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1 Introduction

Imagine yourself standing in front of an exquisite bu�et �lled with numerous delicacies. Your goal

is to try them all out, but you need to decide in what order. What exchange of tastes will maximize

the overall pleasure of your palate?

Although much less pleasurable and subjective, that is the type of problem that query optimizers

are called to solve. Given a query, there are many plans that a database management system

(DBMS) can follow to process it and produce its answer. All plans are equivalent in terms of their

�nal output but vary in their cost, i.e., the amount of time that they need to run. What is the plan

that needs the least amount of time?

Such query optimization is absolutely necessary in a DBMS. The cost di�erence between two

alternatives can be enormous. For example, consider the following database schema, which will be

�Partially supported by the National Science Foundation under Grants IRI-9113736 and IRI-9157368 (PYI Award)

and by grants from DEC, IBM, HP, AT&T, Informix, and Oracle.
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used throughout this chapter:

emp(name,age,sal,dno)

dept(dno,dname,
oor,budget,mgr,ano)

acnt(ano,type,balance,bno)

bank(bno,bname,address)

Further, consider the following very simple SQL query:

select name, 
oor

from emp, dept

where emp.dno=dept.dno and sal>100K.

Assume the characteristics below for the database contents, structure, and run-time environment:

Parameter Description Parameter Value

Number of emp pages 20000

Number of emp tuples 100000

Number of emp tuples with sal>100K 10

Number of dept pages 10

Number of dept tuples 100

Indices of emp Clustered B+-tree on emp.sal

(3-levels deep)

Indices of dept Clustered hashing on dept.dno

(average bucket length of 1.2 pages)

Number of bu�er pages 3

Cost of one disk page access 20ms

Consider the following three di�erent plans:

P1 Through the B+-tree �nd all tuples of emp that satisfy the selection on emp.sal. For

each one, use the hashing index to �nd the corresponding dept tuples. (Nested loops,

using the index on both relations.)

P2 For each dept page, scan the entire emp relation. If an emp tuple agrees on the dno

attribute with a tuple on the dept page and satis�es the selection on emp.sal, then the

emp-dept tuple pair appears in the result. (Page-level nested loops, using no index.)
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P3 For each dept tuple, scan the entire emp relation and store all emp-dept tuple pairs.

Then, scan this set of pairs and, for each one, check if it has the same values in the

two dno attributes and satis�es the selection on emp.sal. (Tuple-level formation of the

cross product, with subsequent scan to test the join and the selection.)

Calculating the expected I/O costs of these three plans shows the tremendous di�erence in e�ciency

that equivalent plans may have. P1 needs 0.32 seconds, P2 needs a bit more than an hour, and P3

needs more than a whole day. Without query optimization, a system may choose plan P2 or P3 to

execute this query with devastating results. Query optimizers, however, examine \all" alternatives,

so they should have no trouble choosing P1 to process the query.

The path that a query traverses through a DBMS until its answer is generated is shown in

Figure 1. The system modules through which it moves have the following functionality:

� The Query Parser checks the validity of the query and then translates it into an internal

form, usually a relational calculus expression or something equivalent.

� The Query Optimizer examines all algebraic expressions that are equivalent to the given query

and chooses the one that is estimated to be the cheapest.

� The Code Generator or the Interpreter transforms the access plan generated by the optimizer

into calls to the query processor.

� The Query Processor actually executes the query.

Queries are posed to a DBMS by interactive users or by programs written in general-purpose

programming languages (e.g., C/C++, Fortran, PL-1) that have queries embedded in them. An

interactive (ad hoc) query goes through the entire path shown in Figure 1. On the other hand, an

embedded query goes through the �rst three steps only once, when the program in which it is em-
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Figure 1: Query 
ow through a DBMS.

bedded is compiled (compile time). The code produced by the Code Generator is stored in the

database and is simply invoked and executed by the Query Processor whenever control reaches

that query during the program execution (run time). Thus, independent of the number of times

an embedded query needs to be executed, optimization is not repeated until database updates

make the access plan invalid (e.g., index deletion) or highly suboptimal (e.g., extensive changes in

database contents). There is no real di�erence between optimizing interactive or embedded queries,

so we make no distinction between the two in this chapter.

The area of query optimization is very large within the database �eld. It has been studied in

a great variety of contexts and from many di�erent angles, giving rise to several diverse solutions

in each case. The purpose of this chapter is to primarily discuss the core problems in query

optimization and their solutions, and only touch upon the wealth of results that exist beyond that.

More speci�cally, we concentrate on optimizing a single 
at SQL query with `and' as the only
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boolean connective in its quali�cation (also known as conjunctive query, select-project-join query,

or nonrecursive Horn clause) in a centralized relational DBMS, assuming that full knowledge of the

run-time environment exists at compile time. Likewise, we make no attempt to provide a complete

survey of the literature, in most cases providing only a few example references. More extensive

surveys can be found elsewhere [JK84, MCS88].

The rest of the chapter is organized as follows. Section 2 presents a modular architecture for

a query optimizer and describes the role of each module in it. Section 3 analyzes the choices

that exist in the shapes of relational query access plans, and the restrictions usually imposed by

current optimizers to make the whole process more manageable. Section 4 focuses on the dynamic

programming search strategy used by commercial query optimizers and brie
y describes alternative

strategies that have been proposed. Section 5 de�nes the problem of estimating the sizes of query

results and/or the frequency distributions of values in them, and describes in detail histograms,

which represent the statistical information typically used by systems to derive such estimates.

Section 6 discusses query optimization in non-centralized environments, i.e., parallel and distributed

DBMSs. Section 7 brie
y touches upon several advanced types of query optimization that have

been proposed to solve some hard problems in the area. Finally, Section 8 summarizes the chapter

and raises some questions related to query optimization that still have no good answer.

2 Query Optimizer Architecture

2.1 Overall Architecture

In this section, we provide an abstraction of the query optimization process in a DBMS. Given a

database and a query on it, several execution plans exist that can be employed to answer the query.

