
UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Data management in the cloud using
Hadoop

Murat Kantarcioglu

FEARLESS engineering

Outline

• Hadoop - Basics

• HDFS
– Goals

– Architecture

– Other functions

• MapReduce
– Basics

– Word Count Example

– Handy tools

– Finding shortest path example

• Related Apache sub-projects (Pig, Hbase,Hive)

FEARLESS engineering

Hadoop - Why ?

• Need to process huge datasets on large
clusters of computers

• Very expensive to build reliability into each
application

• Nodes fail every day
– Failure is expected, rather than exceptional
– The number of nodes in a cluster is not constant

• Need a common infrastructure
– Efficient, reliable, easy to use
– Open Source, Apache Licence version of Google

File System

FEARLESS engineering

Who uses Hadoop?

• Amazon/A9

• Facebook

• Google
– It has GFS

• New York Times

• Veoh

• Yahoo! was the first big company to use Hadoop.

• …. many more

• Cloudera
– Similar to Redhat business model.

– Added services on Hadoop

FEARLESS engineering

Commodity Hardware

• Typically in 2 level architecture
– Nodes are commodity PCs
– 30-40 nodes/rack
– Uplink from rack is 3-4 gigabit
– Rack-internal is 1 gigabit

Aggregation switch

Rack switch

UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

Hadoop Distributed File System
(HDFS)

Original Slides by

Dhruba Borthakur

Apache Hadoop Project Management Committee

FEARLESS engineering

Goals of HDFS

• Very Large Distributed File System
– Initial 4 goals (Surpassed): 10K nodes, 100M files, 10PB

• Assumes Commodity Hardware
– Files are replicated to handle hardware failure

– Detect failures and recover from them

• Optimized for Batch Processing
– Data locations exposed so that computations can move to

where data resides
• Remember moving large data is an important bottleneck.

– Provides very high aggregate bandwidth

FEARLESS engineering

Distributed File System

• Single Namespace for entire cluster: bottleneck
– HDFS Federation; Multiple namenodes, namespaces

Figure: https://hadoop.apache.org/docs/r2.7.2/hadoop-project-dist/hadoop-
hdfs/Federation.html

FEARLESS engineering

Distributed File System

• Block Pool: a set of blocks belong to a single namespace.
• Datanodes store blocks for all the block pools in the

cluster. Each Block Pool is managed independently.

• Namespace generates
Block IDs for new blocks
without the need for
coordination with the other
namespaces.

• Namenode/space is
deleted, the
corresponding block pool
at the Datanodes is
deleted.

FEARLESS engineering

Distributed File System

• Data Coherency
– Write-once-read-many access model
– Client can only append to existing files

• Files are broken up into blocks
– Typically 64MB block size
– Each block replicated on multiple DataNodes

• Intelligent Client
– Client can find location of blocks
– Client accesses data directly from DataNode

FEARLESS engineering

HDFS Architecture

FEARLESS engineering

Functions of a NameNode (Master)

• Manages File System Namespace
– Maps a file name to a set of blocks

– Maps a block to the DataNodes where it resides

– Keeps a directory tree of all files in the system

– Usually has more RAM than all other nodes

– Single point of failure

• Cluster Configuration Management

• Replication Engine for Blocks

FEARLESS engineering

NameNode Metadata

• Metadata in Memory
– The entire metadata is in main memory

– No demand paging of metadata

• Types of metadata
– List of files

– List of Blocks for each file

– List of DataNodes for each block

– File attributes, e.g. creation time, replication factor

• A Transaction Log
– Records file creations, file deletions etc

FEARLESS engineering

DataNode

• A Block Server
– Stores data in the local file system (e.g. ext3)

– Stores metadata of a block (e.g. CRC)

– Serves data and metadata to Clients

• Block Report
– Periodically sends a report of all existing blocks to

the NameNode

• Facilitates Pipelining of Data
– Forwards data to other specified DataNodes

FEARLESS engineering

Block Placement

• Current Strategy
– One replica on local node

– Second replica on a remote rack

– Third replica on same remote rack

– Additional replicas are randomly placed

• Clients read from nearest replicas

FEARLESS engineering

Heartbeats

• DataNodes send hearbeat to the NameNode
– Once every 3 seconds

• NameNode uses heartbeats to detect
DataNode failure

FEARLESS engineering

Replication Engine

• NameNode detects DataNode failures
– Chooses new DataNodes for new replicas

– Balances disk usage

– Balances communication traffic to DataNodes

FEARLESS engineering

Data Correctness

• Use Checksums to validate data
– Use CRC32

• File Creation
– Client computes checksum per 512 bytes

– DataNode stores the checksum

• File access
– Client retrieves the data and checksum from

DataNode

– If Validation fails, Client tries other replicas

FEARLESS engineering

NameNode Failure

• A single point of failure

• Transaction Log stored in multiple directories
– A directory on the local file system

