Public Key Cryptography

Murat Kantarcioglu

UT D Definition of Public Key
Encryption

% A public key encryption is a triple (G,E,D) of PPT algorithm
» Given security parameter k, (e, d) < G(1¥)
where e is the public key and d is the private key
» Given message m, c < E(1%, e, m)
» Given ciphertex c,m < D(1%,d, c)
» The system is secure!!! (More on this later)

% Input size should be polynomial in terms of &

% Encryption and Decryption could be probabilistic

Trapdoor Function Model

% Trapdoor function model (G,E,D) are PPT algorithms

% G(1% outputs (f,ts) where f is a trapdoor function
» RSA: G(1%) outputs (e,d, N = pq)

% For every message m € M , E s.t. E(f,m)= f(m) =c
» RSA: E(f,m) =m° mod N

% Given c € E(f,m) and t; , D(ts,c) = f~*(c) =m
» RSA: D(tf,c) = D(d,c) =c® mod N =m

% For every PPT A, for randomly chosen f and ¢ = f(m)
» Pr|[A(f,c) = m] is negligible in term of k
» RSA: Given c,e, N it is hard to find m

UT D Problems with Trapdoor
Function Model

% Trapdoor functions are assumed to be hard to invert on average

% It may be easy to invert them on special message
» RSA: Form =1, E(m) =m°mod N =1

% Partial Information may be revealed
» RSA: J,(m) = Jn(m® mod N)

% Relationship between Encrypted Messages
» it is easy to detect when message is resend
» RSA: If the same exponent e for encrypting
fixed m with different Ns, then m could be recovered

% Low exponent attack for RSA (e=3)

— a3 _ 3 c2t2c1—1 __
cp =m",cp =(m+1)° = 22— =m

Rabin’s Public Key System

% For Rabins system G(1*) outputs n = pq, p and ¢
% Define f,,(m) = m? mod n
% Define f~1(m?) = z s.t. 2 = m? mod n

% Note that inverse of rabin function has four outputs

» z° = m? mod p has two solutions

» z° = m? mod ¢ has two solutions

» Total four solutions due to CRT

% In practice, some additional information is needed for unique inverse
» It is easy if Message space M is sparse in Z,,

UT D Rabins’s Public Key
Cryptosystem

% Inverting Rabins function is as hard as factoring

% Note if p, g is known inverting the Rabins function is easy

% Assume you have an adversary A that inverts Rabins function

% Defining adversary B for factorization using A is easy
» Adversary B(n)
1 &7
y +A(i* mod n,n)
if y* = i* mod n and y # +% then
return ged(i £+ y,n)
else
jump to [1]

S O i W N

UT D Rabin’s Public Key
Cryptosystem

% Note if y? = i mod n and y # % then
» y—i1+*0and y+1#0
» y° =i’ = (y—i)(y+i) =0modn
» = eitheir ged(y +¢,n) # 0 or ged(y — i,n) # 0

% Also existence of B implies
chosen ciphertext attacks

Ut D

Defining Security
% Goal: Model security as an opaque envelope

% Indistinguishable Security

Definition 7.2 We say that a Public Key Cryptosystem (G, E, D) is polynomial time wdistinguishable if
for every PPT M, A, and for every polynomial (), ¥ sufficiently large k

Pr(A(1%,e,mg.my,¢) = m | (e,d) & G(1F) ; {mg,my } EM(IH ; me {mg.my } ; = E(e,m))

1 i
'H.E-l__ (7.1)

Polynomial Indistinguishabllity

% The difference between public key and private key encryption is
A given the encryption function

% Note that any deterministic scheme fails the security definition
» Given f, m,, m1,c where c € {f(mo), f(m1)}, finding f~'(c) is easy

% Even if adversary know either m, or m; is encrypted,
could not tell exactly which one is encrypted.

Ut D

Semantic Security

% Inspired by the Shannons perfect security definition

% It is assumed that adversary is computationally bounded

Definition 7.3 We say that an encrvption scheme (G, E. D) iz semantically secure if for all PPT algorithms
M and A, functions b, polvnomials €) there is a PPT B such that for suthciently large k.

