
Identification Schemes

Lecture Outline
• Identification

schemes
– passwords
– one-time

passwords
– challenge-response
– zero knowledge

proof protocols

Authentication
•

Data source authentication
(message authentication): a
message is generated by a
specific party.

•

Entity authentication
(identification): the process
whereby one party (the verifier) is
assured of the identity of a
second party (prover) involved in
a protocol

Requirements of Identification
Protocols

• Requirements of identification protocols
– for honest prover A and verifier B, A is able to

convince B
– no other party can convince B
– in particular, B cannot convince C that it is A

• Kinds of attackers
– passive and replay
– active, man in the middle
– the verifier

Properties of Identification Protocols

• Computational efficiency
• Communication efficiency
• Security requirement of communication

channels
• Trust in verifier
• Storage of secrets
• Involvement of a third party
• Nature of trust in the third party
• Nature of security: provable security

Authentication Using Fixed
Passwords

• Prover authenticates to a verifier using a password.
• Require secure communication channels
• Total trust in verifier
• Passwords must be kept in encrypted form or just

digests of passwords are kept.
• Attacks:

– Replay of fixed passwords
– Online exhaustive password search
– Offline password-guessing and dictionary attacks

Unix crypt Algorithm

• Used to store Unix passwords
• Information stored is /etc/passwd is:

– Iterated DES encryption of 0 (64 bits), using
the password as key

– 12 bit random salt taken from the system
clock time at the password creation

• Unix use salting to change the expansion
function in DES
– to make dictionary attacks more difficult.
– also to prevent use of off-the-shelf DES chips

One-time passwords

• Each password is used only once
– Defend against passive adversaries who

eavesdrop and later attempt to impersonate
• Variations

– shared lists of one-time passwords
• challenge-response table

– sequentially updated one-time passwords
– one-time password sequences based on a

one-way function

Lamport’s One-Time
Password

Stronger authentication than password-based
• One-time setup:

– A selects a value w, a hash function H(), and an
integer t, computes w0 = Ht(w) and sends w0 to B

– B stores w0

• Protocol: to identify to B for the ith time, 1 

i 

t
– A sends to B: A, i, wi = Ht-i(w)
– B checks i = iA , H(wi) = wi-1

– if both holds, iA = iA +1

Challenge-Response Protocols

• Goal: one entity authenticates to other
entity proving the knowledge of a secret,
‘challenge’

• Time-variant parameters used to prevent
replay, interleaving attacks, provide
uniqueness and timeliness : nounce
(used only once)

• Three types:
– Random numbers
– Sequences
– Timestamp

Challenge-Response
Protocols

• Random numbers:
– pseudo-random numbers that are unpredictable

to an adversary;
– need strong pseudo-random strings;
– must maintain state;

• Sequences:
– serial number or counters;
– long-term state information must be maintained

by both parties+ synchronization
• Timestamp:

– provides timeliness and detects forced delays;
– requires synchronized clocks.

Challenge-response based on
symmetric-key encryption

• Unilateral authentication, timestamp-based
– A to B: EK (tA , B)

• Unilateral authentication, random-number-based
– B to A: rB
– A to B: EK (rB , B)

• Mutual authentication, using random numbers
– B to A: rB
– A to B: EK (rA , rB , B)
– B to A: EK (rB , rA)

Challenge-Response Protocols Using
Digital Signatures

• unilateral authentication with timestamp
A

B: certA , tA , B, SA (tA , B)

• unilateral authentication with random numbers
A

B: rB

A

B: certA , rA , B, SA (rA , rB , B)
• mutual authentication with random numbers

A

B: rB

A

B: certA , rA , B, SA (rA , rB , B)
A

B: certB , A, SB (rB , rA , A)

Zero-Knowledge Protocols
• Motivation:

– Password-based protocols: when Alice
authenticates to a server, she gives her
password, so the server can then
impersonate her.

– Challenge-response improves on this,
but still reveals partial information.

• Zero-knowledge protocols: allows a
prover to prove that is posses a secret
without revealing any information of use to
the verifier.

Observations on the
Protocol

• Multiple rounds
• Each round consists of 3 steps

– commit
– challenge
– respond

• If challenge can be predicted, then
cheating is possible.
– cannot convince a third party (even if the party

is online)
• If respond to more than one challenge with

one commit, then the secret is revealed.

Zero Knowledge Proofs

• A kind of interactive proof system
– proof by interaction

• Involves a prover and a verifier
• Proving without revealing any other

information

Two Kinds of Zero-Knowledge
Proofs

• ZK proof of a statement
– convincing the verifier that a statement is true

without yielding any other information
– example of a statement, a propositional

formula is satisfiable
• ZK proof of knowledge of a secret

– convincing the verifier that one knows a
secret, e.g., one knows the square root
modulo N=pq

Properties Zero-Knowledge
Proofs

• Properties of ZK Proofs:
– completeness

• honest prover who knows the secret convinces the
verifier with overwhelming probability

– soundness
• no one who doesn’t know the secret can convince

the verifier with nonnegligible probability
– zero knowledge

• the proof does not leak any additional information

• How to formalize soundness and ZK?

Formalizing the Soundness
Property

• The protocol should be a “proof of
knowledge”

• A knowledge extractor exists
– that given a prover who can successfully

convince the verifier, can extracts the secret

Formalizing ZK property
• For every possible verifier algorithm, a simulator exists

– taking what the verifier knows before the proof, can
generate a communication transcript that is
indistinguishable from one generated during ZK
proofs

– honest verifier ZK considers only the verifier algorithm
in the protocol

• Three kinds of indistinguishability
– perfect (information theoretic)
– statistical
– computational

Schnorr Id protocol (ZK Proof
of Discrete Log)

• System parameter: p, q, g
• q | (p-1) and g is an order q element in Zp *

• Public identity: v
• Private authenticator: s v = g-s mod p
• Protocol

1. A: picks random r in [1..q], sends x = gr mod p,
2. B: sends random challenge c in [1..2t]
3. A: sends y=sc+r mod q
4. B: accepts if x = (gyvc mod p)

Security of Schnorr Id
protocol

• probability of forgery: 1/2t

• soundness:
• ZK property

– honest verifier ZK
– not ZK if 2t>log n is used

Converting Interactive ZK to
Non-interactive ZK

• The only interactive role played by the
verifier is to generate random challenges
– challenges not predictable by the prover

• The same thing can be done using one-
way hash functions

Interactive ZK Implies
Signatures

• Given a message M, replace the random
challenge of the verifier by the one-way
hash c=h(x||M)

	Slide Number 1
	Lecture Outline
	Authentication
	Requirements of Identification Protocols
	Properties of Identification Protocols
	Authentication Using Fixed Passwords
	Unix crypt Algorithm
	One-time passwords
	Lamport’s One-Time Password
	Challenge-Response Protocols
	Challenge-Response Protocols
	Challenge-response based on symmetric-key encryption
	Challenge-Response Protocols Using Digital Signatures
	Zero-Knowledge Protocols
	Observations on the Protocol
	Zero Knowledge Proofs
	Two Kinds of Zero-Knowledge Proofs
	Properties Zero-Knowledge Proofs
	Formalizing the Soundness Property
	Formalizing ZK property
	Schnorr Id protocol (ZK Proof of Discrete Log)
	Security of Schnorr Id protocol
	Converting Interactive ZK to Non-interactive ZK
	Interactive ZK Implies Signatures

