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Semantic Security of RSA

Murat Kantarcioglu

Semantic Security

• As before our goal is to come up with a 
public key system that protects against 
more than “total break”
– We want our system to be secure against

• “total break” (i.e., can recover the private key)
• “partial break” (i.e., can decrypt messages without 

knowing the key)

– Also we want adversary to not to distinguish 
between any given ciphertexts!
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Semantic Security (IND-CPA 
for Public Key Encryption)

• The IND-CPA game
Challenger Adversary

picks a random key 
pair (K, K-1), and picks 

random b∈{0,1}

picks M0, M1 of equal lengthM0, M1

K

b’ ∈{0,1}

Attacker wins game if b=b’

C = EK[Mb]
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Semantic Insecurity of the RSA

• RSA encryption is not semantically secure because it 
is deterministic

• The encryption function f(x)=xe mod n leaks information 
about x !
– it leaks the Jacobi symbol of x

– it also leaks the whether x is a QR or not, but this is not a 
concern, why?
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Partial Information Related to 
RSA function

• RSA does not leak certain type of partial 
information

• Given y=xe mod n, computing the parity(y) 
(i.e. parity(y)=0 if x is even parity(y)=1 if x 
is odd) is equivalent to inverting RSA. 

• Given y=xe mod n, computing half(y) (i.e., 
half(y)=0 if 0�X < N/2 and half(y)=1 if n/2< 
x �n-1) is equivalent to inverting RSA.

Reduction of half() to 
inverting RSA

• Note that for RSA
• Also note that 

– half(y.Ek(2i) mod n)=half(Ek(x.2i))

• Observe that half(Ek(2x))=0 iff x � [0,n/4) U 
[n/2, 3n/4) (why?)

• Using this idea, we can create an algorithm 
for inverting RSA
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Oracle RSA Decryption 
Using Half()
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Example

• Consider n=1457 e=779, ciphertext y=722
• Assume half() returns the following hi

values 
• h0=1, h1 =0, h2=1,h3=0,h4=1,h5=1,h6=1 

h7=1, h8=1, h9= 0, h10 =0
• Following the algorithm will find the 

plaintext as 999.
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Parity()

• Similar ideas work for the parity() function 
as well. Note that
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The Goldwasser-Micali Probablistic 
Encryption Scheme

• First provably semantically secure public key encryption 
scheme, security based on the hardness of determining 
whether a number x is a QR modulo n, when the 
factoring of n is unknown and the Jacobi symbol       is 1

• Encryption is bit by bit

• For each bit in the plaintext, the ciphertext is one 
number in Zn*, expansion factor is 1024 when using 
1024 moduli
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The Goldwasser-Micali Probablistic 
Encryption Scheme

• Key generation
– randomly choose two large equal-size prime number p and q, 

pick a random integer y such that 

– public key is (n=pq, y) 
– private key is (p,q)

• Encryption
– to encrypt one bit b, pick a random x in Zn*, and let C=x2yb

– that is, C=x2 when b=0, and C=x2y when b=1 
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The Goldwasser-Micali Probablistic 
Encryption Scheme

• Consider the Jacobi symbol of the ciphertext C

• Consider whether the ciphertext C is QR modulo n
– C is QR iff. the plaintext bit b is 0

• Decryption:
– knowing p and q s.t. n=pq, one can determine whether x is QR 

modulo n and thus retrieves the plaintext (how?)
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Cost of Semantic Security in 
Public Key Encryption

• In order to have semantic security, some 
expansion is necessary
– i.e., the ciphertext must be larger than its 

corresponding plaintext (why?)

– the Goldwasser-Micali encryption scheme 
generate ciphertexts of size 1024m

– suppose that all plaintexts have size m, what 
is the minimal size of ciphertexts to have an 
adequate level of security (e.g., takes 2t to 
break the semantic security)?
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A Padding Scheme for Semantically 
Secure Public-key Encryption

• Padding Scheme 1: given a public-key 
encryption scheme E, 
– to encrypt x, generates a random r, the 

ciphertext is (f(r), H(r)⊕x) , where H is a 
cryptographic hash function

– to decrypt (y1,y2), one compute H(f-1 (y1))⊕y2

– requires an extra random number generation 
and an XOR operation for each bit
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Example of the Padding 
Scheme

• Example of the Padding Scheme for RSA
– Public key: (n,e), 

– The ciphertext for x is (re mod n, x⊕H(r))

– To decrypt a ciphertext (y1, y2), compute r= 
y1

d mod n, and x= y2⊕H(r)

– To encrypt a 128-bit message, the ciphertext 
has 1024+128 bits
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Why is This Padding Scheme 
Secure?

