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hm Review of RSA

Public key: (e, n)
Secret key: d
where n=pq and ed=1 (mod ®(n))

Encrypting M: M mod n
DecryptingC: Cd9mod n
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hm Number of Prime Numbers

Theorem
The number of prime numbers is infinite.

Proof: For the sake of contradiction, assume that the
number of prime numbers is finite. Let p,, p,, ... P, be
all primes. Letn=p,p, ... p+l, then n must be
composite.

Then there exists a prime p s.t. p | n (fundamental
theorem of arithmetic), and p cannot be any of the p,,

Py, ... P (Why?)
Therefore, p,, ... p, were not all the prime numbers.




hm Distribution of Prime Numbers

Theorem (Gaps between primes)

For every positive integer n, there are n or
more consecutive composite numbers.

Proof Idea:

The consective numbers
(n+1)!' + 2, (n+1)! + 3, ..., (n+1)! + n+1

are composite.

(Why?)

hm Distribution of Prime Numbers

Definition

Given real number X, let T(x) be the
number of prime numbers < x.

Theorem (prime numbers theorem)
lim-71)
x—~@ X /In X
For a very large number x, the number of

prime numbers smaller than x is close to
X/In x.
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hm Generating large prime
numbers

» Randomly generate a large odd number and then test
whether it is prime.

* How many random integers need to be tested before
finding a prime?
— the number of prime numbers < p is about p/ In p
— roughly every In p integers has a prime

 fora 512 bit p, In p = 355. on average, need to
test about 177=355/2 odd numbers

» Need to solve the Primality testing problem

— the decision problem to decide whether a number is a
prime

hm {Complexity}

= Complexity theory: mathematical discipline that
classifies problems based on the difficulty to solve
them.

= P-class (polynomial-time): number of steps
needed to solve a problem is bounded by some
power of the problem's size.

= NP-class (nondeterministic polynomial-time): it
permits a nondeterministic solution and the
number of steps to verify the solution is bounded
by some power of the problem's size.




hm Testing for Primality

Theorem
Composite numbers have a divisor less than equal to their square

root.

Proof idea:
n composite, so n = ab, 0 <a<b <n, then a < sqgrt(n), otherwise

we obtain ab > n (contradiction).

Algorithm 1
for (i=2, i < sqrt(n) + 1); i++) {
If i a divisor of n {
n is composite
}
} . .
nis prime
Running time is O(sqrt(n)), which is exponential in the size of the
binary representation of n

hm More Efficient Algorithms for
Primality Testing

» Primality testing is easier than prime
factorization, and is in P-class.

How can we tell if a number is prime or not
without factoring the number?

» The most efficient algorithms are randomized.
* Solovay-Strassen
* Rabin-Miler
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m Groups

* A group donated by (G,*) is a set of non-empty elements
with binary operation *

e Closure:a*b O Gforalla,b0G
* Associativity: (a*b)*c=a*(b*c) for all a,b,c 0 G

* |dentity Element: There exists unique e s.t. e*a=a*e=a for
alalG

* Inverse: Every element a J G has an inverse b s.t.
a*b=b*a=e
e Commutativity: a*b=b*a for all a,b 0 G

hm More Number Theory First

 Definition: Given a group (G,*),
—the order of G is |G|

—the order of an element a in G is the smallest
positive integer such that am™=1
—{a,a?,...,am} is a subgroup of G
* (why?)
« Definition:a group (G,*) is a cyclic group if there exists
gUG such that G={g, g*g, ¢3, ..., gl®l}
— gis known as a generator

— the order of g is |G|
* (why?)
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m Z,* 1s a Cyclic Group

Fact: Given a prime p, Z,* is a cyclic group.
— we won't prove it here.
There exists g0 Z,*s.t. {g' | 1sj<p-1}=2Z*

— gisagenerator of Z,*,

— gis also known as the primitive element modulo p

— what is the order of g

For example, 2 is a generator for Z,,*

- {21 ]| 1<j<p-1} ={2,4,8,5,10,9,7,3,6,1}

— what is the order of 4=22? what is the order of 8=23?
Let g be a generator of Z,*, and let a=gl

— the order of a is (p-1)/gcd(p-1,))

— what are the primitive elements in Z;,*?
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hm Testing Primitive Elements
Modulo p

« The number of primitive elements modulo
pis @(p-1).

