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Cryptographic Primitives

• We will discuss the following primitives in this 
course
– Symmetric Encryption
– Message Authentication
– Public Key Cryptography
– Digital Signatures
– Pseudo-random Number Generators
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Block Ciphers

• Consider a block cipher as a permutation defined 
on n bit strings to n bit strings based on the secret 
key.

• It is assumed that if the key is secret the output of 
the block cipher will look like random 
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Iterated Block Cipher

• Requires the specification of an invertible 
round function g and key schedule function 
Ks and Number of rounds Nr.

F (K,x)
{
(K1, . . .KNr)← Ks(K)
w0 ← x

wi ← g(wi−1,Ki−1)for Nr ≥ i ≥ 1
Return wNr

}
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Inverting an Iterated Block Cipher

• Since function g is invertible. We can easily 
decipher the output of an iterated cipher

F−1(K, y)
{
(K1, . . .KNr)← Ks(K)
wNr ← y

wi−1 ← g−1(wi,Ki) for Nr > i ≥ 1
Return w0

}
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History of AES

• Due to limitations of DES (small key and 
block sizes), NIST started a open process to 
select a new block cipher.

• 15 proposals submitted to NIST around 1998.
• Rijndael from Belgium chosen as the AES in 

2001 after an open process.
• Rijndael is chosen because of its security, 

performance, efficiency, implementability, and 
flexibility.
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Overview of AES

• AES has 128 bits block size
• AES has three allowable key sizes 

|K|={128,192,256}
• AES has variable number of rounds

– If |K|=128 then Nr=10
– If |K|=192 then Nr=12
– If |K|=256 then Nr=14
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Block Ciphers

• Block length is fixed (n-bit)
• How to encrypt large messages?

– Partition into n-bit blocks
– Choose mode of operation

• Electronic Codebook (ECB), 

• Cipher-Block Chaining (CBC), 
• Cipher Feedback (CFB), 

• Output Feedback (OFB), 

• Counter (CTR)

• Padding schemes
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Evaluation criteria

• Identical messages
– under which conditions ciphertext of two identical 

messages are the same

• Chaining dependencies
– how adjacent plaintext blocks affect encryption of a 

plaintext block

• Error propagation
– resistance to channel noise

• Efficiency
– preprocessing
– parallelization: random access
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Notation

• Message x consists of plaintext blocks of size 
n
– x = x1 || x2 || … || xt

• Ciphertext of plaintext block xi denoted as ci

• Chaining requires an initialization vector that 
first plaintext block x1 will depend on. 
Initialization vector denoted as IV.
– IV should be selected randomly for each message 

(x)
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Electronic Codebook (ECB)

• Each block encrypted independently
• Identical plaintexts encrypted similarly
• No chaining, no error propagation

Ciphertext

Plaintext

Block Cipher 
EncryptionKey

Ciphertext

Plaintext

Block Cipher 
EncryptionKey
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Electronic Codebook (ECB)

• Does not hide data patterns, unsuitable for long 
messages
– Wiki example: pixel map using ECB

• Susceptible to replay attacks
– Example: a wired transfer transaction can be replayed by re-

sending the original message) 
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Cipher-Block Chaining (CBC)

• Allows random access to ciphertext
• Decryption is parallelizable 

– Plaintext block xj requires ciphertext blocks cj and 
cj-1

Block Cipher 
Encryption

Ciphertext

Plaintext

Initialization Vector (IV)

Block Cipher 
Encryption

Ciphertext

Plaintext

KeyKey
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Cipher-Block Chaining (CBC)

• Identical messages: changing IV or the first 
plaintext block results in different ciphertext

• Chaining: Ciphertext block cj depends on xj and 
all preceding plaintext blocks (dependency 
contained in cj-1)

• Error propagation: Single bit error on cj may flip 
the corresponding bit on xj+1, but changes xj
significantly.