– A directory on a remote file system (NFS/CIFS)

• Federated HDFS is a solution to the single
namenode issues

FEARLESS engineering

Data Pipelining

• Client retrieves a list of DataNodes on which
to place replicas of a block

• Client writes block to the first DataNode

• The first DataNode forwards the data to the
next node in the Pipeline

• When all replicas are written, the Client
moves on to write the next block in file

FEARLESS engineering

Rebalancer

• Goal: % disk full on DataNodes should be
similar
– Usually run when new DataNodes are

added/removed

– In an unbalanced cluster, data read/write requests
become very busy on some data nodes and some
data nodes are under utilized.

– Cluster is online when Rebalancer is active

– Rebalancer is throttled to avoid network
congestion

– Command line tool – not triggered automatically
Source: http://hadooptutorial.info/hdfs-rebalance/

FEARLESS engineering

Secondary NameNode

• FsImage: snapshot of the filesystem when
namenode started

• Tlog: sequence of changes made to the
filesystem after namenode started

• Logs become too large in time.

• Secondary Namenode is a checkpoint in
HDFS.

• A helper node for namenode. Also known as
checkpoint node in the community.

FEARLESS engineering

Secondary NameNode

• Regularly updated with logs from the
NameNode

• Updates the FsImage

Figure: http://blog.madhukaraphatak.com/secondary-namenode---what-it-really-do/

FEARLESS engineering

User Interface

• Commands for HDFS User:
– hadoop dfs -mkdir /foodir

– hadoop dfs -cat /foodir/myfile.txt

– hadoop dfs -rm /foodir/myfile.txt

• Commands for HDFS Administrator
– hadoop dfsadmin -report

– hadoop dfsadmin -decommision datanodename

• Web Interface
– http://host:port/dfshealth.jsp

UT DALLASUT DALLAS Erik Jonsson School of Engineering & Computer Science

FEARLESS engineering

MapReduce

Original Slides by

Owen O’Malley (Yahoo!)

&
Christophe Bisciglia, Aaron Kimball & Sierra Michells-Slettvet

FEARLESS engineering

MapReduce - What?

• MapReduce is a programming model for
efficient distributed computing

• It works like a Unix pipeline
– cat input | grep | sort | uniq -c | cat > output
– Input | Map | Shuffle & Sort | Reduce | Output

• Efficiency from
– Streaming through data, reducing seeks
– Pipelining

• A good fit for a lot of applications
– Log processing
– Web index building

FEARLESS engineering

MapReduce - Dataflow

FEARLESS engineering

MapReduce - Features

• Fine grained Map and Reduce tasks
– Improved load balancing
– Faster recovery from failed tasks

• Automatic re-execution on failure
– In a large cluster, some nodes are always slow or flaky
– Framework re-executes failed tasks

• Locality optimizations
– With large data, bandwidth to data is a problem
– Map-Reduce + HDFS is a very effective solution
– Map-Reduce queries HDFS for locations of input data
– Map tasks are scheduled close to the inputs when

possible

FEARLESS engineering

Word Count Example

• Mapper
– Input: value: lines of text of input
– Output: key: word, value: 1

• Reducer
– Input: key: word, value: set of counts
– Output: key: word, value: sum

• Launching program
– Defines this job
– Submits job to cluster

FEARLESS engineering

Word Count Dataflow

FEARLESS engineering

Word Count Mapper

public static class Map extends MapReduceBase implements
Mapper<LongWritable,Text,Text,IntWritable> {

private static final IntWritable one = new IntWritable(1);
private Text word = new Text();

public static void map(LongWritable key, Text value,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws
IOException {
String line = value.toString();
StringTokenizer = new StringTokenizer(line);
while(tokenizer.hasNext()) {

word.set(tokenizer.nextToken());
output.collect(word,one);
}

}
}

FEARLESS engineering

Word Count Reducer

public static class Reduce extends MapReduceBase implements
Reducer<Text,IntWritable,Text,IntWritable> {

public static void reduce(Text key, Iterator<IntWritable> values,
OutputCollector<Text,IntWritable> output, Reporter reporter) throws
IOException {

int sum = 0;
while(values.hasNext()) {

sum += values.next().get();
}
output.collect(key, new IntWritable(sum));