In principle, all the alternatives need to be considered so that the one with the best estimated
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performance is chosen. An abstraction of the process of generating and testing these alternatives

is shown in Figure 2, which is essentially a modular architecture of a query optimizer. Although

one could build an optimizer based on this architecture, in real systems, the modules shown do not

always have so clear-cut boundaries as in Figure 2. Based on Figure 2, the entire query optimization

Rewriter

Algebraic
Space

Space

Cost Model

Size−Distribution
Estimator

Planner

Method−Structure

Rewriting Stage  (Declarative)

Planning Stage  (Procedural)

Figure 2: Query optimizer architecture.

process can be seen as having two stages: rewriting and planning. There is only one module in the

�rst stage, the Rewriter, whereas all other modules are in the second stage. The functionality of

each of the modules in Figure 2 is analyzed below.

2.2 Module Functionality

Rewriter: This module applies transformations to a given query and produces equivalent queries

that are hopefully more e�cient, e.g., replacement of views with their de�nition, 
attening out of

nested queries, etc. The transformations performed by the Rewriter depend only on the declarative,

i.e., static, characteristics of queries and do not take into account the actual query costs for the

speci�c DBMS and database concerned. If the rewriting is known or assumed to always be bene�cial,

the original query is discarded; otherwise, it is sent to the next stage as well. By the nature of the
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rewriting transformations, this stage operates at the declarative level.

Planner: This is the main module of the ordering stage. It examines all possible execution

plans for each query produced in the previous stage and selects the overall cheapest one to be used

to generate the answer of the original query. It employs a search strategy, which examines the

space of execution plans in a particular fashion. This space is determined by two other modules

of the optimizer, the Algebraic Space and the Method-Structure Space. For the most part, these

two modules and the search strategy determine the cost, i.e., running time, of the optimizer itself,

which should be as low as possible. The execution plans examined by the Planner are compared

based on estimates of their cost so that the cheapest may be chosen. These costs are derived by

the last two modules of the optimizer, the Cost Model and the Size-Distribution Estimator.

Algebraic Space: This module determines the action execution orders that are to be considered

by the Planner for each query sent to it. All such series of actions produce the same query answer,

but usually di�er in performance. They are usually represented in relational algebra as formulas or

in tree form. Because of the algorithmic nature of the objects generated by this module and sent

to the Planner, the overall planning stage is characterized as operating at the procedural level.

Method-Structure Space: This module determines the implementation choices that exist for

the execution of each ordered series of actions speci�ed by the Algebraic Space. This choice is

related to the available join methods for each join (e.g., nested loops, merge scan, and hash join),

if supporting data structures are built on the 
y, if/when duplicates are eliminated, and other

implementation characteristics of this sort, which are predetermined by the DBMS implementation.

This choice is also related to the available indices for accessing each relation, which is determined

by the physical schema of each database stored in its catalogs. Given an algebraic formula or tree

from the Algebraic Space, this module produces all corresponding complete execution plans, which

specify the implementation of each algebraic operator and the use of any indices.
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Cost Model: This module speci�es the arithmetic formulas that are used to estimate the cost

of execution plans. For every di�erent join method, for every di�erent index type access, and in

general for every distinct kind of step that can be found in an execution plan, there is a formula

that gives its cost. Given the complexity of many of these steps, most of these formulas are simple

approximations of what the system actually does and are based on certain assumptions regarding

issues like bu�er management, disk-cpu overlap, sequential vs. random I/O, etc. The most impor-

tant input parameters to a formula are the size of the bu�er pool used by the corresponding step,

the sizes of relations or indices accessed, and possibly various distributions of values in these rela-

tions. While the �rst one is determined by the DBMS for each query, the other two are estimated

by the Size-Distribution Estimator.

Size-Distribution Estimator: This module speci�es how the sizes (and possibly frequency dis-

tributions of attribute values) of database relations and indices as well as (sub)query results are

estimated. As mentioned above, these estimates are needed by the Cost Model. The speci�c es-

timation approach adopted in this module also determines the form of statistics that need to be

maintained in the catalogs of each database, if any.

2.3 Description Focus

Of the six modules of Figure 2, three are not discussed in any detail in this chapter: the Rewriter,

the Method-Structure Space, and the Cost Model. The Rewriter is a module that exists in some

commercial DBMSs (e.g., DB2-Client/Server and Illustra), although not in all of them. Most of

the transformations normally performed by this module are considered an advanced form of query

optimization, and not part of the core (planning) process. The Method-Structure Space speci�es

alternatives regarding join methods, indices, etc., which are based on decisions made outside the

development of the query optimizer and do not really a�ect much of the rest of it. For the Cost
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Model, for each alternative join method, index access, etc., o�ered by the Method-Structure Space,

either there is a standard straightforward formula that people have devised by simple accounting of

the corresponding actions (e.g., the formula for tuple-level nested loops join) or there are numerous

variations of formulas that people have proposed and used to approximate these actions (e.g.,

formulas for �nding the tuples in a relation having a random value in an attribute). In either case,

the derivation of these formulas is not considered an intrinsic part of the query optimization �eld.

For these reasons, we do not discuss these three modules any further until Section 7, where some

Rewriter transformations are described. The following three sections provide a detailed description

of the Algebraic Space, the Planner, and the Size-Distribution Estimator modules, respectively.

3 Algebraic Space

As mentioned above, a 
at SQL query corresponds to a select-project-join query in relational

algebra. Typically, such an algebraic query is represented by a query tree whose leaves are database

relations and non-leaf nodes are algebraic operators like selections (denoted by �), projections

(denoted by �), and joins1 (denoted by 1). An intermediate node indicates the application of the

corresponding operator on the relations generated by its children, the result of which is then sent

further up. Thus, the edges of a tree represent data 
ow from bottom to top, i.e., from the leaves,

which correspond to data in the database, to the root, which is the �nal operator producing the

query answer. Figure 3 gives three examples of query trees for the query

select name, 
oor

from emp, dept

where emp.dno=dept.dno and sal>100K .

