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Overview of Number Theory 
Basics 

Murat Kantarcioglu

Based on Prof. Ninghui Li’s Slides

Divisibility

Definition
Given integers a and b, b ≠ 0, b divides a 
(denoted b|a) if ∃ integer c, s.t. a = cb. 
b is called a divisor of a.

Theorem (Transitivity)
Given integers a, b, c, all > 1, with a|b and b|c, 
then a|c.

Proof: 
a | b => ∃ m s.t. ma = b
b | c => ∃ n s.t.  nb = c, nma = c,
We obtain that ∃ q = mn, s.t c = aq, so a | c
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Divisibility (cont.)

Theorem
Given integers a, b, c, x, y all > 1, with a|b and a|c, 
then a | bx + cy.

Proof:
a | b => ∃ m s.t. ma = b
a | c => ∃ n s.t.  na =  c
bx + cy = a(mx + ny), therefore a| bx +cy

Divisibility (cont.)

Theorem (Division algorithm)
Given integers a,b such that a>0, a<b then there exist 
two unique integers q and r, 0 ≤ r < a s.t. b = aq + r.

Proof:
Uniqueness of q and r: 
assume ∃ q’ and r’ s.t b = aq’ + r’, 0 ≤ r’< a, q’ integer
then aq + r=aq’ + r’ � a(q-q’)=r’-r � q-q’ = (r’-r)/a
as 0 ≤ r,r’ <a  � -a < (r’-r) < a  � -1 < (r’-r)/a < 1
So   -1 < q-q’ < 1, but q-q’ is integer, therefore 
q = q’ and r = r’
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Prime and Composite 
Numbers

Definition
An integer n > 1 is called a prime number if its 
positive divisors are 1 and n.

Definition
Any integer number n > 1 that is not prime, is called 
a composite number.

Example
Prime numbers: 2, 3, 5, 7, 11, 13,17 …
Composite numbers: 4, 6, 25, 900, 17778,  …

Decomposition in Product of 
Primes

Theorem (Fundamental Theorem of Arithmetic)
Any integer number n > 1 can be written as a product 
of prime numbers (>1), and the product is unique if 
the numbers are written in increasing order.

Example:   84 = 22•3•7 
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Greatest Common Divisor 
(GCD)

Definition
Given integers a > 0 and b > 0, we define gcd(a, b) = c, 
the greatest common divisor (GCD),  as the greatest 
number that divides both a and b.

Example
gcd(256, 100)=4

Definition
Two integers a > 0 and b > 0 are relatively prime if 
gcd(a, b) = 1.

Example
25 and 128 are relatively prime.

GCD using Prime 
Decomposition

Theorem
Given                                                and

then

where pi are prime numbers
then
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gcd(n,m) = p1
min(e1 , f1 )p2

min(e2 , f2 )...pk
min(ek , fk )

Example:  84=22•3•7 90=2•32•5

gcd(84,90)=21•31 •50 •70
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GCD as a Linear 
Combination 

Theorem
Given integers a, b > 0 and a > b, then d = gcd(a,b) is the 
least positive integer that can be represented as ax + by, 
x, y integer numbers.

Proof:  Let t be the smallest integer, t = ax + by
d | a and d | b � d | ax + by, so d � t.
We now show t � d.  
First t | a; otherwise, a = tu + r, 0 < r < t; 
r = a - ut = a - u(ax+by) = a(1-ux) + b(-uy), so we found
another linear combination and r < t. Contradiction.
Similarly t | b, so t is a common divisor of a and b, thus 

t � gcd (a, b) = d.   So t = d.
Example
gcd(100, 36) = 4 = 4 × 100 – 11 × 36 = 400 - 396

GCD and Multiplication

Theorem
Given integers a, b, m >1. If
gcd(a, m) = gcd(b, m) = 1, 
then gcd(ab, m) = 1

Proof idea:
ax + ym = 1 = bz + tm
Find u and v such that  (ab)u + mv = 1
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GCD and Division

Theorem
If g = gcd(a, b), where a > b, then gcd (a/g, b/g) = 1
(a/g and b/g are relatively prime).

Proof:
Assume gcd(a/g, b/g) = d, then a/g = md and b/g = nd.
a = gmd and b = gnd, therefore gd | a and gd | b 
Therefore gd � g, d � 1, so d =1. 

Example
gcd(100, 36) = 4
gcd (100/4, 36/4) = gcd(25, 9) = 1

GCD and Division

Theorem
Given integers a>0, b, q, r, such that  b = aq + r,
then gcd(b, a) = gcd(a, r).