• IV need not be secret, but its integrity should be 
protected
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Counter (CTR)

• Preprocessing possible (inc/decrement and 
enc/decrypt counter)

• Allows random access
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Data Integrity and Source Authentication

• Encryption does not protect data from modification 
by another party.

• Need a way to ensure that data arrives at destination 
in its original form as sent by the sender and it is 
coming from an authenticated source.
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Cryptographic Hash Functions

• A hash function maps a message of an 
arbitrary length to a m-bit output
– output known as the fingerprint or the message 

digest
– if the message digest is transmitted securely, then 

changes to the message can be detected

• A hash is a many-to-one function, so collisions 
can happen.
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Requirements for Cryptographic Hash 
Functions

Given a function h:X →Y, then we say that h is:

• preimage resistant (one-way):

if given y ∈Y it is computationally infeasible to find a 
value x ∈X s.t. h(x) = y

• 2-nd preimage resistant (weak collision resistant):

if given x ∈ X it is computationally infeasible to find a 
value x’ ∈ X, s.t. x’≠x and h(x’) = h(x)

• collision resistant (strong collision resistant):
if it is computationally infeasible to find two distinct 
values x’,x ∈ X, s.t. h(x’) = h(x) 
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Uses of hash functions

• Message authentication
• Software integrity
• One-time Passwords
• Digital signature
• Timestamping
• Certificate revocation management
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SHA1 (Secure Hash Algorithm)

• SHA was designed by NIST and is the US 
federal standard for hash functions, specified in 
FIPS-180 (1993).

• SHA-1, revised version of SHA, specified in 
FIPS-180-1 (1995) use with Secure Hash 
Algorithm). 

• It produces 160-bit hash values.
• NIST have issued a revision FIPS 180-2 that 

adds 3 additional hash algorithms:  SHA-256, 
SHA-384, SHA-512,  designed for compatibility 
with increased security provided by AES. 
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Limitation of Using Hash Functions for 
Authentication

• Require an authentic channel to transmit the 
hash of a message
– anyone can compute the hash value of a 

message, as the hash function is public
– not always possible

• How to address this?
– use more than one hash functions
– use a key to select which one to use
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Hash Family

• A hash family is a four-tuple (X,Y,K,H ), 
where
– X is a set of possible messages
– Y is a finite set of possible message digests
– K is the keyspace
– For each K∈K, there is a hash function hK∈H .

Each hK: X →Y

• Alternatively, one can think of H as a function 
K×X→Y
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Message Authentication Code

• A MAC scheme is a hash family, used for 
message authentication

• MAC = CK(M)
• The sender and the receiver share K
• The sender sends (M, Ck(M))
• The receiver receives (X,Y) and verifies that 

CK(X)=Y, if so, then accepts the message as 
from the sender

• To be secure, an adversary shouldn’t be able to 
come up with (X,Y) such that CK(X)=Y.
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HMAC Goals 

• Use available hash functions without modification.
• Preserve the original performance of the hash function

without incurring a significant degradation.
• Use and handle keys in a simple way.
• Allow easy replacement of the underlying hash 

function in the event that faster or more secure hash 
functions are later available.

• Have a well-understood cryptographic analysis of the 
strength of the authentication mechanism based on 
reasonable assumptions on the underlying hash 
function.
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HMAC

• K+ is the key padded out to input block 
size of the hash function and opad, 
ipad are specified padding constants 

• Key size: L/2 < K < L
• MAC size: at least L/2, where L is the 

hash output 

HMACK = Hash[(K+ ⊕ opad) || Hash[(K+ ⊕ ipad)||M)]]
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HMAC Overview
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Limitation of Secret Key (Symmetric) 
Cryptography 

• Secret key cryptography

– symmetric encryption ⇒ confidentiality (privacy)
– MAC (keyed hash) ⇒ authentication (integrity)

• Sender and receiver must share the same key
– needs secure channel for key distribution
– impossible for two parties having no prior relationship

• Other limitation of authentication scheme
– cannot authenticate to multiple receivers
– does not have non-repudiation
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Public Key Cryptography Overview