1For simplicity, we think of the cross product operator as a special case of a join with no join quali�cation.

9



σ

π

sal>100K

σ
sal>100K

name,floor
π

name,floor
π

name,floor

π

π π
dno,floorname,dno

name,sal,dno

σ
sal>100KEMP EMP

EMP

DEPT

DEPT

DEPT

dno=dno

dno=dno

dno=dno

T1 T2 T3

Figure 3: Examples of general query trees.

For a complicated query, the number of all query trees may be enormous. To reduce the size

of the space that the search strategy has to explore, DBMSs usually restrict the space in several

ways. The �rst typical restriction deals with selections and projections:

R1 Selections and projections are processed on the 
y and almost never generate inter-

mediate relations. Selections are processed as relations are accessed for the �rst time.

Projections are processed as the results of other operators are generated.

For example, plan P1 of Section 1 satis�es restriction R1: the index scan of emp �nds emp tuples

that satisfy the selection on emp.sal on the 
y and attempts to join only those; furthermore, the

projection on the result attributes occurs as the join tuples are generated. For queries with no join,

R1 is moot. For queries with joins, however, it implies that all operations are dealt with as part

of join execution. Restriction R1 eliminates only suboptimal query trees, since separate processing

of selections and projections incurs additional costs. Hence, the Algebraic Space module speci�es
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alternative query trees with join operators only, selections and projections being implicit.

Given a set of relations to be combined in a query, the set of all alternative join trees is deter-

mined by two algebraic properties of join: commutativity (R1 1 R2 � R2 1 R1) and associativity

((R1 1 R2) 1 R3 � R1 1 (R2 1 R3)). The �rst determines which relation will be inner and

which outer in the join execution. The second determines the order in which joins will be executed.

Even with the R1 restriction, the alternative join trees that are generated by commutativity and

associativity is very large, 
(N !) for N relations. Thus, DBMSs usually further restrict the space

that must be explored. In particular, the second typical restriction deals with cross products.

R2 Cross products are never formed, unless the query itself asks for them. Relations are

combined always through joins in the query.

For example, consider the following query:

select name, 
oor, balance

from emp, dept, acnt

where emp.dno=dept.dno and dept.ano=acnt.ano

Figure 4 shows the three possible join trees (modulo join commutativity) that can be used to

combine the emp, dept, and acnt relations to answer the query. Of the three trees in the �gure,

EMP

EMP

DEPT DEPT

dno=dno

dno=dno

ano=ano

ano=ano

ACNT

ACNT EMP

DEPT

dno=dno
ano=ano

ACNT

T1 T2 T3

Figure 4: Examples of join trees; T3 has a cross product.

tree T3 has a cross product, since its lower join involves relations emp and acnt, which are not
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explicitly joined in the query. Restriction R2 almost always eliminates suboptimal join trees, due

to the large size of the results typically generated by cross products. The exceptions are very few

and are cases where the relations forming cross products are extremely small. Hence, the Algebraic

Space module speci�es alternative join trees that involve no cross product.

The exclusion of unnecessary cross products reduces the size of the space to be explored, but

that still remains very large. Although some systems restrict the space no further (e.g., Ingres and

DB2-Client/Server), others require an even smaller space (e.g., DB2/MVS). In particular, the third

typical restriction deals with the shape of join trees.

R3 The inner operand of each join is a database relation, never an intermediate result.

For example, consider the following query:

select name, 
oor, balance, address

from emp, dept, acnt, bank

where emp.dno=dept.dno and dept.ano=acnt.ano and acnt.bno=bank.bno

Figure 5 shows three possible cross-product-free join trees that can be used to combine the emp,

dept, acnt, and bank relations to answer the query. Tree T1 satis�es restriction R3, whereas trees

T2 and T3 do not, since they have at least one join with an intermediate result as the inner relation.

Because of their shape (Figure 5) join trees that satisfy restriction R3, e.g., tree T1, are called left-

deep. Trees that have their outer relation always being a database relation, e.g., tree T2, are called

right-deep. Trees with at least one join between two intermediate results, e.g., tree T3, are called

bushy. Restriction R3 is of a more heuristic nature than R1 and R2 and may well eliminate the

optimal plan in several cases. It has been claimed that most often the optimal left-deep tree is not

much more expensive than the optimal tree overall. The typical arguments used are two:

� Having original database relations as inners increases the use of any preexisting indices.
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Figure 5: Examples of left-deep (T1), right-deep (T2), and bushy (T3) join trees.

� Having intermediate relations as outers allows sequences of nested loops joins to be executed

in a pipelined fashion.2

Both index usage and pipelining reduce the cost of join trees. Moreover, restriction R3 signi�cantly

reduces the number of alternative join trees, to O(2N) for many queries with N relations. Hence,

the Algebraic Space module of the typical query optimizer only speci�es join trees that are left-deep.

In summary, typical query optimizers make restrictions R1, R2, and R3 to reduce the size of

the space they explore. Hence, unless otherwise noted, our descriptions follow these restrictions as

well.

2A similar argument can be made in favor of right-deep trees regarding sequences of hash joins.
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4 Planner

The role of the Planner is to explore the set of alternative execution plans, as speci�ed by the

Algebraic Space and the Method-Structure space, and �nd the cheapest one, as determined by

the Cost Model and the Size-Distribution Estimator. The following three subsections deal with

di�erent types of search strategies that the Planner may employ for its exploration. The �rst one

focuses on the most important strategy, dynamic programming, which is the one used by essentially

all commercial systems. The second one discusses a promising approach based on randomized

algorithms, and the third one talks about other search strategies that have been proposed.

