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Abstract

After a classifier is trained using a machine learn-

ing algorithm and put to use in a real world sys-

tem, it often faces noise which did not appear

in the training data. Particularly, some subset
of features may be missing or may become cor-
rupted. We present two novel machine learn-

ing techniques that are robust to this type of

classification-time noise. First, we solve an ap-

proximation to the learning problem using linear

programming. We analyze the tightness of our

approximation and prove statistical risk bounds

for this approach. Second, we define the online-
learning variant of our problem, address this vari-

ant using a modified Perceptron, and obtain a
statistical learning algorithm using an online-to-

batch technique. We conclude with a set of ex-

periments that demonstrate the effectiveness of
our algorithms.

of the features that were available during the training phas
may be missing or corrupted. In this paper, we explore
the possibility of anticipating and preparing for this tygfe
classification-time noise.

The problem of corrupted and missing features occurs in
a variety of different classification settings. For example
say that our goal is to learn an automatic medical diagno-
sis system. Each instance represents a patient, eachefeatur
contains the result of a medical test performed on that pa-
tient, and the purpose of the system is to detect a certain
disease. When constructing the training set, we go to the
trouble of carefully performing every possible test on each
patient. However, when the learned classifier is eventu-
ally deployed as part of a diagnosis system, and applied
to new patients, it is highly unlikely that all of the test re-
sults will be available. Technical difficulties may prevent
certain tests from being performed. Different patients may
have different insurance policies, each covering a differe
set of tests. A patient’'s blood sample may become con-

taminated, replacing the features that correspond to blood
tests with random noise, while having no effect on other
features. We would still like our diagnosis system to make

) ) ) . accurate predictions. Alternatively, our goal may be tmtra
Supervised machine learning techniques often play a cery fingerprint recognition system that controls the lock on a
tral role in solving complex real-world classification prob o After a few days of flawless operation, a user with
lems. First, we collect a training set of labeled examplesgreasy fingers comes along and leaves an oily smudge on
and present this set to a machine learning algorithm. Theny,g fingerprint scanner panel. From then on, all of the fea-
the learning algorithm constructs a classifier, which can bg o5 measured from the area under the smudge are either
put to use as a component in a working system. The Progjstorted or cannot be extracted altogether. Ideally, the fi

cess (_)f collecting th_e '_[raining setand constructing the-cla gerprint recognition system should continue operating.
sifier is called theraining phase whereas everything that

occurs after the hypothesis has been determined is calléy/e take a worst-case approach to our problem, and assume
the classification phaseln many cases, the training phase that the set of affected features is chosen by an adversary
can be performed under sterile and controlled conditionsindividually per instance. More specifically, we assume

and care can be taken to collect a high quality training setthat each feature is assigned an a-priori importance value
In contrast, the classification phase often takes placeein thand the adversary may remove or corrupt any feature sub-
noisy and uncertain conditions of the real world, and soméet whose total value is upper-bounded by a predefined pa-
- rameter. In many natural settings, missing and damaged
Appearing inProceedings of th@5"" International Conference features are not actually chosen adversarially, but we find i

on Machine LearningHelsinki, Finland, 2008. Copyright 2008 peneficial to have our algorithm as robust as possible.
by the author(s)/owner(s).

1. Introduction



Learning to Classify with Missing and Corrupted Features

We present two different learning algorithms for our prob-emerges as a natural one in the theoretical analysis of our
lem, each with pros and cons. The first approach formufirst, LP-based learning approach.

lates the learning problem as a linear program (LP), in a

way that closely resembles the quadratic programming for4.1. Related Work

mulation of the Support Vector Machine (Vapnik, 1998).
However, the number of constraints in this LP grows ex-
ponentially with the number of features. Using tricks from _ ) | '
convex analysis, we derive a related polynomial-size LP2 résearch topic which is entirely orthogonal to ours.
and give conditions under which it is an exact reformulation € leaming algorithms presented in (Dietterich & Bakiri,

of the original exponential-size LP. When these conditions-99°) and (Gamble et al., 2007) try to be robust to general
do not hold, the polynomial-size LP still approximates thedditive noise that appears at cIaSS|f|cat'|0n time, but not
exponential-size LP, and we prove an upper bound on thgecessar_lly to fea_\ture deletion or corruptiof?) presents

approximation difference. Despite the fact that the distri ~ 2dversarial leaming as a one-shot two-player game be-
tion of training examples is different from the distributio Ween the classifier and an adversary, and designs a ro-
of examples observed during the classification phase, wuSt léarning algorithm from a Bayesian-learning perspec-

prove a statistical generalization bound for this approach {V€- Our approach shares the motivation & but is oth-
erwise significantly different. In the related field of on-

