
Query Optimization
Discussion

Murat Kantarcioglu

Join Order Optimization
Algorithm (General Case)

procedure findbestplan(S)
if (bestplan[S].cost  )

return bestplan[S]
// else bestplan[S] has not been computed earlier, compute it now
if (S contains only 1 relation)

set bestplan[S].plan and bestplan[S].cost based on the best way
of accessing S /* Using selections on S and indices on S */

else for each non-empty subset S1 of S such that S1  S
P1= findbestplan(S1)
P2= findbestplan(S - S1)
A = best algorithm for joining results of P1 and P2
cost = P1.cost + P2.cost + cost of A
if cost < bestplan[S].cost

bestplan[S].cost = cost
bestplan[S].plan = “execute P1.plan; execute P2.plan;

join results of P1 and P2 using A”
return bestplan[S]

Example

• Select S.bid, Count(*) As numres

From Boats B, Reserves R, Sailors S

Where R.sid=S.sid and B.bid=R.bid and

B.color=‘red’

Group by sid

• Suppose (these are chosen to make discussion easier)

– Reserves have B+ tree on sid, clustered B+ on bid

– Sailors B+ tree and hash index on sid

– Boats B+ tree and hash index on color

Example

Sid, count(*) as numres

Boats

Reserves

bid=bid

Color=‘red’

sid=sid
Sailors

Groupby_sid

Pass 1

• For reserves and sailors best option is file
scan

• We can use Hash index on boats to get
boats with matching color.

Pass 2 and Pass 3

• Pass 2: Consider each pair of joins and
the every join method available and all the
access paths for the inner.

• Pass 3: For each pair of tables considered
in Pass 2, consider the remaining one as
the inner one.

• Keep interesting ones such as sorted
orders for the group by.

• If the results found after pass 3 is not
sorted, add sorting cost.

Heuristic Optimization

• Cost-based optimization is expensive, even with dynamic
programming. Systems may use heuristics to reduce the
number of choices that must be made in a cost-based
fashion.

• Heuristic optimization transforms the query-tree by using
a set of rules that typically (but not in all cases) improve
execution performance:

– Perform selection early

– Perform projection early

– Perform most restrictive selection and join operations
(i.e. with smallest result size) before other similar
operations.

Structure of Query
Optimizers

• Many optimizers considers only left-deep join orders.

– Plus heuristics to push selections and projections down
the query tree

– Reduces optimization complexity and generates plans
amenable to pipelined evaluation.

• Heuristic optimization used in some versions of Oracle:

– Repeatedly pick “best” relation to join next

• Starting from each of n starting points. Pick best
among these

• Intricacies of SQL complicate query optimization

– E.g. nested subqueries

Structure of Query
Optimizers (Cont.)

• Some query optimizers integrate heuristic selection and the
generation of alternative access plans.

– Frequently used approach

• heuristic rewriting of nested block structure and aggregation

• followed by cost-based join-order optimization for each
block

– Some optimizers (e.g. SQL Server) apply transformations to
entire query and do not depend on block structure

• Even with the use of heuristics, cost-based query optimization
imposes a substantial overhead.

– But is worth it for expensive queries

– Optimizers often use simple heuristics for very cheap queries,
and perform exhaustive enumeration for more expensive
queries