Theorem: Let p be a prime, allZ* is a
primitive element modulo p iff. a®-D/a £1
(mod p) for all primes g such that g|(p-1).

Proof. The only if direction is straightforward.

For the if direction. If a is not primitive, it has order d<(p-1).
Then d is a divisor of (p-1). Let q be a prime factor of (p-
1)/d, i.e., (p-1)/d=cq. Then (p-1)/g=cd. Then a®-/a=1
(mod p).
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hm Quadratic Residues Modulo A
Prime

Definition

* aisaquadratic residue modulo p if Ob 0Z;" such
that b2 =a mod p,

otherwise when a#0, a is a quadratic nonresidue
Qp is the set of all quadratic residues

Qp is the set of all guadratic nonresidues

If p is prime there are (p-1)/2 quadratic residues in Z),
QI = (p-1)/2

— let g be generator of Z,*, then a=g! is a quadratic residue iff. j
is even.
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hm How Many Square Roots Does
an Element in Q, has

* Aelementain Q, has exactly two square
roots
— a has at least two square roots
* if b2=a mod p, then (p-b)? =a mod p
—a has at most two square roots in Z,*

 ifb?=amod p and c? =a mod p, then b? —c?2 =0
mod p
* then p | (b+c)(b-c), either b=c, or b+c=p
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hm Legendre Symbol

defined

8

» Let p be an odd prime and a an
integer. The Legendre symbol is

0,ifpla
L ifadQ,

-1 ifa0Q,
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hm Euler’s Criterion

Theorem: If a ®D2 =1 mod p, then a is a quadratic
residue ( if = -1 then a is a quadratic nonresidue)

a
l.e., the Legendre symbol [pj =a ®D2 mod p

Proof. If a = y?, then a ®D2 = y(>-1) =1 (mod p)
If a P-D2=1 |et a = g}, where g is a generator of the
group Z,*. Then gi®-Y2=1 (mod p). Sincegisa
generator, (p-1) | j (p-1)/2, thus j must be even.
Therefore, a=gl is QR.
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m Jacobi Symbol

* letn > 3 be odd with prime factorization

—_ € S} &
n= 11 P, Py
» the Jacobi symbol is defined to be

SEGINES)

» the Jacobi symbol can be computed without
factoring n (see the textbook for details)
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hm Euler Pseudo-prime

« For any prime p, the Legendre symbol [%] =aP-Y2 mod p

. . . a
» For a composite n, if the Jacobi symbol (;j = a2 mod n
then n is called an Euler pseudo-prime to the base a,
— i.e.,ais a“pseudo” evidence that n is prime

» For any composite n, the number of “pseudo” evidences
that n is prime for at most half of the integers in Z *
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hm Randomized Algorithms

» Ayes-biased Monte Carlo algorithm is a randomized
algorithm for a decision problem in which a “yes” answer
is (always correct), but a “no” answer may be incorrect

— error probability for an instance is the probability that instance is
answered incorrectly

— error probability for the algorithm is the max among all instance
error probabilities

* A no-biased Monte Carlo algorithm is defined similarly

* A Las Vegas algorithm may not give an answer, but any
answer it gives is correct
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hm The Solovay-Strassen Algorithm

Solovay-Strassen(n)
choose a random integer a s.t. 1<a<n-1
x « [3]
if x=0 then return (“n is composite”) Il gcd(x,n)#1
y « a2 mod n
if (x=y) then return (“n is prime”)
[/ either n is a prime, or a pseudo-prime
else return (“n is composite”)
Il violates Euler’s criterion

If n is composite, it passes the test with at most ¥ prob.
Use multiple tests before accepting n as prime.