Letting m denote the size of our training set andthe |ine learing, where the training and classification phases
number of features, our polynomial LP formulation usesare interlaced and cannot be distinguished, (Littlestone,

O(mn) variables and)(mn) sparse constraints. Depend- 1991) proves that the Winnow algorithm can tolerate vari-
ing on the dataset, this can still be rather Iarge for off-the ous types of noise, both adversarial and random.
shelf LP solvers. We see this as a shortcoming of our first

approach, which brings us to our second algorithmic aIO_Our work is most closely related to the work in (Globerson

proach. We define an online learning problem, which is& Roweis, 2006), and its more recent enhancement in (Teo
closely related to the original statistical learning peshl €t @l 2008). Our motivation is the same as theirs, and the

We devise a modified version of the Perceptron algorithnAPProaches share some similarities. Our experiments, pre-

(Rosenblatt, 1958) for this online problem, and conveg thi S€Nted in Sec. 4, suggest that our algorithms achieve con-
Perceptron into a statistical learning algorithm using arsiderably better performance, but we would also like to em-

online-to-batch conversion technique (Cesa-Bianchi et al Phasize more fundamental differences between the two ap-

2004). This approach benefits from the computational efProaches: We allow features to have different a-priori im-
ficiency of the online Perceptron, and from the generalizaportance levels, and we take this information into account

tion properties and theoretical guarantees provided by thi& our @lgorithm and analysis. Our approach usesreg-
online-to-batch technique. Experimentally, we obsera th ularization to promote a dense solution, where (Globerson

the efficiency of our second approach seems to come at tH ROWeis, 2006) used., regularization. Our second ap-
price of accuracy. proach, which uses online-to-batch conversion techniques

is entirely novel. Finally, we prove statistical generatian
Choosing an adequate regularization scheme is one of thgounds for our algorithms despite the change in distribbutio
keys to solving this problem successfully. Many existing at classification time.
machine learning algorithms, such as the Support Vector
Machine, usd., regularization to promote statistical gen- . . .
eralization. WhenL, regularization is used, the learning 2. A Linear Programming Formulation
algorithm may put a large weight on one feature and comin this section, and throughout the paper, we use lower-
pensate by putting a small weight on another feature. Thigase bold-face letters to denote vectors, and their piaia-f

promotes classifiers that focus their WEight on the featuregounterparts to denote each vector's components. We also
that contribute the most. For example, in the degeneratgse the notatiofn] as shorthand fof1,...,n}.

case where one of the features actually equals the label, an

L, regularized learning algorithm is likely to put most of its 2 1 Feature Deleting Noise

weight on that one feature. Some algorithms lseegu-

larization to further promote sparse solutions. In the con\We first examine the case where features are missing at
text of our work, sparsity actually makes a classifier moreclassification time. Lett C R™ be an instance space
susceptible to adversarial feature-corrupting noise. eHerand letD be a probability distribution on the product space
we prefer dense classifiers, which hedge their bets as muchk x {+1}. We receive a training set = {(x;,y;)};2,

as possible. Both of the algorithms presented in this papesampled i.i.d. fronD, which we use to learn our classifier.
achieve this density by usingla., regularization scheme. \We assign each feature € [n] a valuev; > 0. Infor-

It is interesting to note that the choice of tlie, norm  mally, we think ofv; as the a-priorinformativenessf fea-

Previous papers on “noise-robust learning” mainly deal
with the problem of learning with a noisy training set,
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turej, or as the importance of featufeo the classification The objective function of Eq. (3) is called tr@npirical
task. It can also represent the cost of obtaining the featurkinge-lossobtained on the sampl§. Since¢; is con-
(such as the price of a medical test). Next, we define thetrained to be non-negative, each training example con-
value of a subsef of features as the sum of values of the tributes a non-negative amount to the total loss. Moreover,
features in that subset, and we denbte/) = 3, ;v;.  the objective function of Eq. (3) upper bounds the empiri-
For instance, we frequently udé([n]) when referring to calrisk of (w,b). More specifically, for any feasible point
Z;‘  vj andV([n] \ J) when referring toy -, .Next, (w,b,&) of Eq. (3),& upper bounds times the indicator
we fix a noise-tolerance paramefe€rin [0, V/ Fn and de- function of the event
fine P = V([n]) — N. During the classmcatron phase,
instances are generated in the following way: First, a pair sopln Vi 0+ e wiziy) < 0.