• This padding scheme is provably IND-CPA secure, when 
H is modeled as a random oracle (i.e., H is a random 
function) and f is a trapdoor one-way permutation
– to learn any information about x from (f(r), x⊕H(r)), one 

has to learn some information about H(r)
– as H is a random function, the only way to learn any 

information about H(r) is to evaluate H at the point r
– an adversary who can learn anything about x thus 

knows r
– the adversary can thus invert f
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Random Oracle Model

• Random Oracle Model

– Use hash function H  in your design

– Give security proofs assuming that H is a 
random function. Replace H with some 
cryptographic hash function in practice.

• Random Oracle Assumption is 
– not  valid in general 
– feasible and efficient in practice 

Proof Sketch

• Assuming the existence of algorithm D() that can 
distinguish between the two ciphertexts with 
probability 0.5 + � with at most q query queries to 
random oracle, we will show that we can define an 
algorithm that can invert given trapdoor function f 
with probability at least �. 

• In other words, if f is a secure trapdoor function 
then above scheme is secure in the random 
oracle model.



4/1/2008

10

Proof Sketch

• Consider the following simulator simH() for random oracle H(). 
Given the y=f(x) that we want to invert, random y2 , two 
plaintexts x1, x2     

• SimH(r){
if r is queried before in the ith query then return Glist[i] ;
else {

if f(r)=y then {
g � y2� xj for random j�{1,2}; } 

else {
g� r for some random r; }

l � l+1; Glist[l] �g; Rlist[l] �r; }

return g
}

Proof Sketch

Invert(y)
{

y1�y; y2 �r for random r;
Run D(x1,x2,(y1,y2)) for arbitrary x1�x2

Answer D’s queries to H using simH() until 
D stops.
if f(Rlist[i])=y for some i then return Rlist[i]

}
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Proof Sketch

• Let us compute the success probability of invert(y) given 
that D() is successful with at least probabiliy 0.5+ �

0.5s](y)succeedPr[inverse                         
 0.5Rlist](y)Pr[f                         

Rlist](y)Pr[f 0.5Rlist](y)Pr[f                         
Rlist](y)fRlist].Pr[(y)f |succeeds Pr[D()                            
Rlist](y)fRlist].Pr[(y)f |succeeds Pr[D()                            

succeeds] Pr[D()
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Proof Sketch

• If Distinguish algorithm D() runs with time 
t1 using at most q random oracle queries, 
f() requires t2 then Inverse() runs with time 
t1 +O(q2 +qt2)

• Note Inverse() 
– calls f function O(q) times

– calls Distinguish function once

– each call to simh() may require search over 
list size O(q)
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OAEP
• M. Bellare and P. Rogaway, Optimal asymmetric 

encryption, Advances in Cryptology - Eurocrypt '94, 
Springer-Verlag (1994), 92-111.

• [Optimal Asymmetric Encryption Padding (OAEP)]: 
method for encoding messages.

• Uses one trapdoor permutation functions f and two hash 
functions: H: {0,1}m→{0,1}t and G: {0,1}t→{0,1}m

• To encrypt x∈{0,1}m, chooses random r∈{0,1}t and 
computes f[x⊕G(r) || r⊕H(x⊕G(r))]

• How to decrypt given y?
• Security intuitions?

24

OAEP (cont.)

• OAEP: f[x⊕G(r) || r⊕H(x⊕G(r))]
– H: {0,1}m→{0,1}t and G: {0,1}t→{0,1}m

• OAEP is provably IND-CPA secure when H and G 
are modeled as random oracles and f is a trapdoor 
one-way permutation. 

• A ciphertext has size n ( ≈1024 for RSA)
• The padding size t should be s.t. 2t computing time 

is infeasible, why?
– t ≈128 

• The plaintext size m can be up to 1024-128=896
• Expansion is optimal