Pr{A(1%, ¢ ¢) = h(m) | (e, d] - ff#[lk} L .-U[lk} . e E(e,m))

- o eyl
< Pr(B(1%) = h(m) | m = M(1%)) + am (7.2)
% A public key cryptosystem passes Indistinguishable Security
iff it passes Semantic Security

Trapdoor Hardcore Predicates

% Trapdoor predicate model (G,E,D,S) are PPT algorithms and B : M —
{0,1}

* G(1%) outputs (f,t;) where f : M + C is a trapdoor function
» RSA: G(lk) outputs (e,d, N = pq)

* Given B : M — {0,1}, 35(b) PPT such that given b, S outputs random
m € M st B(m) =25

% For every message m € M , E s.t. E(f,m) = f(m)
» RSA: E(f,m)=m° mod N

* Given ce€ E(f,m) and ty , D(ts,c) = B(m)
» RSA: Assume B is the least signifcant bit of m
» RSA: D(tf,c) = D(d,c) = LSB(m)

% For every PPT A, for randomly chosen f and ¢ = f(m)
» Pr[A(f,c) = B(m)] is negligible in term of k
» RSA: Given c,e, N it is hard to find LSB(m)

Ut b PKE using Hard Core

Predicates: Single Bit Case
% Given hard core predicates B, define PKE as (G, F,D)p

% G(1%) outputs (f,t;)
» RSA: G(1%) outputs (e, d,n = pq)

* FE(i,m) (m € {0,1}) using S finds = s.t B(x) = m and
outputs f(x)
» RSA: To encrypt bit m choose x s.t LSB(xz) = m
and output x° mod n

* D;(t;,c) computes f(x) = c and sets m = B(x)
» RSA: To decrypt c,
calculate = ¢? mod n and set m = LSB(x)

General PKE using Trapdoor
Hard core Predicates

% Given hard core predicates B, define PKE as (G, F,D)p

% G(1%) outputs (f,t;)
» RSA: G(1%) outputs (e,d,n = pq)

* FE(i,m) where m = m,||m1]|...|/mg where m; € {0,1} using S finds z;
s.t B(x;) = m; and
outputs f(zo)|[f(z1) ... |[f(zx)

» RSA: To encrypt m = my||mal|...||ms choose z; s.t LSB(x;) = m;
and output xg||zT ... ||z}
* D;(t;,c) computes f(x;) = ¢; where ¢ = cgl|cy . .. ||ck and sets m; = B(x;)

» RSA: To decrypt ¢ = c = collcr ... ||ck,
calculate x; = c{ mod n and set m; = LSB(x;)

Y The above construction is too inefficient but secure

Ut D

Proof of Security

% Given a collection of trapdoor permutations and
a hard core predicates then PK E is indistinguishably secure

Yy Proof:

We will use the Hybrid argument

Given k bit long mo and mi define s; = pre;(mu1)||sufx—qi)(mo)
Note sg = mo and s = m

Note s; and s;41 differs at most one location

Assum PKE is not secure

= JA for inf. many k s.t. Pr[A outputs correct bit] > = + ﬁ

VvVvVyVYyYVYYy

Ut D

Proof of Security

% = Pr[A outputs correct bit|c € {E(m,), F(m1)}]

* = (1 — Pr[A outputs 1|c € {E(m,)}]).Prlc € {E(m,)}|+
Pr|A outputs 1|c € {E(m1)}]|.Pr|c € {E(m1)}]
» Let P; = Pr[A outputs 1|c € {E(s;)}]

% = (1 — Pr[A outputs 1|c € {E(s,)}]).Pr[c € {E(s,)}]+
Pr[A outputs 1|c € {E(sk)}|.Pr[c € {E(sk)}]

* = 3((1=Fo) + P) = 5(1+ Py — Po) = 5(1+ 352 (P -

k-1

* j%(1+Z:j:0(lpj+1_Pj)) >%+ﬁ
fo—

* = (3o (P — Py) > a0

* =35, (Piv1 — By) > gion

Ut D

Proof of Security

% Now by using the 33, (P11 — P;) > Q(k) .
an adversary C that attacks trapdoor predicates
problem efficiently.

we can define

% Assume that C wants to predict B(x) given ¢ = f(x)
% Assume s; and s;4; differs at location !
% C puts c to location [of the s;

% if A outputs 1, C returns s, else s;

% Note C' predicts B(x) with probability > = + Q(k) 7

UT D Efficient Probabillistic
Encryption

% Given hard core predicates B, define PKE as (G, F,D)p

Y G(lk) outputs (f,t;)
» RSA: G(1%) outputs (e,d,n = pq)

% FE(i,m) where |m| =1 where m; (13- (€ oo N
1 Chooser e M . l F,FQC;B-. F(;({))
2 Compute f(r), f*(r),... f'(r) <(r®) e
3 Let p= B(r)||B(f(r)Il...[[B(f"~'(r))
(// 4 Set c= (p®m, f'(r))

Secure pseuJa _(‘a/\ol O
gene(aaty

UT D Efficient Probabillistic
Encryption

% To decrypt a ciphertext ¢ = (ml a), D(t;,c) runs as follows [= |m|
1. Compute r from a = f(r) usmg t;

2. Compute p = B(r)|[B(f(r)IIB(f*(r)] ... [[B(f'~'(r))
3. Set m=mPp

% Note that |c| = |m| + k& where k is the security parameter
» Compare this with the previous one |c| = |m|.k