22
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UTD. Rabin-Miller Test

* Another efficient probabilistic algorithm for determining if a
given number n is prime.

— Write n-1 as 2¥m, with m odd.
— Choose a random integera, 1 <a< n-1.
—b « a™mod n
— if b=1 then return “n is prime”
— compute b, b2,b4,...,b2&D if we find -1, return “n is
prime”
— return “n is composite”
* A composite number pass the test with % prob.

* Whent tests are used with independent a, a composite
passes with (¥4)! prob.

» Thetest s fast, used very often in practice.
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hm Why Rabin-Miller Test Work

Claim: If the algorithm returns “n is composite”, then n is not
a prime.

Proof: if we choose a and returns composite on n, then
—amzl, am#-1, a2 £ -1, a*™m £ -1, ..., a¥{klm £ .1 (mod n

)

— suppose, for the sake of contradiction, that n is prime,
— then a™!=a2¥m=1 (mod n)
— then there are two square roots modulo n, 1 and -1
— then a?{k-1im = g2"{k-2lm = g2m = gm = ] (contradiction!)
— so if n is prime, the algorithm will not return

“composite”
24
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hm Quadratic Residues Modulo a
Composite

Definition: a is a quadratic residue modulo n (alQ,) if Ob
0z, such that b?=a mod n, otherwise when az0, a is a
guadratic nonresidue

Fact: allQ,*, where n=pq, iff. allQ, and allQ,

e Ifb2=amod n, then b?2=amod p and b>=amod q

e Ifb?=amod p and c? =a moad g, then the solutions to
x=bmodpandx=cmodq
x=bmodpandx=-cmodq
Xx=-bmod pand x=cmodq
Xx=-bmod pand x=-cmodq

satisfies x> =a mod n
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Quadratic Residues Modulo a
Composite

* 1Qnl = 1Qpl * 1Qql = (p-1)(g-1)/4
« Qu=3(p-1)(g-1)/4
» Jacobi symbol does not tell whether a number ais a QR

BN
n P AQ
« whenitis -1, then either allQ, UallQ, or allQ, HallQ,
« whenitis 1, then either allQ, UallQ, or allQ, UallQ,

o itis W’ifejy believed that determining QR modulo n given
o that |—

a . . . .
- =1is equivalent to factoring n, no proofis
know

— without factoring, one can guess correctly with prob. ¥2

26
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hm Summary of Number Theory
Results Covered

« Z,*is acyclic group
— has generators
« QR and QNRin Z;* can be easily determined by
computing the Legendre symbol
» Jacobi symbol (generalizes Legendre symbol to
composites)
— can be computed without factoring n
— Jacobi symbol does not determine QR in Z*
— QRin Z,*is hard
» Primality Testing
— Solovay-Strassen
— Rabin-Miller
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m Brief Overview of Attacks on
RSA

e Goals:

— recover secret key d

* Brute force key search
— infeasible

» Timing attacks
* Mathematical attacks

— decrypt one message
— learn information from the cipher texts

28
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hm Timing Attacks

* Timing Attacks on Implementations of Diffie-
Hellman, RSA, DSS, and Other Systems (1996),
Paul C. Kocher

» By measuring the time required to perform
decryption (exponentiation with the private key as
exponent), an attacker can figure out the private

key

» Possible countermeasures: '
— use constant exponentiation time
— add random delays

— blind values used in calculations

29

m Timing Attacks (cont.)

* Isitpossible in practice? YES.

OpenSSL Security Advisory [17 March 2003]
Timing-based attacks on RSA keys

OpenSSL v0.9.7a and 0.9.6i vulnerability

Researchers have discovered a timing attack on RSA keys, to
which OpenSSL is generally vulnerable, unless RSA blinding has
been turned on.