Proof:
Let gcd(b, a) = d and  gcd(a, r) = e, this means

d | b and d | a, so d | b - aq , so d | r
Since gcd(a, r) = e, we obtain d � e.

e | a and e | r,  so e | aq + r , so e | b, 
Since gcd(b, a) = d, we obtain e � d.

Therefore d = e
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Finding GCD

Using the Theorem: Given integers a>0, b, q, r, 
such that  b = aq + r, then gcd(b, a) = gcd(a, r).

Euclidian Algorithm

Find gcd (b, a)

while a ≠0 do

r ← b mod a

b ← a

a ← r

return a

Euclidian Algorithm 
Example

Find gcd(143, 110)

gcd (143, 110) = 11

143 = 1 × 110 + 33
110 = 3 × 33 + 11
33   = 3 × 11 + 0
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Towards Extended Euclidian 
Algorithm

• Theorem: Given integers a, b > 0 and a 
> b, then d = gcd(a,b) is the least positive 
integer that can be represented as ax + 
by, x, y integer numbers.

• How to find such x and y?

• If a and b are relative prime, then there 
exist x and y such that ax + by = 1.  
– In other words, ax mod b = 1. 

Euclidian Algorithm 
Example

Find gcd(143, 111)

gcd (143, 111) = 1

143 = 1 × 111 + 32
111 = 3 × 32 + 15
32 = 2 × 15 + 2
15 = 7 × 2 + 1

32 = 143 − 1 × 111 
15 = 111 − 3 × 32

= 4×111 − 3 ×143
2 = 32 − 2 × 15

= 7 ×143 − 9 × 111
1 = 15 - 7 × 2

= 67 × 111 – 52 × 143
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Extended Euclidian 
Algorithm

x=1;  y=0;  d=a;  r=0;  s=1;  t=b;

while (t>0) {

q = �d/t�

u=x-qr;  v=y-qs;  w=d-qt

x=r;       y=s;       d=t

r=u;       s=v;       t=w

}

return (d, x, y)

ax + by = d
ar + bs = t

Invariants:

Equivalence Relation

Definition
A relation is defined as any subset of a cartesian
product. We denote a relation (a,b) ∈ R as aRb,  a ∈
A and b ∈ B.

Definition
A relation is an equivalence relation on a set S, if R is 

Reflexive:    aRa for all a ∈ R 
Symmetric:  for all a, b ∈ R, aRb � bRa . 
Transitive:   for all a,b,c ∈ R, aRb and bRc � aRc

Example
“=“ is an equivalence relation on N
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Modulo Operation

nbnanba  mod  mod  mod =⇔≡

rnqaqrna +×=∃⇔=   s.t. ,  mod 
where 0 ≤ r ≤ n −1

Definition:

Example:
7 mod 3 = 1
-7 mod 3 = 2

Definition (Congruence):

Congruence Relation

Theorem
Congruence mod n is an equivalence relation:

Reflexive: a ≡ a (mod n)   
Symmetric: a ≡ b(mod n) iff b ≡ a mod n  . 
Transitive: a ≡ b(mod n) and b ≡ c(mod n) �

a ≡ c(mod n)
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Congruence Relation 
Properties

Theorem
1) If a ≡ b (mod n) and c ≡ d (mod n), then:

a ± c ≡ b ± d (mod n) and 
ac ≡ bd (mod n) 

2) If a ≡ b (mod n) and d | n then:
a ≡ b (mod d)

Reduced Set of Residues

Definition: A reduced set of residues (RSR) 
modulo m is a set of integers R each 
relatively prime to m, so that every integer 
relatively prime to m is congruent to 
exactly one integer in R.



12

The group (Zn*, ×)

• Zn* consists of all integers in [1..n-1] that 
are relative prime to n
– Zn* = { a | 1≤a≤n and gcd(a,n)=1 }

– is a reduced set of residues modulo n

– (Zn*, ×) is a group
• gcd(a,n)=1 and gcd(b,n)=1  � gcd(ab, n)=1

– given a ∈ Zn*, how to compute a-1?

Linear Equation Modulo

Theorem
If gcd(a, n) = 1, the equation
has a unique solution, 0< x < n

Proof Idea:
if  ax1 ≡ 1 (mod n) and ax2 ≡ 1 (mod n), then    

a(x1-x2) ≡ 0 (mod n),  then n | a(x1-x2), then 
n|(x1-x2),  then x1-x2=0

ax ≡ 1 mod n
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Linear Equation Modulo 
(cont.)