4.1 Dynamic Programming Algorithms

Dynamic programming was �rst proposed as a query optimization search strategy in the context

of System R [A+76] by Selinger et al. [SAC+79]. Commercial systems have then used it in various

forms and with various extensions. We present this algorithm pretty much in its original form

[SAC+79], only ignoring details that do not arise in 
at SQL queries, which are our focus.

The algorithm is essentially a dynamically pruning, exhaustive search algorithm. It constructs

all alternative join trees (that satisfy restrictions R1-R3) by iterating on the number of relations

joined so far, always pruning trees that are known to be suboptimal. Before we present the algorithm

in detail, we need to discuss the issue of interesting order. One of the join methods that is usually

speci�ed by the Method-Structure Space module is merge scan. Merge scan �rst sorts the two

input relations on the corresponding join attributes and then merges them with a synchronized

scan. If any of the input relations, however, is already sorted on its join attribute (e.g., because of

earlier use of a B+-tree index or sorting as part of an earlier merge-scan join), the sorting step can

be skipped for the relation. Hence, given two partial plans during query optimization, one cannot
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compare them based on their cost only and prune the more expensive one; one has to also take into

account the sorted order (if any) in which their result comes out. One of the plans may be more

expensive but may generate its result sorted on an attribute that will save a sort in a subsequent

merge-scan execution of a join. To take into account these possibilities, given a query, one de�nes

its interesting orders to be orders of intermediate results on any relation attributes that participate

in joins. (For more general SQL queries, attributes in order-by and group-by clauses give rise to

interesting orders as well.) For example, in the query of Section 3, orders on the attributes emp.dno,

dept.dno, dept.ano, acnt.ano, acnt.bno, and bank.bno are interesting. During optimization of this

query, if any intermediate result comes out sorted on any of these attributes, then the partial plan

that gave this result must be treated specially.

Using the above, we give below a detailed English description of the dynamic programming

algorithm optimizing a query of N relations:

Step 1 For each relation in the query, all possible ways to access it, i.e., via all existing indices

and including the simple sequential scan, are obtained. (Accessing an index takes into

account any query selection on the index key attribute.) These partial (single-relation)

plans are partitioned into equivalence classes based on any interesting order in which

they produce their result. An additional equivalence class is formed by the partial

plans whose results are in no interesting order. Estimates of the costs of all plans

are obtained from the Cost Model module, and the cheapest plan in each equivalence

class is retained for further consideration. However, the cheapest plan of the no-order

equivalence class is not retained if it is not cheaper than all other plans.

Step 2 For each pair of relations joined in the query, all possible ways to evaluate their join

using all relation access plans retained after Step 1 are obtained. Partitioning and
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pruning of these partial (two-relation) plans proceeds as above.

: : :

Step i For each set of i� 1 relations joined in the query, the cheapest plans to join them for

each interesting order are known from the previous step. In this step, for each such set,

all possible ways to join one more relation with it without creating a cross product are

evaluated. For each set of i relations, all generated (partial) plans are partitioned and

pruned as before.

: : :

Step N All possible plans to answer the query (the unique set of N relations joined in the

query) are generated from the plans retained in the previous step. The cheapest plan

is the �nal output of the optimizer, to be used to process the query.

For a given query, the above algorithm is guaranteed to �nd the optimal plan among those satisfying

restrictions R1-R3. It often avoids enumerating all plans in the space by being able to dynamically

prune suboptimal parts of the space as partial plans are generated. In fact, although in general

still exponential, there are query forms for which it only generates O(N3) plans [OL90].

An example that shows dynamic programming in its full detail takes too much space. We

illustrate its basic mechanism by showing how it would proceed on the simple query below:

select name, mgr

from emp, dept

where emp.dno=dept.dno and sal>30K and 
oor=2

Assume that there is a B+-tree index on emp.sal, a B+-tree index on emp.dno, and a hashing index

on dept.
oor. Also assume that the DBMS supports two join methods, nested loops and merge
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scan. (Both types of information should be speci�ed in the Method-Structure Space module.) Note

that, based on the de�nition, potential interesting orders are those on emp.dno and dept.dno, since

these are the only join attributes in the query. The algorithm proceeds as follows: Step 1: All

possible ways to access emp and dept are found. The only interesting order arises from accessing

emp via the B+-tree on emp.dno, which generates the emp tuples sorted and ready for the join with

dept. The entire set of alternatives, appropriately partitioned are shown in the table below. Each

Relation Interesting Order Plan Description Cost

emp emp.dno Access through B+-tree on emp.dno. 700

{ Access through B+-tree on emp.sal. 200

Sequential scan. 600

dept { Access through hashing on dept.
oor. 50

Sequential scan. 200

partial plan is associated with some hypothetical cost; in reality, these costs are obtained from the

Cost Model module. Within each equivalence class, only the cheapest plan is retained for the next

step, as indicated by the boxes surrounding the corresponding costs in the table. Step 2: Since

the query has two relations, this is the last step of the algorithm. All possible ways to join emp

and dept are found, using both supported join methods and all partial plans for individual relation

access retained from Step 1. For the nested loops method, which relation is inner and which is

outer is also speci�ed. Since this is the last step of the algorithm, there is no issue of interesting

orders. The entire set of alternatives is shown in the table below in a way similar to Step 1. Based

on hypothetical costs for each of the plans, the optimizer produces as output the plan indicated by

the box surrounding the corresponding cost in the table.

As the above example illustrates, the choices o�ered by the Method-Structure Space in addition

to those of the Algebraic Space result in an extraordinary number of alternatives that the optimizer

must search through. The memory requirements and running time of dynamic programming grow
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Join Method Outer/Inner Plan Description Cost

nested loops emp/dept � For each emp tuple obtained through the B+-tree 1800

on emp.sal, scan dept through the hashing

index on dept.
oor to �nd tuples matching on dno.

