B(m)] is negligible in term of k
 - ▶ RSA: Given c, e, N it is hard to find LSB(m)

PKE using Hard Core Predicates: Single Bit Case

- \bigstar Given hard core predicates B, define PKE as $(G, E, D)_B$
- \bigstar $G(1^k)$ outputs (f, t_i)
 - ▶ RSA: $G(1^k)$ outputs (e, d, n = pq)
- \bigstar E(i,m) ($m \in \{0,1\}$) using S finds x s.t B(x) = m and outputs f(x)
 - ▶ RSA: To encrypt bit m choose x s.t LSB(x) = m and output $x^e \mod n$
- \bigstar $D_i(t_i,c)$ computes f(x)=c and sets m=B(x)
 - ► RSA: To decrypt c, calculate $x = c^d \mod n$ and set m = LSB(x)

[UT]D

General PKE using Trapdoor Hard core Predicates

- \bigstar Given hard core predicates B, define PKE as $(G, E, D)_B$
- \bigstar $G(1^k)$ outputs (f, t_i)
 - $ightharpoonup RSA: G(1^k) ext{ outputs } (e, d, n = pq)$
- ★ E(i,m) where $m = m_o||m_1||...||m_k$ where $m_i \in \{0,1\}$ using S finds x_i s.t $B(x_i) = m_i$ and outputs $f(x_o)||f(x_1)...||f(x_k)$
 - ▶ RSA: To encrypt $m = m_o||m_1||\dots||m_k$ choose x_i s.t $LSB(x_i) = m_i$ and output $x_0^e||x_1^e\dots||x_k^e|$
- \bigstar $D_i(t_i, c)$ computes $f(x_i) = c_i$ where $c = c_0 || c_1 \dots || c_k$ and sets $m_i = B(x_i)$
 - ► RSA: To decrypt $c = c = c_0 || c_1 \dots || c_k$, calculate $x_i = c_i^d \mod n$ and set $m_i = LSB(x_i)$
- ★ The above construction is too inefficient but secure

Proof of Security

 \bigstar Given a collection of trapdoor permutations and a hard core predicates then PKE is indistinguishably secure

★ Proof:

- ► We will use the Hybrid argument
- ▶ Given k bit long m_0 and m_1 define $s_i = pre_i(m_1)||suf_{(k-i)}(m_o)|$
- ightharpoonup Note $s_0 = m_0$ and $s_k = m_1$
- \blacktriangleright Note s_i and s_{i+1} differs at most one location
- ► Assum PKE is not secure
- $ightharpoonup \Rightarrow \exists A \text{ for inf. many } k \text{ s.t. } Pr[A \text{ outputs correct bit}] > \frac{1}{2} + \frac{1}{Q(k)}$

UT D

Proof of Security

- $\bigstar \Rightarrow Pr[A \text{ outputs correct bit} | c \in \{E(m_o), E(m_1)\}]$
- ★ = $(1 Pr[A \text{ outputs } 1 | c \in \{E(m_o)\}]).Pr[c \in \{E(m_o)\}] + Pr[A \text{ outputs } 1 | c \in \{E(m_1)\}].Pr[c \in \{E(m_1)\}]$ ▶ Let $P_i = Pr[A \text{ outputs } 1 | c \in \{E(s_i)\}]$
- $\bigstar = (1 Pr[A \text{ outputs } 1 | c \in \{E(s_o)\}]).Pr[c \in \{E(s_o)\}] + Pr[A \text{ outputs } 1 | c \in \{E(s_k)\}].Pr[c \in \{E(s_k)\}]$
- $\bigstar = \frac{1}{2}((1 P_0) + P_k) = \frac{1}{2}(1 + P_k P_0) = \frac{1}{2}(1 + \sum_{j=0}^{k-1}(P_{j+1} P_j))$
- $\bigstar \Rightarrow \frac{1}{2}(1 + \sum_{j=0}^{k-1} (P_{j+1} P_j)) > \frac{1}{2} + \frac{1}{Q(k)}$
- $\bigstar \Rightarrow (\sum_{j=0}^{k-1} (P_{j+1} P_j)) > \frac{2}{Q(k)}$
- $\bigstar \Rightarrow \exists j, (P_{j+1} P_j) > \frac{2}{Q(k).k}$

