urD

Semantic Security of RSA

Murat Kantarcioglu

hm Semantic Security

» As before our goal is to come up with a
public key system that protects against
more than “total break”

— We want our system to be secure against

» “total break” (i.e., can recover the private key)
* “partial break” (i.e., can decrypt messages without
knowing the key)
— Also we want adversary to not to distinguish
between any given ciphertexts!

4/1/2008

Semantic Security (IND-CPA
for Public Key Encryption)

 The IND-CPA game

Challenger Adversary

picks a random key
pair (K, K1), and picks
random b[J{0,1}
K

Mo, M, picks M, M; of equal length

C = Ex[My]
b’ 00,1}

Attacker wins game if b=b’

urD

* RSA encryption is not semantically secure because it
is deterministic
» The encryption function f(x)=x® mod n leaks information

about x !
— itleaks the Jacobi symbol of x

GGG

— it also leaks the whether x is a QR or not, but this is not a
concern, why?

Semantic Insecurity of the RSA

4/1/2008

Partial Information Related to

RSA function

 RSA does not leak certain type of partial
information

» Given y=x® mod n, computing the parity(y)
(i.e. parity(y)=0 if x is even parity(y)=1 if x
Is odd) is equivalent to inverting RSA.

« Given y=x® mod n, computing half(y) (i.e.,
half(y)=0 if 0<X < N/2 and half(y)=1 if n/2<
X <n-1) is equivalent to inverting RSA.

Reduction of half() to

Inverting RSA
 Note that for RSAE« (%)E. (%) =x°%,"modn = E (X.X,)
 Also note that
— half(y.E,(2") mod n)=half(E,(x.2))
» Observe that half(E,(2x))=0 iff x € [0,n/4) U
[n/2, 3n/4) (why?)
» Using this idea, we can create an algorithm
for inverting RSA

4/1/2008

4/1/2008

hm Oracle RSA Decryption
Using Half()

k « [log,(n]
fori « Oto k{
h, « half(n, e,y); y « y.2° mod n
}
lo « O;hi « n
fori « Oto k{
mid « (hi +10)/2;
if (h; =1)then lo — mid else hi —~ mid
}
return | hi |

hm Example

Consider n=1457 e=779, ciphertext y=722
Assume half() returns the following h;
values

ho,=1, h; =0, h,=1,h;=0,h,=1,h;=1,hs=1
h,=1, hg=1, hg= 0, h,, =0

Following the algorithm will find the
plaintext as 999.

4/1/2008

hm Parity()

« Similar ideas work for the parity() function
as well. Note that

half (y) = parity (y.E, (2) mod n)
parity (y) = half (y.E, (27")mod n)

m The Goldwasser-Micali Probablistic
Encryption Scheme

» First provably semantically secure public key encryption
scheme, security based on the hardness of determining
whether a number x is a QR modulo n, when the y
factoring of n is unknown and the Jacobi symbol (nj is1

» Encryption is bit by bit

» For each bit in the plaintext, the ciphertext is one
number in Z*, expansion factor is 1024 when using
1024 moduli

10

m The Goldwasser-Micali Probablistic
Encryption Scheme

» Key generation

— randomly choose two large equal-size prime number p and q,
pick a random integer y such that

(yJ = (yJ = —1
p q

— public key is (n=pq, y)

— privatekey is (p,q)

» Encryption
— to encrypt one bit b, pick a random x in Z*, and let C=x2y®
— thatis, C=x2 when b=0, and C=x?y when b=1

11

m The Goldwasser-Micali Probablistic
Encryption Scheme

» Consider the Jacobi symbol of the ciphertext C
[x_zj:[x_zj(x_zjzl.lzl yx? - y | yx ——le—1=1
N, \PAA n pAa

» Consider whether the ciphertext C is QR modulo n
— Cis QR iff. the plaintext bit b is 0

» Decryption:

— knowing p and g s.t. n=pq, one can determine whether x is QR
modulo n and thus retrieves the plaintext (how?)

12

4/1/2008

4/1/2008

Cost of Semantic Security in
Public Key Encryption

 In order to have semantic security, some

expansion is necessary

—1.e., the ciphertext must be larger than its
corresponding plaintext (why?)

— the Goldwasser-Micali encryption scheme
generate ciphertexts of size 1024m

— suppose that all plaintexts have size m, what
is the minimal size of ciphertexts to have an

adequate level of security (e.g., takes 2t to
break the semantic security)?