� For each emp tuple obtained through the B+-tree 3000

on emp.dno and satisfying the selection on emp.sal,

scan dept through the hashing index on dept.
oor

to �nd tuples matching on dno.

dept/emp � For each dept tuple obtained through the hashing index 2500

on dept.
oor, scan emp through the B+-tree

on emp.sal to �nd tuples matching on dno.

� For each dept tuple obtained through the hashing index 1500

on dept.
oor, probe emp through the B+-tree

on emp.dno using the value in dept.dno to �nd

tuples satisfying the selection on emp.sal.

merge scan { � Sort the emp tuples resulting from accessing 2300

the B+-tree on emp.sal into L1.

� Sort the dept tuples resulting from accessing

the hashing index on dept.
oor into L2.

� Merge L1 and L2.

� Sort the dept tuples resulting from accessing 2000

the hashing index on dept.
oor into L2.

� Merge L2 and the emp tuples resulting from accessing

the B+-tree on emp.dno and satisfying the selection

on emp.sal.

exponentially with query size (i.e., number of joins) in the worst case since all viable partial plans

generated in each step must be stored to be used in the next one. In fact, many modern systems

place a limit on the size of queries that can be submitted (usually around �fteen joins), because

for larger queries the optimizer crashes due to its very high memory requirements. Nevertheless,

most queries seen in practice involve less than ten joins, and the algorithm has proved to be very

e�ective in such contexts. It is considered the standard in query optimization search strategies.
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4.2 Randomized Algorithms

To address the inability of dynamic programming to cope with really large queries, which appear

in several novel application �elds, several other algorithms have been proposed recently. Of these,

randomized algorithms, i.e., algorithms that \
ip coins" to make decisions, appear very promising.

The most important class of these optimization algorithms is based on plan transformations

instead of the plan construction of dynamic programming, and includes algorithms like Simulated

Annealing, Iterative Improvement, and Two-Phase Optimization. These are generic algorithms that

can be applied to a variety of optimization problems and are brie
y described below as adapted

to query optimization. They operate by searching a graph whose nodes are all the alternative

execution plans that can be used to answer a query. Each node has a cost associated with it, and

the goal of the algorithm is to �nd a node with the globally minimum cost. Randomized algorithms

perform random walks in the graph via a series of moves. The nodes that can be reached in one

move from a node S are called the neighbors of S. A move is called uphill (resp. downhill) if the

cost of the source node is lower (resp. higher) than the cost of the destination node. A node is

a global minimum if it has the lowest cost among all nodes. It is a local minimum if, in all paths

starting at that node, any downhill move comes after at least one uphill move.

4.2.1 Algorithm Description

Iterative Improvement (II) [NSS86, SG88, Swa89] performs a large number of local optimizations.

Each one starts at a random node and repeatedly accepts random downhill moves until it reaches

a local minimum. II returns the local minimum with the lowest cost found.

Simulated Annealing (SA) performs a continuous random walk accepting downhill moves always

and uphill moves with some probability, trying to avoid being caught in a high cost local minimum

[KGV83, IW87, IK90]. This probability decreases as time progresses and eventually becomes zero,

19



at which point execution stops. Like II, SA returns the node with the lowest cost visited.

The Two Phase Optimization (2PO) algorithm is a combination of II and SA [IK90]. In phase

1, II is run for a small period of time, i.e., a few local optimizations are performed. The output of

that phase, which is the best local minimum found, is the initial node of the next phase. In phase

2, SA is run starting from a low probability for uphill moves. Intuitively, the algorithm chooses a

local minimum and then searches the area around it, still being able to move in and out of local

minima, but practically unable to climb up very high hills.

4.2.2 Results

Given a �nite amount of time, these randomized algorithms have performance that depends on the

characteristics of the cost function over the graph and the connectivity of the latter as determined

by the neighbors of each node. They have been studied extensively for query optimization, being

mutually compared and also compared against dynamic programming [SG88, Swa89, IW87, IK90,

Kan91]. The speci�c results of these comparisons vary depending on the choices made regarding

issues of the algorithms' implementation and setup, but also choices made in other modules of the

query optimizer, i.e., the Algebraic Space, the Method-Structure Space, and the Cost Model. In

general, however, the conclusions are as follows. First, up to about ten joins, dynamic programming

is preferred over the randomized algorithms because it is faster and it guarantees �nding the

optimal plan. For larger queries, the situation is reversed, and despite the probabilistic nature of

the randomized algorithms, their e�ciency makes them the algorithms of choice. Second, among

randomized algorithms, II usually �nds a reasonable plan very quickly, while given enough time,

SA is able to �nd a better plan than II. 2PO gets the best of both worlds and is able to �nd plans

that are as good as those of SA, if not better, in much shorter time.
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4.3 Other Search Strategies

To complete the picture on search strategies we brie
y describe several other algorithms that people

have proposed in the past, deterministic, heuristic, or randomized. Ibaraki and Kameda were the

ones that proved that query optimization is an NP-complete problem even if considering only

the nested loops join method [IK84]. Given that result, there have been several e�orts to obtain

algorithms that solve important subcases of the query optimization problem and run in polynomial

time. Ibaraki and Kameda themselves presented an algorithm (referred to as IK here) that takes

advantage of the special form of the cost formula for nested loops and optimizes a tree query of

N joins in O(N2logN) time. They also presented an algorithm that is applicable to even cyclic

queries and �nds a good (but not always optimal) plan in O(N3) time.

The KBZ algorithm uses essentially the same techniques, but is more general and more sophis-

ticated and runs in O(N2) time for tree queries [KBZ86]. As with IK, the applicability of KBZ

depends on the cost formulas for joins to be of a speci�c form. Nested loops and hash join satisfy

this requirement but, in general, merge scan does not.

The AB algorithm mixes deterministic and randomized techniques and runs in O(N4) time

[SI93]. It uses KBZ as a subroutine, which needs O(N2) time, and essentially execute it O(N2)

times on randomly selected spanning trees of the query graph. Through an interesting separation

of the cost of merge scan into a part that a�ects optimization and a part that does not, AB is

applicable to all join methods despite the dependence on KBZ.