* RSA: f(m) =m® mod n

> fi(m) = (m) modn
> i) =)" mod n

% Above construction is semantically secure given trapdoor functions

“More” Practical Probabilistic
Encryption

* Let p =g =7 mod 8 and n = pq where |n| =k

% fn(z) = 22 mod n and B(x) = LSB(x)
» LSB(z) is a hard core bit iff factoring is hard

* We define EPE(G, E, D)

* G(1%) = (n, (p,q)), n = pq where p, q defined as above

* FE(n,m) where [= |m)| e
1 Choose random quadratic residue r & "&£ n
2 Compute 2,74, ... ,rzl
3 Let p = LSB(r)||LSB(r?)]|. . I1LSB(r2)

4 Set c = (m @ p,r* modn)

“More” Practical Probabilistic
Encryption

% Decryption: D((p,q),c) where ¢ = (m),a), | = |m)|

1 Compute r s.t r? = g mod n o In
2 Let p= LSB(r)||LSB(?)||...||LSBF* " (=9 ™°

1
3 Set m=mOp A s QR ek

B B =\ A s K2 rodk P

~» Jy(a) — a7 = 1 mod p iff a is QR modp

—1
> a=aa 2 =a't = ()2 modp A= o

>\/5:a1(2t+2)modp a:of—((”

A4 l -

» 1, = a2’ = a2 mod p — . T

1 l

* o aT — 2s+2 440
% Similary r, = a2’ = a(2512)" mod q =ol. o

1
% Use CRT with r,,r, to calculate r = a2’ mod n = = g

% Above construction is semantically secure with comp. cost O(k?)

Ut b Optimal Asymmetric
Encryption Padding (OAEP)

% Previously discussed schemes are secure but inefficient
% Goal: Efficient PKE with provable security

% RSA-OAEP is secure against chosen ciphertext Attacks
under the Random Oracle assumption

% Random Oracle Assumption
» Use hash function H in your design
» Give security proofs assuming that H is a random function
» Replace H with some cryptographic hash function in practice

% Random Oracle Assumption is not valid in general
but feasible and efficient in practice

Ul D OAEP

" % Let k, be chosen s.t. 2Fo steps are large
% Let f:{0,1}* — {0,1}" is a secure trapdoor function
* Let n=k —k, — k1 and r is a random k, bit string
* G :{0,1}F — {0, 1}m is pseudo-random generator

% Let H:{0,1}""% — {0,1 Iji be hash function ¢,

G,H k1 Ny k1 o
* £ (m) = f((m]|07 ® G(r))|lr & H((#]|0™) ® G(r)))

\27_/
* DG’H(C) \/“ O

% allb = f~1(c) where |a| = k — ko, |b] = k,
* r=H(a)®bm=G(r)®a
* If sufk|(m) #£ 0F1 reject else output pre, (m)

Ut D

e 1-Gamal Scheme

% G(1™) returns a group G, generator g and random = € G

% Set public key X = g, Usually Z7 is used as G

% For m € G Ex(m): &
>y ALY =g ;(),;cj% c— X .M
» C=(XY)M
» Return (Y,C) Q/, C)

) « X j
* DAY, C) =)t = xS s (3% (5
= X m () —
% El-gamal is not secure against chosen-plaintext attacks it G = Z]
% El-gamal is not secure against chosen-ciphertext attacks for any G
% El-gamal is secure against chosen-plaintext attacks if DDH is satisfied for

chosen GG

PKE + Symmetric Encryption
(SE)= Hybrid Encryption

% Even RSA-OAEP is inefficient for encrypting large amounts of data

% Practice Hybrid Encryption
» Use PKE to encrypt the SE key, encrypt message using SE

% Define E,; (M)

Pri
» Generate random K for SM

» (° = EK(M) and C°% = pk(K
» Return (C’a,CN
SE

% Define D,,.(C)
> Let C = (C%, C¥)

> (D)= D, (C")

» M = DK(CS)

Ut D

Hybrid Encryption

% If PKE and SE are secure against chosen plain text attacks then
Hybrid Encryption is secure against chosen-plaintext attacks

% If PKE and SE are secure against chosen-ciphertext attacks then
Hybrid Encryption is secure against chosen-ciphertext attacks

% Examples:
1 E'(M) ={K = H(r),return (r® mod n, AES — CBCk(M))}
2 E*(M) = (r°* mod n,G(r) ® M) for
some pseudo-random generator G
3 E*(M) = (r® mod n,G(r) ® M, H(r||M)) for
some pseudo-random generator G and hash function H

% F, Es are secure against CPA and FEj5 is secure against CCA under
random oracle assumption