30
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m Math-Based Key Recovery
Attacks

*  Three possible approaches:
1. Factor n = pq
2. Determine ®(n)

3. Find the private key d
directly

* All the above are equivalent
to factoring n
— 1limplies2
— 2implies3
— needs to show that 3 implies 1
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hm ®(n) implies factorization

» Knowing both n and ®(n), one knows
n=pq
®(n) = (p-1)(9-1)=pg-p-q+1
=n—-p-n/p+1
pP(n)=np-p?>-n+p
p>—np+®n)p—p+n=0
p2—(n—-d(nN)+1)p+n=0
* There are two solutions of p in the above equation.
» Both p and g are solutions.

32
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hm Factoring Large Numbers

» Three most effective algorithms are
— quadratic sieve
— elliptic curve factoring algorithm
— number field sieve

* One idea many factoring algorithms use:

— Suppose one find x?=y? (mod n) such that xzy
(mod n) and x#-y (mod n). Then n | (x-
y)(x+y). Neither (x-y) or (x+y) is divisible by n;
thus, gcd(x-y,n) has a non-trivial factor of n
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hm Time complexity of factoring

guadratic sieve:

_ O(e(1+o(1))sqrt(ln ninin n)) for n around 21024, O(eGS)
» elliptic curve factoring algorithm
— O(eW+opsartinpininp)) ‘where p is the smallest prime factor

— for n=pg and p,q around 252, for n around 21924 O (e5%)
* number field sieve
_ O(e(1.92+o(1)) (In ny*1/3 (In In n)"2/3), for n around 21024 O (ef°)

» Multiple 512-bit moduli have been factored

» Extrapolating trends of factoring suggests that
— 768-bit moduli will be factored by 2010
— 1024-bit moduli will be factored by 2018

34
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hm Factoring when knowing e
and d

+ Fact: if n=pq, then x?=1 (mod n) has four solutions that
are <n.
— X221 (mod n) if and only if
both x?=1 (mod p) and x?=1 (mod q)
— Two trivial solutions: 1 and n-1
» lissolutiontox =1 (modp)and x=1 (mod q)
* n-1is solution to x =-1 (mod p) and x =-1 (mod q)
— Two other solutions
 solutiontox =1 (mod p) and x =-1 (mod Q)
* solutionto x =-1 (mod p) and x =1 (mod q)
— E.g., n=3x5=15, then x?=1 (mod 15) has the following solutions:
1,4,11, 14
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hm Factoring when knowing e
and d

« Knowing a nontrivial solution to x>=1 (mod
n)
— compute gcd(x+1,n) and gcd(x-1,n)
* E.g., 4 and 11 are solution to x>=1 (mod
15)
—gcd(4+1,15) =5
—gcd(4-1,15) =3
—gcd(11+1,15) =3
—gcd(11-1, 15) =5

36
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hm Factoring when knowing e
and d

» Knowing ed such that ed = 1 (mod ®(n))
write ed — 1 = 28 r (r odd)
choose w at random such that 1<w<n-1
if w not relative prime to n then return gcd(w,n)
(if gcd(w,n)=1, what value is (w?s " mod n)?)

compute w', w2, w#, ..., by successive
squaring until find w2" =1 (mod n)

Fails when w'= 1 (mod n) or w?*'=-1 (mod n)

Failure probability is less than % (Proof is complicated)
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Summary of Key Recovery
Math-based Attacks on RSA

» Three possible approaches:
1.Factor n = pq
2.Determine ®(n)

3.Find the private key d directly
» All are equivalent
— finding out d implies factoring n
— if factoring is hard, so is finding out d
» Should never have different users share one common
modulus
- (why?)

38
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hm Decryption attacks on RSA

The RSA Problem: Given a positive integer n that is a

product of two distinct large primes p and g, a positive

integer e such that gcd(e, (p-1)(g-1))=1, and an integer c,

find an integer m such that meé=c (mod n)

— widely believed that the RSA problem is
computationally equivalent to integer factorization;
however, no proof is known

The security of RSA encryption’s scheme depends on the
hardness of the RSA problem.
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