In addition to SA, II, and 2PO, Genetic Algorithms [Gol89] form another class of generic ran-

domized optimization algorithms that have been applied to query optimization. These algorithms

simulate a biological phenomenon: a random set of solutions to the problem, each with its own cost,

represent an initial population; pairs of solutions from that population are matched (cross-over) to
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generate o�spring that obtain characteristics from both parents, and the new children may also be

randomly changed in small ways (mutation); between the parents and the children, those with the

least cost (most �t) survive in the next generation. The algorithm ends when the entire population

consists of copies of the same solution, which is considered to be optimal. Genetic algorithms have

been implemented for query optimization with promising results [BFI91].

Another interesting randomized approach to query optimization is pure, uniformly-random gen-

eration of access plans [GLPK94]. Trully uniform generation is a hard problem and has been solved

for tree queries. With an e�cient implementation of this step, experiments with the algorithm have

shown good potential, since there is no dependence on plan transformations or random walks.

In the arti�cial intelligence community, the A* heuristic algorithm is extensively used for com-

plex search problems. A* has been proposed for query optimization as well, and can be seen as a

direct extension to the traditional dynamic programming algorithm [YL89]. Instead of proceeding

in steps and using all plans with n relations to generate all plans with n+ 1 relations together, A*

proceeds by expanding one of the generated plans at hand at a time, based on its expected prox-

imity to the optimal plan. Thus, A* generates a full plan much earlier than dynamic programming

and is able to prune more aggressively in a branch-and-bound mode. A* has been proposed for

query optimization and has been shown quite successful for not very large queries.

Finally, in the context of extensible DBMSs, several unique search strategies have been proposed,

which are all rule based. Rules are de�ned on how plans can be constructed or modi�ed, and the

Planner follows the rules to explore the speci�ed plan space. The most representative of these e�orts

are those of Starburst [Loh88, H+90] and Volcano/Exodus [GM93, GD87]. The Starburst optimizer

employs constructive rules whereas the Volcano/Exodus optimizers employ transformation rules.
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5 Size-Distribution Estimator

The �nal module of the query optimizer that we examine in detail is the Size-Distribution Estimator.

Given a query, it estimates the sizes of the results of (sub)queries and the frequency distributions

of values in attributes of these results.

Before we present speci�c techniques that have been proposed for estimation, we use an example

to clarify the notion of frequency distribution. Consider the following simple relation OLYMPIAN

on the left, with the frequency distribution of the values in its Department attribute on the right:

Name Salary Department

Zeus 100K General Management

Poseidon 80K Defense

Pluto 80K Justice

Aris 50K Defense

Ermis 60K Commerce

Apollo 60K Energy

Hefestus 50K Energy

Hera 90K General Management

Athena 70K Education

Aphrodite 60K Domestic A�airs

Demeter 60K Agriculture

Hestia 50K Domestic A�airs

Artemis 60K Energy

Department Frequency

General Management 2

Defense 2

Education 1

Domestic A�airs 2

Agriculture 1

Commerce 1

Justice 1

Energy 3

One can generalize the above and discuss distributions of frequencies of combinations of ar-

bitrary numbers of attributes. In fact, to calculate/estimate the size of any query that involves

multiple attributes from a single relation, multi-attribute joint frequency distributions or their

approximations are required. Practical DBMSs, however, deal with frequency distributions of indi-

vidual attributes only, because considering all possible combinations of attributes is very expensive.

This essentially corresponds to what is known as the attribute value independence assumption, and

although rarely true, it is adopted by all current DBMSs.

Several techniques have been proposed in the literature to estimate query result sizes and
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frequency distributions, most of them contained in the extensive survey by Mannino, Chu, and Sager

[MCS88] and elsewhere [Chr89]. Most commercial DBMSs (e.g., DB2, Informix, Ingres, Sybase,

Microsoft SQL server) base their estimation on histograms, so our description mostly focuses on

those. We then brie
y summarize other techniques that have been proposed.

5.1 Histograms

In a histogram on attribute a of relation R, the domain of a is partitioned into buckets, and a

uniform distribution is assumed within each bucket. That is, for any bucket b in the histogram,

if a value vi 2 b, then the frequency fi of vi is approximated by
P

vj2b
fj=jbj. A histogram with a

single bucket generates the same approximate frequency for all attribute values. Such a histogram

is called trivial and corresponds to making the uniform distribution assumption over the entire

attribute domain. Note that, in principle, any arbitrary subset of an attribute's domain may form

a bucket and not necessarily consecutive ranges of its natural order.

Histogram H1 Histogram H2

Frequency Approximate Frequency Approximate

Department in Bucket Frequency in Bucket Frequency

Agriculture 1 1.5 1 1.33

Commerce 1 1.5 1 1.33

Defense 2 1.5 2 1.33

Domestic A�airs 2 1.5 2l 2.5

Education 1l 1.75 1 1.33

Energy 3l 1.75 3l 2.5

General Management 2l 1.75 2 1.33

Justice 1l 1.75 1 1.33

Continuing on with the example of the OLYMPIAN relation, we present above two di�erent

histograms on the Department attribute, both with two buckets. For each histogram, we �rst

show which frequencies are grouped in the same bucket by enclosing them in the same shape (box

or circle), and then show the resulting approximate frequency, i.e., the average of all frequencies
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enclosed by identical shapes.

There are various classes of histograms that systems use or researchers have proposed for es-

timation. Most of the earlier prototypes, and still some of the commercial DBMSs, use trivial

histograms, i.e., make the uniform distribution assumption [SAC+79]. That assumption, however,

rarely holds in real data and estimates based on it usually have large errors [Chr84, IC91]. Exclud-

ing trivial ones, the histograms that are typically used belong to the class of equi-width histograms

[Koo80]. In those, the number of consecutive attribute values or the size of the range of attribute

values associated with each bucket is the same, independent of the frequency of each attribute value

in the data. Since these histograms store a lot more information than trivial histograms (they typ-

ically have 10-20 buckets), their estimations are much better. Histogram H1 above is equi-width,

since the �rst bucket contains four values starting from A-D and the second bucket contains also

four values starting from E-Z.

