|dentification Schemes

Ut D

Lecture Outline

 |dentification
schemes
— passwords
— one-time
passwords

— challenge-response
— zero knowledge
proof protocols

Ut D

Authentication

Data source authentication

(message authentication): a R
message is generated by a
3

specific party.

+ Entity authentication
(identification): the process -
whereby one party (the verifier) is \
assured of the identity of a .
second party (prover) involved in

a protocol

-

Requirements of Identification
- Protocols

* Requirements of identification protocols

— for honest prover A and verifier B, A is able to
convince B

— no other party can convince B

— In particular, B cannot convince C that itis A
« Kinds of attackers

— passive and replay

— active, man in the middle

— the verifier

UT D Properties of ldentification Protocols

« Computational efficiency
« Communication efficiency

e Security requirement of communication
channels

e Trust in verifier

o Storage of secrets

* Involvement of a third party

* Nature of trust in the third party

* Nature of security: provable security

Authentication Using Fixed
Passwords

* Prover authenticates to a verifier using a password.
 Require secure communication channels
o Total trust in verifier

e Passwords must be kept in encrypted form or just
digests of passwords are kept.

o Attacks:
— Replay of fixed passwords
— Online exhaustive password search
— Offline password-guessing and dictionary attacks

UT D Unix crypt Algorithm

e Used to store Unix passwords

 Information stored Is /etc/passwd is:

— Iterated DES encryption of 0 (64 bits), using
the password as key

— 12 bit random salt taken from the system
clock time at the password creation

o Unix use salting to change the expansion
function in DES
— to make dictionary attacks more difficult.
— also to prevent use of off-the-shelf DES chips

Ut D

One-time passwords

e Each password is used only once

— Defend against passive adversaries who
eavesdrop and later attempt to impersonate
e Variations

— shared lists of one-time passwords
e challenge-response table
— sequentially updated one-time passwords

— one-time password sequences based on a
one-way function

Lamport’s One-Time
Password

Stronger authentication than password-based
e One-time setup:

— A selects a value w, a hash function H(), and an
Integer t, computes w, = H(w) and sends w,to B

— B stores w,
« Protocol: to identify to B for the i"time, 1 <i<t
— Asendsto B: A, i, w,=H"(w)
— B checksi=1,, Hw) = w,,
— if both holds, i, =i,+1

Challenge-Response Protocols

o Goal: one entity authenticates to other

entity proving the knowledge of a secret,
‘challenge’

 Time-variant parameters used to prevent
replay, interleaving attacks, provide
uniqueness and timeliness : nounce
(used only once)

e Three types:
— Random numbers

— Sequences
— Timestamp

Challenge-Response
Protocols

e Random numbers:

— pseudo-random numbers that are unpredictable
to an adversary;

— need strong pseudo-random strings;
— must maintain state;

e Seguences:
— serial number or counters;

— long-term state information must be maintained
by both parties+ synchronization

 Timestamp:
— provides timeliness and detects forced delays;
— requires synchronized clocks.

Challenge-response based on
- symmetric-key encryption

« Unilateral authentication, timestamp-based
— Ato B: Ei(ts, B)
« Unilateral authentication, random-number-based
— Bto A:rg
— Ato B: Ei(rg, B)
e Mutual authentication, using random numbers
— BtoA:rg
— Ato B: Ex(ra, I'g, B)
— Bto A: E (g, I'n)

Challenge-Response Protocols Using
Digital Signatures

unilateral authentication with timestamp

A— B: cert,, t,, B, S,(t,, B)

unilateral authentication with random numbers
A< Birg

A— B:certy, ry, B, Sp(ra, ', B)

mutual authentication with random numbers
A< Birg

A— B:certy, 1y, B, SA(ra, I'g, B)

A« B: certg, A, Sg(rg, Ia, A)

Zero-Knowledge Protocols

e Motivation:

— Password-based protocols: when Alice
authenticates to a server, she gives her
password, so the server can then
Impersonate her.

— Challenge-response improves on this,
but still reveals partial information.

« Zero-knowledge protocols: allows a
prover to prove that is posses a secret
without revealing any information of use to
the verifier.

UT D Observations on the
Protocol

e Multiple rounds

 Each round consists of 3 steps
— commit
— challenge
— respond
 If challenge can be predicted, then
cheating Is possible.
— cannot convince a third party (even if the party
IS online)

 If respond to more than one challenge with
one commit, then the secret Is revealed.

Zero Knowledge Proofs

* A kind of interactive proof system
— proof by interaction

* Involves a prover and a verifier

* Proving without revealing any other
iInformation

Two Kinds of Zero-Knowledge
Proofs

e ZK proof of a statement

— convincing the verifier that a statement is true
without yielding any other information

— example of a statement, a propositional
formula Is satisfiable

o ZK proof of knowledge of a secret

— convincing the verifier that one knows a
secret, e.g., one knows the square root
modulo N=pg

Properties Zero-Knowledge

Proofs

* Properties of ZK Proofs:

— completeness

* honest prover who knows the secret convinces the
verifier with overwhelming probability

— soundness

e N0 one who doesn’t know the secret can convince
the verifier with nonnegligible probability

— zero knowledge
 the proof does not leak any additional information

e How to formalize soundness and ZK?

Formalizing the Soundness
Property

* The protocol should be a “proof of
knowledge”
« A knowledge extractor exists

— that given a prover who can successfully
convince the verifier, can extracts the secret

Ut D

Formalizing ZK property

* For every possible verifier algorithm, a simulator exists

— taking what the verifier knows before the proof, can
generate a communication transcript that is
iIndistinguishable from one generated during ZK
proofs

— honest verifier ZK considers only the verifier algorithm
In the protocol

 Three kinds of indistinguishability
— perfect (information theoretic)
— statistical

— computational

Schnorr Id protocol (ZK Proof
o of Discrete LoQ)

« System parameter: p,q,9
*] (p-1) and g is an order g element in Z*

 Public identity: Vv
 Private authenticator: s V=g°smodp
 Protocol
1. A: picks randomrin [1..q], sends x = g"'mod p,
2. B:sends random challenge c in [1..2]]
3. A:sends y=sc+r mod g
4. B: accepts if x = (g¥v¢ mod p)

Security of Schnorr Id
protocol
» probability of forgery: 1/2
e soundness:
e ZK property
— honest verifier ZK
— not ZK if 2t>log n is used

Converting Interactive ZK to
Non-interactive ZK

* The only interactive role played by the
verifier i1s to generate random challenges

— challenges not predictable by the prover

 The same thing can be done using one-
way hash functions

Interactive ZK Implies
Signatures

 Glven a message M, replace the random
challenge of the verifier by the one-way
hash c=h(x||M)

	Slide Number 1
	Lecture Outline
	Authentication
	Requirements of Identification Protocols
	Properties of Identification Protocols
	Authentication Using Fixed Passwords
	Unix crypt Algorithm
	One-time passwords
	Lamport’s One-Time Password
	Challenge-Response Protocols
	Challenge-Response Protocols
	Challenge-response based on symmetric-key encryption
	Challenge-Response Protocols Using Digital Signatures
	Zero-Knowledge Protocols
	Observations on the Protocol
	Zero Knowledge Proofs
	Two Kinds of Zero-Knowledge Proofs
	Properties Zero-Knowledge Proofs
	Formalizing the Soundness Property
	Formalizing ZK property
	Schnorr Id protocol (ZK Proof of Discrete Log)
	Security of Schnorr Id protocol
	Converting Interactive ZK to Non-interactive ZK
	Interactive ZK Implies Signatures