Proof of Security

- Now by using the $\exists j, (P_{j+1} P_j) > \frac{2}{Q(k).k}$, we can define an adversary C that attacks trapdoor predicates problem efficiently.
- \bigstar Assume that C wants to predict B(x) given c = f(x)
- \bigstar Assume s_j and s_{j+1} differs at location l
- \bigstar C puts c to location l of the s_j
- \bigstar if A outputs 1, C returns $s_{j+1,l}$ else s_j
- ★ Note C predicts B(x) with probability $> \frac{1}{2} + \frac{2}{Q(k).k}$

Efficient Probabilistic Encryption

- \bigstar Given hard core predicates B, define PKE as $(G, E, D)_B$
- ★ $G(1^k)$ outputs (f, t_i) ► RSA: $G(1^k)$ outputs (e, d, n = pq)
- * E(i,m) where |m| = l where m_i 1 Choose $r \in M$ 2 Compute $f(r), f^2(r), \dots f^l(r)$ 3 Let $p = B(r)||B(f(r))||\dots ||B(f^{l-1}(r))$ 4 Set $c = (p \oplus m, f^l(r))$

Se cure pseudo-random generated

Efficient Probabilistic Encryption

- \bigstar To decrypt a ciphertext $c = (m', a), D(t_i, c)$ runs as follows l = |m|
 - 1. Compute r from $a = f^l(r)$ using t_i
 - 2. Compute $p = B(r)||B(f(r))||B(f^2(r))||\dots||B(f^{l-1}(r))|$
 - 3. Set $m = m' \oplus p$
- \bigstar Note that |c| = |m| + k where k is the security parameter
 - \blacktriangleright Compare this with the previous one |c| = |m|.k
- \bigstar RSA: $f(m) = m^e \mod n$
 - $f^l(m) = (m^{e^l}) \stackrel{:}{\text{mod }} n$
 - $f^{-l}(c) = c^{(e^l)^{-1}} \mod n$
- ★ Above construction is semantically secure given trapdoor functions

"More" Practical Probabilistic Encryption

- \bigstar Let $p = q = 7 \mod 8$ and n = pq where |n| = k
- $\bigstar f_n(x) = x^2 \mod n \text{ and } B(x) = LSB(x)$
 - ightharpoonup LSB(x) is a hard core bit iff factoring is hard
- \bigstar We define EPE(G, E, D)
- \bigstar $G(1^k) = (n, (p, q)), n = pq$ where p, q defined as above
- $\bigstar E(n,m) \text{ where } l = |m|$
 - 1 Choose random quadratic residue $r \in \mathcal{F}_{\Lambda}$
 - 2 Compute $r^2, r^4, \ldots, r^{2^l}$
 - 3 Let $p = LSB(r)||LSB(r^2)||\dots||LSB(r^{2^{l-1}})|$
 - 4 Set $c = (m \oplus p, r^{2^l} \mod n)$

"More" Practical Probabilistic Encryption

```
\bigstar Decryption: D((p,q),c) where c=(m^l,a), l=|m|
       1 Compute r s.t r^{2^l} = a \mod n
       2 Let p = LSB(r)||LSB(r^2)||\dots||LSB(r^{2^{l-1}})
       3 Set \underline{m} = \underline{m} \oplus p
                                                a is ar mod n
 a = a \cdot a^{\frac{p-1}{2}} = a^{4t+4} = (a^{2t+2})^2 \mod p 
                                                            q = \alpha
       \blacktriangleright \sqrt{a} = a^{(2t+2)} \bmod p
                                                       a = \alpha - 1
= \alpha \cdot \alpha \cdot 2

ightharpoonup r_n = a^{\frac{1}{2^l}} = a^{(2t+2)^l} \mod p
★ Similary r_q = a^{\frac{1}{2^l}} = a^{(2s+2)^l} \mod q
                                                              = 01 - a 8++6
★ Use CRT with r_p, r_q to calculate r = a^{\frac{1}{2^l}} \mod n = a^{\frac{n+1}{2}}
\bigstar Above construction is semantically secure with comp. cost O(k^3)
```