Although we are not aware of any system that currently uses histograms in any other class

than those mentioned above, several more advanced classes have been proposed and are worth

discussing. Equi-depth (or equi-height) histograms are essentially duals of equi-width histograms

[Koo80, PSC84]. In those, the sum of the frequencies of the attribute values associated with each

bucket is the same, independent of the number of these attribute values. Equi-width histograms

have a much higher worst-case and average error for a variety of selection queries than equi-depth

histograms. Muralikrishna and DeWitt [MD88] extended the above work for multidimensional

histograms that are appropriate for multi-attribute selection queries.

In serial histograms [IC93], the frequencies of the attribute values associated with each bucket

are either all greater or all less than the frequencies of the attribute values associated with any

other bucket. That is, the buckets of a serial histogram group frequencies that are close to each

other with no interleaving. Histogram H1 in the earlier table is not serial as frequencies 1 and 3
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appear in one bucket and frequency 2 appears in the other, while histogram H2 is. Under various

optimality criteria, serial histograms have been shown to be optimal for reducing the worst-case

and the average error in equality selection and join queries [IC93, Ioa93, IP95].

Identifying the optimal histogram among all serial ones takes exponential time in the number

of buckets. Moreover, since there is usually no order-correlation between attribute values and their

frequencies, storage of serial histograms essentially requires a regular index that will lead to the

approximate frequency of every individual attribute value. Because of all these complexities, the

class of end-biased histograms has been introduced. In those, some number of the highest frequencies

and some number of the lowest frequencies in an attribute are explicitly and accurately maintained

in separate individual buckets, and the remaining (middle) frequencies are all approximated together

in a single bucket. End-biased histograms are serial since their buckets group frequencies with no

interleaving. Identifying the optimal end-biased histogram, however, takes only slightly over linear

time in the number of buckets. Moreover, end-biased histograms require little storage, since usually

most of the attribute values belong in a single bucket and do not have to be stored explicitly.

Finally, in several experiments it has been shown that most often the errors in the estimates based

on end-biased histograms are not too far o� from the corresponding (optimal) errors based on serial

histograms. Thus, as a compromise between optimality and practicality, it has been suggested that

the optimal end-biased histograms should be used in real systems.

5.2 Other Techniques

In addition to histograms, several other techniques have been proposed for query result size esti-

mation [MCS88, Chr89]. Those that, like histograms, store information in the database typically

approximate a frequency distribution by a parameterized mathematical distribution or a polyno-

mial. Although requiring very little overhead, these approaches are typically inaccurate because
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most often real data does not follow any mathematical function. On the other hand, those based on

sampling primarily operate at run time [OR86, LNS90, HS92, HS95] and compute their estimates

by collecting and possibly processing random samples of the data. Although producing highly ac-

curate estimates, sampling is quite expensive and, therefore, its practicality in query optimization

is questionable, especially since optimizers need query result size estimations frequently.

6 Non-centralized Environments

The preceding discussion focuses on query optimization for sequential processing. This section

touches upon issues and techniques related to optimizing queries in non-centralized environments.

The focus is on the Method-Structure Space and the Planner modules of the optimizer, as the

remaining ones are not signi�cantly di�erent from the centralized case.

6.1 Parallel Databases

Among all parallel architectures, the shared-nothing and the shared-memory paradigms have emerged

as the most viable ones for database query processing. Thus, query optimization research has con-

centrated on these two. The processing choices that either of these paradigms o�er represent a huge

increase over the alternatives o�ered by the Method-Structure Space module in a sequential envi-

ronment. In addition to the sources of alternatives that we discussed earlier, the Method-Structure

Space module o�ers two more: the number of processors that should be given to each database

operation (intra-operator parallelism) and placing operators into groups that should be executed

simultaneously by the available processors (inter-operator parallelism, which can be further subdi-

vided into pipelining and independent parallelism). The scheduling alternatives that arise from these

two questions add at least another super-exponential factor to the total number of alternatives, and
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make searching an even more formidable task. Thus, most systems and research prototypes adopt

various heuristics to avoid dealing with a very large search space. In the two-stage approach [HS91],

given a query, one �rst identi�es the optimal sequential plan for it using conventional techniques

like those discussed in Section 4, and then identi�es the optimal parallelization/scheduling of that

plan. Various techniques have been proposed in the literature for the second stage, but none of

them claims to provide a complete and optimal answer to the scheduling question, which remains

an open research problem. In the segmented execution model, one considers only schedules that

process memory-resident right-deep segments of (possibly bushy) query plans one-at-a-time (i.e.,

no independent inter-operator parallelism). Shekita et al. [SYT93] combined this model with a

novel heuristic search strategy with good results for shared-memory. Finally, one may be restricted

to deal with right-deep trees only [SD90].

In contrast to all the search-space reduction heuristics, Lanzelotte et al. [LVZ93] dealt with both

deep and bushy trees, considering schedules with independent parallelism, where all the pipelines

in an execution are divided into phases, pipelines in the same phase are executed in parallel, and

each phase start only after the previous phase ended. The search strategy that they used was a

randomized algorithm, similar to 2PO, and proved very e�ective in identifying e�cient parallel

plans for a shared-nothing architecture,

6.2 Distributed Databases

The di�erence between distributed and parallel DBMSs is that the former are formed by a collection

of independent, semi-autonomous processing sites that are connected via a network that could be

spread over a large geographic area, whereas the latter are individual systems controlling multiple

processors that are in the same location, usually in the same machine room. Many prototypes of

distributed DBMSs have been implemented [BGW+81, ML86] and several commercial systems are
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o�ering distributed versions of their products as well (e.g., DB2, Informix, Sybase, Oracle).