13

m A Padding Scheme for Semantically
Secure Public-key Encryption

» Padding Scheme 1: given a public-key
encryption scheme E,

— to encrypt x, generates a random r, the
ciphertext is (f(r), H(r)x) , where H is a
cryptographic hash function

— to decrypt (y;.y,), one compute H(f (y,))dy,

— requires an extra random number generation
and an XOR operation for each bit

14

m Example of the Padding
Scheme

« Example of the Padding Scheme for RSA
— Public key: (n,e),
— The ciphertext for x is (r¢ mod n, xCOH(r))

— To decrypt a ciphertext (y,, y,), compute r=
y,4 mod n, and x= y,OH(r)

— To encrypt a 128-bit message, the ciphertext
has 1024+128 bits

15

hm Why is This Padding Scheme
Secure?

» This padding scheme is provably IND-CPA secure, when
H is modeled as a random oracle (i.e., H is a random
function) and f is a trapdoor one-way permutation

— to learn any information about x from (f(r), x£OH(r)), one
has to learn some information about H(r)

— as H is a random function, the only way to learn any
information about H(r) is to evaluate H at the pointr

— an adversary who can learn anything about x thus
knows r

— the adversary can thus invert f

16

4/1/2008

m Random Oracle Model

e Random Oracle Model
— Use hash function H in your design

— Give security proofs assuming that H is a
random function. Replace H with some
cryptographic hash function in practice.

* Random Oracle Assumption is
— not valid in general
— feasible and efficient in practice

hm Proof Sketch

» Assuming the existence of algorithm D() that can
distinguish between the two ciphertexts with
probability 0.5 + € with at most g query queries to
random oracle, we will show that we can define an
algorithm that can invert given trapdoor function f
with probability at least e.

 In other words, if fis a secure trapdoor function
then above scheme is secure in the random
oracle model.

4/1/2008

m Proof Sketch

» Consider the following simulator simH() for random oracle H().
Given the y=f(x) that we want to invert, randomy, , two
plaintexts x4, X,

o SimH(r)Y{
if r is queried before in the it query then return Glist]i] ;
else {
if f(nN=y then {
g < Yo® x;for random je{1,2}; }
else {
g « r for some random ; }
| « I+1; Glist[l] «g; Rlist[l] «r; }
return g

}

m Proof Sketch

Invert(y)
{
y.1<V; Y, «r for random r;

Run D(X{,X,,(Y1,Y,)) for arbitrary x;#X,
Answer D’s queries to H using simH() until
D stops.

If f(Rlist[i])=y for some i then return RIist][i]
}

4/1/2008

10

m Proof Sketch

» Letus compute the success probability of invert(y) given
that D() is successful with at least probabiliy 0.5+ €

Pr[D() succeeds] =
Pr[D() succeeds |f " (y) ORlist].Pr[f " (y) ORlist] +

Pr[D() succeeds |f ' (y) ORlist].Pr[f ' (y) O Rlist]
< Pr[f " (y) ORlist] +0.5 Pr[f " (y) O Rlist]
< Pr[f ' (y) ORlist] +0.5
< Prlinverse (y)succeed s] + 0.5

m Proof Sketch

« |f Distinguish algorithm D() runs with time
t, using at most q random oracle queries,
f() requires t, then Inverse() runs with time
t; +O(g? +qty)

* Note Inverse()

— calls f function O(q) times
— calls Distinguish function once

— each call to simh() may require search over
list size O(q)

4/1/2008

11

hm OAEP

M. Bellare and P. Rogaway, Optimal asymmetric
encryption, Advances in Cryptology - Eurocrypt '94,
Springer-Verlag (1994), 92-111.

» [Optimal Asymmetric Encryption Padding (OAEP)]:
method for encoding messages.

» Uses one trapdoor permutation functions f and two hash
functions: H: {0,1}™ - {0,1} and G: {0,1} - {0,1}™

* To encrypt x[K0,1}™, chooses random r[{0,1}* and
computes fIxOG(r) || rOHXOG(r))]

* How to decrypt given y?

» Security intuitions?

23

hm OAEP (cont.)

« OAEP: flxOG(r) || rOH(XOG(r))]
—H: {0,1}™-{0,1} and G: {0,1}*-{0,1}™
* OAEP is provably IND-CPA secure when H and G

are modeled as random oracles and f is a trapdoor
one-way permutation.

» A ciphertext has size n (=1024 for RSA)

» The padding size t should be s.t. 2t computing time
is infeasible, why?
- t=128

» The plaintext size m can be up to 1024-128=896

» Expansion is optimal

24

4/1/2008

12