• Proposed in Diffie and Hellman (1976) “New Directions in 
Cryptography”
– public-key encryption schemes
– public key distribution systems

• Diffie-Hellman key agreement protocol

– digital signature
• Public-key encryption was proposed in 1970 by James 

Ellis
– in a classified paper made public in 1997 by the British 

Governmental Communications Headquarters
• Diffie-Hellman key agreement and concept of digital 

signature are still due to Diffie & Hellman
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Public Key Encryption

• Public-key encryption
– each party has a PAIR (K, K-1) of keys: K is the public

key and K-1 is the secret key, such that 
DK-1[EK[M]] = M

– Knowing the public-key and the cipher, it is 
computationally infeasible to compute the private key

– Public-key crypto system is thus known to be 
asymmetric crypto systems

– The public-key K may be made publicly available, e.g., 
in a publicly available directory

– Many can encrypt, only one can decrypt
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Public Key Cryptography Overview

• Public key distribution systems
– two parties who do not share any private information 

through communications arrive at some secret not 
known to any eavesdroppers

• Authentication with public keys: Digital Signature
– the authentication tag of a message can only be 

computed by one user, but can be verified by many
– called one-way message authentication in [Diffie & 

Hellman, 1976]
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Digital Signatures: The Problem

• Consider the real-life example where a person 
pays by credit card and signs a bill; the seller 
verifies that the signature on the bill is the same 
with the signature on the card

• Contracts, they are valid if they are signed.
• Can we have a similar service in the electronic 

world? 
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Digital Signatures

• Digital Signature: a data string which associates a 
message with some originating entity.

• Digital Signature Scheme: for each key, there is a 
SECRET signature generation algorithm and a PUBLIC 
verification algorithm.

• Services provided:
– Authentication
– Data integrity
– Non-Repudiation (MAC does not provide this.)
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RSA Signature

Key generation (as in RSA encryption):
• Select 2 large prime numbers of about the 

same size, p and q
• Compute n = pq, and Φ = (q - 1)(p - 1)
• Select a random integer e,  1 < e < Φ, s.t. 

gcd(e, Φ) = 1
• Compute  d, 1 <  d <  Φ s.t.  ed ≡ 1 mod Φ

Public key:  (e, n)
Secret key:  d, p and q must also remain secret
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RSA Signature (cont.) 

Signing message M
• M must verify 0 < M < n
• Use private key (d) 
• compute S = Md mod n

Verifying signature S
• Use public key (e, n) 
• Compute Se mod n = (Md mod n)e mod n = M

Note: in practice, a hash of the message is signed
and not the message itself.
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Implementing Cryptosystems is Hard

• Crypto is not easy !
• Simple changes in the algorithm could make the 

underlying system insecure !
• CryptoSystems usually fail because of 

implementation.
• Unlike theory, in practice cryptosystems do not 

work in isolation.
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Possible Implementation Pitfalls

• Not using publicly tested algorithms

– Do not use any algorithm that has not been tested 
by the crypto community extensively.

– Remember what happened to original DVD 
encryption

• Not using algorithms correctly

– I.e., Using AES in ECB mode or RSA function 
directly.

• Not generating randomness correctly.
– Note that CBC mode could be insecure if the IV is 

not generated randomly.



FEARLESS engineering

More on Random Number Generation

• Generic pseudo-random number generation is 
not secure.

• Must use provably-secure pseudo-random 
number generators (see the Anderson book for 
details.)
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Issues Related to Key Management

• Secret keys should be generated randomly.
• Secret keys should be protected.

– Your implementation should not leave keys in 
memory.

– Need to consider the trust model carefully.
• i.e., can someone easily access the secret key files?

• What happens if you have trojan on your computer?
• What happens if there is a system failure?
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Weakest Link: Users

• Users choose easy to guess passwords.
– Always make sure that chosen passwords are 

strong.

• They can be easily tricked into revealing 
passwords
– Consider two, three factor authentication methods.