Optimal Asymmetric Encryption Padding (OAEP)

- ★ Previously discussed schemes are secure but inefficient
- ★ Goal: Efficient PKE with provable security
- ★ RSA-OAEP is secure against chosen ciphertext Attacks under the Random Oracle assumption
- ★ Random Oracle Assumption
 - \blacktriangleright Use hash function H in your design
 - \blacktriangleright Give security proofs assuming that H is a random function
 - \blacktriangleright Replace H with some cryptographic hash function in practice
- ★ Random Oracle Assumption is not valid in general but feasible and efficient in practice

- \bigstar Let k_o be chosen s.t. 2^{k_o} steps are large
- \bigstar Let $f:\{0,1\}^k\mapsto\{0,1\}^k$ is a secure trapdoor function
- \bigstar Let $n = k k_o k_1$ and r is a random k_o bit string
- $\bigstar G: \{0,1\}^{k_0} \mapsto \{0,1\}^{n+k_1}$ is pseudo-random generator
- \bigstar Let $H: \{0,1\}^{n+k_1} \mapsto \{0,1\}^{k_0}$ be hash function
- $\star E^{G,H}(m) = f((m||0^{k_1} \oplus G(r))||r \oplus H((\cancel{x}||0^{k_1}) \oplus G(r)))$ $\star D^{G,H}(c)$
- - $\star a | |b = f^{-1}(c) \text{ where } |a| = k k_0, |b| = k_0$
 - $\star r = H(a) \oplus b, m = G(r) \oplus a$
 - \bigstar If $suf_k(m) \neq 0^{k_1}$ reject else output $pre_n(m)$

E 1-Gamal Scheme

- \bigstar $G(1^n)$ returns a group G, generator g and random $x \in G$
- \bigstar Set public key $X = g^x$, Usually Z_p^* is used as G
- ► $y \stackrel{\$}{\leftarrow} G$, $Y = g^y$ ► $C = (X^y).M$ ► Return (Y,C) $\Rightarrow D_x((Y,C) = C.(Y^x)^{-1}$ $\Rightarrow X^y \cdot M$ El-gamal is not secure against characteristics.

 - El-gamal is not secure against chosen-ciphertext attacks for any G
 - ★ El-gamal is secure against chosen-plaintext attacks if DDH is satisfied for chosen G

PKE + Symmetric Encryption (SE)= Hybrid Encryption

- ★ Even RSA-OAEP is inefficient for encrypting large amounts of data
- ★ Practice Hybrid Encryption
 - ▶ Use PKE to encrypt the SE key, encrypt message using SE
- ★ Define $\bar{E}_{pk}(M)$ ► Generate random K for SE

 ► $C^s = \underline{E_K(M)}$ and $C^a = E_{pk}(K)$ ► Return (C^a, C^s)
- \bigstar Define $\bar{D}_{pr}(C)$
 - $\blacktriangleright \text{ Let } C = (C^a, C^s)$
 - $\blacktriangleright (\mathcal{R}) = D_{pr}(C^a)$
 - $\blacktriangleright M = D_K(C^s)$

Hybrid Encryption

- ★ If PKE and SE are secure against chosen plain text attacks then Hybrid Encryption is secure against chosen-plaintext attacks
- ★ If PKE and SE are secure against chosen-ciphertext attacks then Hybrid Encryption is secure against chosen-ciphertext attacks
- ★ Examples:
 - 1 $E^{1}(M) = \{K = H(r), \text{ return } (r^{e} \mod n, AES CBC_{K}(M))\}$
 - 2 $E^2(M) = (r^e \mod n, G(r) \oplus M)$ for some pseudo-random generator G
 - 3 $E^3(M) = (r^e \mod n, G(r) \oplus M, H(r||M))$ for some pseudo-random generator G and hash function H
- \star E_1, E_2 are secure against CPA and E_3 is secure against CCA under random oracle assumption