Other than the necessary extensions of the Cost Model module, the main di�erences between

centralized and distributed query optimization are in the Method-Structure Space module, which

o�ers additional processing strategies and opportunities for transmitting data for processing at

multiple sites. In early distributed systems, where the network cost was dominating every other

cost, a key idea has been using semijoins for processing in order to only transmit tuples that would

certainly contribute to join results [BGW+81, ML86]. An extension of that idea is using Bloom

�lters, which are bit vectors that approximate join columns and are transferred across sites to

determine which tuples might participate in a join so that only these may be transmitted [ML86].

7 Advanced Types of Optimization

In this section, we attempt to provide a brief glimpse of advanced types of optimization that re-

searchers have proposed over the past few years. The descriptions are based on examples only;

further details may be found in the references provided. Furthermore, there are several issues that

are not discussed at all due to lack of space, although much interesting work has been done on

them, e.g., nested query optimization, rule-based query optimization, query optimizer generators,

object-oriented query optimization, optimization with materialized views, heterogeneous query op-

timization, recursive query optimization, aggregate query optimization, optimization with expensive

selection predicates, and query optimizer validation.

7.1 Semantic Query Optimization

Semantic query optimization is a form of optimization mostly related to the Rewriter module.

The basic idea lies in using integrity constraints de�ned in the database to rewrite a given query
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into semantically equivalent ones [Kin81]. These can then be optimized by the Planner as regular

queries and the most e�cient plan among all can be used to answer the original query. As a simple

example, using a hypothetical SQL-like syntax, consider the following integrity constraint:

assert sal-constraint on emp:

sal>100K where job = \Sr. Programmer".

Also consider the following query:

select name, 
oor

from emp, dept

where emp.dno = dept.dno and job = \Sr. Programmer".

Using the above integrity constraint, the query can be rewritten into a semantically equivalent one

to include a selection on sal:

select name, 
oor

from emp, dept

where emp.dno = dept.dno and job = \Sr. Programmer" and sal>100K.

Having the extra selection could help tremendously in �nding a fast plan to answer the query if

the only index in the database is a B+-tree on emp.sal. On the other hand, it would certainly be

a waste if no such index exists. For such reasons, all proposals for semantic query optimization

present various heuristics or rules on which rewritings have the potential of being bene�cial and

should be applied and which not.

7.2 Global Query Optimization

So far, we have focused our attention to optimizing individual queries. Quite often, however,

multiple queries become available for optimization at the same time, e.g., queries with unions,

queries from multiple concurrent users, queries embedded in a single program, or queries in a
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deductive system. Instead of optimizing each query separately, one may be able to obtain a global

plan that, although possibly suboptimal for each individual query, is optimal for the execution of

all of them as a group. Several techniques have been proposed for global query optimization [Sel88].

As a simple example of the problem of global optimization consider the following two queries:

select name, 
oor

from emp, dept

where emp.dno = dept.dno and job = \Sr. Programmer",

select name

from emp, dept

where emp.dno = dept.dno and budget > 1M.

Depending on the sizes of the emp and dept relations and the selectivities of the selections, it may

well be that computing the entire join once and then applying separately the two selections to

obtain the results of the two queries is more e�cient than doing the join twice, each time taking

into account the corresponding selection. Developing Planner modules that would examine all the

available global plans and identify the optimal one is the goal of global/multiple query optimizers.

7.3 Parametric/Dynamic Query Optimization

As mentioned earlier, embedded queries are typically optimized once at compile time and are

executed multiple times at run time. Because of this temporal separation between optimization

and execution, the values of various parameters that are used during optimization may be very

di�erent during execution. This may make the chosen plan invalid (e.g., if indices used in the

plan are no longer available) or simply not optimal (e.g., if the number of available bu�er pages or

operator selectivities have changed, or if new indices have become available). To address this issue,
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several techniques [GW89, INSS92, CG94] have been proposed that use various search strategies

(e.g., randomized algorithms [INSS92] or the strategy of Volcano [CG94]) to optimize queries as

much as possible at compile time taking into account all possible values that interesting parameters

may have at run time. These techniques use the actual parameter values at run time, and simply

pick the plan that was found optimal for them with little or no overhead. Of a drastically di�erent


avor is the technique of Rdb/VMS [Ant93], where by dynamically monitoring how the probability

distribution of plan costs changes, plan switching may actually occur during query execution.

8 Summary

To a large extent, the success of a DBMS lies in the quality, functionality, and sophistication of

its query optimizer, since that determines much of the system's performance. In this chapter,

we have given a bird's eye view of query optimization. We have presented an abstraction of the

architecture of a query optimizer and focused on the techniques currently used by most commercial

systems for its various modules. In addition, we have provided a glimpse of advanced issues in

query optimization, whose solutions have not yet found their way into practical systems, but could

certainly do so in the future.

Although query optimization exists as a �eld for more than twenty years, it is very surprising

how fresh it remains in terms of being a source of research problems. In every single module of

the architecture of Figure 2, there are many questions for which we do not have complete answers,

even for the most simple, single-query, sequential, relational optimizations. When is it worth to

consider bushy trees instead of just left-deep trees? How can one model bu�ering e�ectively in

the system's cost formulas? What is the most e�ective means of estimating the cost of operators

that involve random access to relations (e.g., nonclustered index selection)? Which search strategy
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can be used for complex queries with con�dence, providing consistent plans for similar queries?

Should optimization and execution be interleaved in complex queries so that estimate errors do not

grow very large? Of course, we do not even attempt to mention the questions that arise in various

advanced types of optimization.

We believe that the next twenty years will be as active as the previous twenty and will bring

many advances to query optimization technology, changing many of the approaches currently used

in practice. Despite its age, query optimization remains an exciting �eld.
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