Theorem
If gcd(a, n) = 1, the equation 

has a solution.

Proof Idea:
x = a-1 b mod n

nbax  mod ≡

Chinese Reminder Theorem 
(CRT)

Theorem
Let n1, n2, ,,, nk be integers s.t. gcd(ni, nj) = 1, 
i ≠ j. 

There exists a unique solution modulo 
n = n1 n2 … nk

kk nax

nax

nax

mod
...

mod
 mod 
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Proof of CMT

• Consider the function χ: Zn→ Zn1 × Zn2 × … × Znk χ(x) 
= (x mod n1, …, x mod nk)

• We need to prove that χ is a bijection.
• For 1≤i≤k, define mi = n / ni, then gcd(mi,ni)=1
• For 1≤i≤k, define yi = mi

-1 mod ni

• Define function ρ(a1,a2,…,ak) = Σ aimiyi mod n
– aimiyi ≡ ai (mod ni)
– aimiyi ≡ 0 (mod nj)  where i ≠ j

Proof of CMT

• Example of the mappings:   n1=3, n2=5, n=15

χ: ρ: m1=5, y1=2, m1y1=10, 
m2y2=6, 
1 (1,1) (1,1) 10+6 1
2 (2,2) (1,2) 10+12 7
4 (1,4) (1,3) 10+18 13
7 (1,2) (1,4) 10+24 4
8 (2,3) (2,1) 20+6 11
11 (2,1) (2,2) 20+12 2
13 (1,3) (2,3) 20+18 8
14 (2,4) (2,4) 20+24 14
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Example of CMT:

• n1=7,  n2=11,  n3=13,  n=1001
• m1=143,  m2=91,  m3=77
• y1=143-1 mod 7 = 3-1 mod 7 = 5
• y2=91-1 mod 11 = 3-1 mod 11 = 4
• y3=77-1 mod 13 = 12-1 mod 13 = 12
• x=(5×143×5 + 3×91×4 + 10×77×12)  mod 

1001   = 13907 mod 1001 = 894

x ≡ 5 (mod 7)
x ≡ 3 (mod 11)
x ≡ 10 (mod 13)

The Euler Phi Function

Definition
Given an integer n, Φ(n) = | Zn*|  is the 
number of all numbers  a  such that 0 
<  a < n  and  a  is relatively prime to 
n  (i.e., gcd(a, n)=1).

Theorem: 
If gcd(m,n) = 1, Φ(mn) = Φ(m) Φ(n)
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The Euler Phi Function

Theorem: Formula for Φ(n)
Let p be prime, e, m, n be positive integers

1) Φ(p) = p-1
2) Φ(pe) = pe – pe-1

3) If                             thenek
k

ee pppn ...2
21

1=

)11)...(11)(11()(
21 kppp

nn −−−=Φ

Fermat’s Little Theorem

Fermat’s Little Theorem
If p is a prime number and a is a natural number that 
is not a multiple of p, then 

ap-1 ≡ 1 (mod p)
Proof idea:
gcd(a, p) = 1, then the set { i*a mod p} 0< i < p is a
permutation of the set {1, …, p-1}.(otherwise we have 
0<n<m<p s.t. ma mod p = na mod p
p| (ma - na) � p | (m-n), where 0<m-n < p ) 

a * 2a * …*(p-1)a  = (p-1)! ap-1 ≡ (p-1)! (mod p)
Since gcd((p-1)!, p) = 1, we obtain ap-1 ≡ 1 (mod p)
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Consequence of Fermat’s 
Theorem

Theorem
- p is a prime number and 
- a, e and f are positive numbers 
- e ≡ f mod p-1 and 
- p does not divide a, then

ae ≡ af (mod p) 

Proof idea:
ae =  aq(p-1) + f = af (a(p-1))q

by applying Fermat’s theorem we obtain
ae ≡ af (mod p)

Euler’s Theorem

Euler’s Theorem
Given integer n > 1, such that gcd(a, n) = 1   then       

aΦ(n) ≡ 1 (mod n)
Corollary
Given integer n > 1, such that gcd(a, n) = 1 then  
aΦ(n)-1 mod n is a multiplicative inverse of a mod n.

Corollary
Given integer n > 1, x, y, and a positive integers with 
gcd(a, n) = 1. If x ≡ y (mod Φ(n)), then 

ax ≡ ay (mod n).
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Next …

• Prime number 
distribution and 
testing

• RSA
• Efficiency of modular 

arithmetic 