}
}

FEARLESS engineering

Word Count Example

• Jobs are controlled by configuring JobConfs
• JobConfs are maps from attribute names to string values
• The framework defines attributes to control how the job is

executed
– conf.set(“mapred.job.name”, “MyApp”);

• Applications can add arbitrary values to the JobConf
– conf.set(“my.string”, “foo”);
– conf.set(“my.integer”, 12);

• JobConf is available to all tasks

FEARLESS engineering

Putting it all together

• Create a launching program for your application
• The launching program configures:

– The Mapper and Reducer to use
– The output key and value types (input types are

inferred from the InputFormat)
– The locations for your input and output

• The launching program then submits the job and
typically waits for it to complete

FEARLESS engineering

Putting it all together

JobConf conf = new JobConf(WordCount.class);
conf.setJobName(“wordcount”);

conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(Map.class);
conf.setCombinerClass(Reduce.class);
conf.setReducer(Reduce.class);

conf.setInputFormat(TextInputFormat.class);
Conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf, new Path(args[0]));
FileOutputFormat.setOutputPath(conf, new Path(args[1]));

JobClient.runJob(conf);

Image:
https://www.tutorialspoint.com/map_reduce/map_reduce_
combiners.htm

FEARLESS engineering

Input and Output Formats

• For outputs, <key, value> pairs are used exclusively.
• A Map/Reduce may specify how it’s input is to be read

by specifying an InputFormat to be used
• A Map/Reduce may specify how it’s output is to be

written by specifying an OutputFormat to be used
• These default to TextInputFormat and

TextOutputFormat, which process line-based text data
• Another common choice is SequenceFileInputFormat

and SequenceFileOutputFormat for binary data

FEARLESS engineering

How many Maps and Reduces

• Maps
– Usually as many as the number of HDFS blocks being

processed, this is the default
– Else the number of maps can be specified as a hint
– The number of maps can also be controlled by specifying the

minimum split size
– Split is a logical division of the input data while block is a

physical division of data. Each split is gets a mapper.
– The actual sizes of the map inputs are computed by:

• max(min(block_size,data/#maps), min_split_size)

• Reduces
– Unless the amount of data being processed is small

• 0.95*num_nodes*mapred.tasktracker.tasks.maximum

FEARLESS engineering

Some handy tools

• Partitioners
• Combiners
• Compression
• Counters
• Zero Reduces
• Distributed File Cache
• Tool

FEARLESS engineering

Finding the Shortest Path: Intuition

• We can define the solution to this problem
inductively
– DistanceTo(startNode) = 0
– For all nodes n directly reachable from startNode,

DistanceTo(n) = 1
– For all nodes n reachable from some other set of nodes

S,
DistanceTo(n) = 1 + min(DistanceTo(m), m  S)

FEARLESS engineering

From Intuition to Algorithm

• A map task receives a node n as a key, and
(D, points-to) as its value
– D is the distance to the node from the start
– points-to is a list of nodes reachable from n

 p  points-to, emit (p, D+1)
• Reduces task gathers possible distances to a

given p and selects the minimum one

FEARLESS engineering

What This Gives Us

• This MapReduce task can advance the known
frontier by one hop

• To perform the whole BFS, a non-MapReduce
component then feeds the output of this step
back into the MapReduce task for another
iteration
– Problem: Where’d the points-to list go?
– Solution: Mapper emits (n, points-to) as well

FEARLESS engineering

Blow-up and Termination

• This algorithm starts from one node
• Subsequent iterations include many more

nodes of the graph as the frontier advances
• Does this ever terminate?

– Yes! Eventually, routes between nodes will stop
being discovered and no better distances will be
found. When distance is the same, we stop

– Mapper should emit (n,D) to ensure that “current
distance” is carried into the reducer

FEARLESS engineering

Extensions to Map-Reduce

• Main applications for Workflow systems
– Representing a cascade of multiple-map reduce jobs

– Complex distributed tasks

• Generally more efficient than running multiple map-
reduce sequentially.
– Writing results to hard disks could be problematic.

– Potential pipelining optimizations.

