
Relational Query Optimization

Chapter 15

Overview of Query Optimization

 Goal of optimization:
To find more
efficient plans that
compute the same
answer for a given
query.

 Ideally: Want to find
best plan.
Practically: Avoid
worst plans!

Schema for Examples

 Reserves:
 Each tuple is 40 bytes long, 100 tuples per page, 1000 pages.

 Sailors:
 Each tuple is 50 bytes long, 80 tuples per page, 500 pages.

Sailors (sid: integer, sname: string, rating: integer, age: real)
Reserves (sid: integer, bid: integer, day: dates, rname: string)

Motivating Example
SELECT S.sname
FROM Reserves R, Sailors S WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Query Expressed as a
Relational Algebra Tree:

Motivating Example
SELECT S.sname
FROM Reserves R, Sailors S WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

(Simple Nested
Loops)

(On-the-fly)

(On-the-fly)

Plan 1: Plan 2:

Reserves Sailors

sid=sid

bid=100

sname (On-the-fly)

rating > 5
(Scan;
write to
temp T1)

(Scan;
write to
temp T2)

(Sort-Merge Join)

Motivating Example
SELECT S.sname
FROM Reserves R, Sailors S WHERE R.sid=S.sid AND

R.bid=100 AND S.rating>5

Reserves

Sailors

sid=sid

bid=100

sname
(On-the-fly)

rating > 5

(Use hash
index; do
not write
result to
temp)

(Index Nested Loops,
with pipelining)

(On-the-fly)

Plan 3:

Relational Algebra Equivalences

 Allow us to choose different join orders and to
`push’ selections and projections ahead of joins.

 Selections: (Cascade)      c cn c cnR R1 1  ... . . .

        c c c cR R1 2 2 1 (Commutative)

 Projections:        a a anR R1 1 . . . (Cascade)

 Joins: R (S T) (R S) T   (Associative)

(R S) (S R)   (Commutative)

Enumeration of Alternative Plans

 There are two main cases:
 Single-relation plans
 Multiple-relation plans

 For queries over a single relation, queries consist of a
combination of selects, projects, and aggregate ops:
 Each available access path (file scan / index) is considered,

and the one with the least estimated cost is chosen.
 The different operations are essentially carried out

together (e.g., if an index is used for a selection, projection
is done for each retrieved tuple, and the resulting tuples
are pipelined into the aggregate computation).

Cost Estimation

 For each plan considered, must estimate cost:
 Must estimate cost of each operation in plan tree.

• Depends on input cardinalities.
• We’ve already discussed how to estimate the cost of

operations (sequential scan, index scan, joins, etc.)

 Must also estimate size of result for each operation
in tree!

• Use information about the input relations.
• For selections and joins, assume independence of

predicates.

Statistics and Catalogs

 Need information about the relations and indexes
involved. Catalogs typically contain at least:
 # tuples (NTuples) and # pages (NPages) for each relation.
 # distinct key values (NKeys) and NPages for each index.
 Index height, low/high key values (Low/High) for each

tree index.

 Catalogs updated periodically.
 Updating whenever data changes is too expensive; lots of

approximation anyway, so slight inconsistency ok.

 More detailed information (e.g., histograms of the
values in some field) are sometimes stored.

Cost Estimates for Single-Relation Plans

 Sequential scan of file:
 NPages(R).

 Reduction factor (RF) associated with each term reflects
the impact of the term in reducing result size.

 Index I on primary key matches selection:
 Cost is Height(I)+1 for a B+ tree, about 1.2 for hash index.

 Clustered index I matching one or more selects:
 (NPages(I)+NPages(R)) * product of RF’s of matching selects.

 Non-clustered index I matching one or more selects:
 (NPages(I)+NTuples(R)) * product of RF’s of matching selects.

Example

 Doing a file scan:
 We retrieve all file pages (500).

 If we have an index on rating:
 (1/NKeys(I)) * NTuples(R) = (1/10) * 40000 tuples retrieved.
 Clustered index: (1/NKeys(I)) * (NPages(I)+NPages(R)) =

(1/10) * (50+500) pages are retrieved. (This is the cost.)
 Unclustered index: (1/NKeys(I)) * (NPages(I)+NTuples(R))

= (1/10) * (50+40000) pages are retrieved.

 If we have an index on sid:
 Would have to retrieve all tuples/pages. With a clustered

index, the cost is 50+500, with unclustered index, 50+40000.

SELECT S.sid
FROM Sailors S
WHERE S.rating=8

A Query Tree Illustrating Pipelining

 When a query is composed of several operators, the
result of one operator is sometimes pipelined to another
operator without creating a temporary relation to hold
the intermediate result.

Queries Over Multiple Relations
 Fundamental decision in System R: only left-deep join

trees are considered.
 As the number of joins increases, the number of alternative

plans grows rapidly; we need to restrict the search space.
 Left-deep trees allow us to generate all fully pipelined plans.

• Intermediate results not written to temporary files.
• Not all left-deep trees are fully pipelined (e.g., SM join).

BA

C

D

BA

C

D

C DBA

Enumeration of Left-Deep Plans
 Left-deep plans differ only in the order of relations,

the access method for each relation, and the join
method for each join.

 Enumerated using N passes (if N relations joined):
 Pass 1: Find best 1-relation plan for each relation.
 Pass 2: Find best way to join result of each 1-relation plan

(as outer) to another relation. (All 2-relation plans.)
 Pass N: Find best way to join result of a (N-1)-relation plan

(as outer) to the N’th relation. (All N-relation plans.)

 For each subset of relations, retain only:
 Cheapest plan overall, plus
 Cheapest plan for each interesting order of the tuples.

Enumeration of Plans (Contd.)

 ORDER BY, GROUP BY, aggregates etc. handled as a
final step, using either an `interestingly ordered’
plan or an addional sorting operator.

 An N-1 way plan is not combined with an
additional relation unless there is a join condition
between them, unless all predicates in WHERE have
been used up.
 i.e., avoid Cartesian products if possible.

 In spite of pruning plan space, this approach is still
exponential in the # of tables.

Cost Estimation for Multirelation Plans

 Consider a query block:
 Maximum # tuples in result is the product of the

cardinalities of relations in the FROM clause.
 Reduction factor (RF) associated with each term reflects

the impact of the term in reducing result size. Result
cardinality = Max # tuples * product of all RF’s.

 Multirelation plans are built up by joining one new
relation at a time.
 Cost of join method, plus estimation of join cardinality

gives us both cost estimate and result size estimate

SELECT attribute list
FROM relation list
WHERE term1 AND ... AND termk

Example
 Pass1:

 Sailors: B+ tree matches rating>5,
and is probably cheapest. However,
if this selection is expected to
retrieve a lot of tuples, and index is
unclustered, file scan may be cheaper.

• Still, B+ tree plan kept (because tuples are in rating order).

 Reserves: B+ tree on bid matches bid=100; cheapest.

Sailors:
B+ tree on rating
Hash on sid

Reserves:
B+ tree on bid

v Pass 2:
– We consider each plan retained from Pass 1 as the outer,
and consider how to join it with the (only) other relation.

u e.g., Reserves as outer: Hash index can be used to get Sailors tuples
that satisfy sid = outer tuple’s sid value.

Reserves Sailors

sid=sid

bid=100 rating > 5

sname

Nested Queries

 Nested block is optimized
independently, with the outer
tuple considered as providing a
selection condition.

 Outer block is optimized with
the cost of `calling’ nested block
computation taken into account.

 Implicit ordering of these blocks
means that some good strategies
are not considered. The non-
nested version of the query is
typically optimized better.

SELECT S.sname
FROM Sailors S
WHERE EXISTS

(SELECT *
FROM Reserves R
WHERE R.bid=103
AND R.sid=S.sid)

Nested block to optimize:
SELECT *
FROM Reserves R
WHERE R.bid=103

AND S.sid= outer value

Equivalent non-nested query:
SELECT S.sname
FROM Sailors S, Reserves R
WHERE S.sid=R.sid

AND R.bid=103

Summary

 Query optimization is an important task in a
relational DBMS.

 Must understand optimization in order to understand
the performance impact of a given database design
(relations, indexes) on a workload (set of queries).

 Two parts to optimizing a query:
 Consider a set of alternative plans.

• Must prune search space; typically, left-deep plans only.

 Must estimate cost of each plan that is considered.
• Must estimate size of result and cost for each plan node.
• Key issues: Statistics, indexes, operator implementations.

Summary (Contd.)
 Single-relation queries:

 All access paths considered, cheapest is chosen.
 Issues: Selections that match index, whether index key has

all needed fields and/or provides tuples in a desired order.

 Multiple-relation queries:
 All single-relation plans are first enumerated.

• Selections/projections considered as early as possible.

 Next, for each 1-relation plan, all ways of joining another
relation (as inner) are considered.

 Next, for each 2-relation plan that is `retained’, all ways of
joining another relation (as inner) are considered, etc.

 At each level, for each subset of relations, only best plan for
each interesting order of tuples is `retained’.