) J:V([In\SHEN
(x,y) is sampled fromD. Then, an adversary selects a
subset of featureg C [n] such that([n] \ J) < N, and  To see this, note that for a given exampie, ;), if there
replacesr; with 0 for all j ¢ J. The adversary selects  exists a feature subsetsuch thatV([n] \ J) < N and
for each instance individually, and with full knowledge of y; (b + > jes wjiz;) < 0then the first constraint in Eq. (3)
the inner workings of our classifier. The noise-tolerance paenforceil >~V (J)/P. The assumptiol ([n] \ J) < N
rameterV essentially acts as an upper bound on the amountow implies thati’(J) > P, and thereforg; > ~. If such
of damage the adversary is allowed to inflict. We woulda setJ does not exist, then the second constraint in Eq. (3)
like to use the training se¥ (which does not have miss- enforcest; > 0.
ing features) to learn a binary classifier that is robusti® th

specific type of classification-time noise. The optimization problem above actually does more than

minimize an upper bound on the empirical risk. It also re-
We focus on learning linear margin-based classifiers. A linquires the margin attained by the feature substt grow
ear classifier is defined by a weight vectorc R” and a  with proportion toV(.JJ). While a true adversary would
bias termb ¢ R. Given an instance, which is sampled always inflict the maximal possible damage, our optimiza-
from D, and a set of coordinatesleft intact by the adver- tion problem also prepares for the case where less damage
sary, the linear classifier outputs- . ; w;z;. The sign s inflicted, requiring the confidence of our classifier to in-
of b+ >, ; w;z; constitutes the actual binary prediction, crease as less noise is introduced. We also restrittt a
while [b+ . ; w;z;| is understood as the degree of con- hyper-box of radius”, which controls the complexity of
fidence in that prediction. A classification mistake occursthe learned classifier and promotes dense solutions. More-
ifand only ify(b+3>_,. ; wjz;) <0, sowe define thesk  over, this constraint is easy to compute and makes our algo-
of the linear classifiefw, b) as rithms more efficient. Although Eq. (3) is a linear program,
] it is immediately noticeable that the size of its constra@tt
R(w,b) = x E)IND ( 37 with V([n] \ J) < N (1) may grow exponentially with the number of featuresFor
’ s.t. y(b+ Zje] wjxj) < 0) . example, ifv; = 1 for all j € [n] and if N is a positive in-
teger, then the linear program contains 0(/)%) constrains
Since D is unknown, we cannot explicitly minimize per example. We deal with this problem below.
Eqg. (1). Thus, we turn to the empirical estimate of Eq. (1),

theempirical risk defined as 2.2. A Polynomial Approximation

L Z[[ min b+ wimi ;) < 0]]7 @) Takmg rnsprratlon from (Carr & Lgnua, 2000), we frnd
J:V(In\)SN / an efficient approximate formulation of Eq. (3), which
turns out to be an exact reformulation of Eq. (3) when

where[ ] denotes the indicator function of the predicate v; € {0,1} forall j € [n]. Specifically, we replace Eq. (3)

Minimizing the empirical risk directly constitutes a diftilt
combinatorial optimization problem. Instead, we formelat
a linear program that closely resembles the formulation of  min va St G 4)
the Support Vector Machine (Vapnik, 1998). We choose , n

a margin parametey > 0 and a regularization parameter StYic[m] PAi — 35 o, +yib 2§
C > 0, and solve the problem Vie[m]Vjeln

[n]
m'yzz 1€Z (3) VZE[m}V‘]E[n} ai,j207
Vie[m] \;>0and¢ >0,
[wle < C,

Yiw;Ti; — H > vy — i,
min
w,b,&

st Vic[m] ¥J:V(n\J)<

N
yz(bJFZJerjxw) = Vng) —&
Vie[m] & =20, [wle < C

where the minimization is ovew € R", b € R, £ € R™,
A € R™ anday,...,a,,, each inR™. The number of
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variables and the number of constraints in this problem are-¢; provides a sufficient condition for Eq. (5) to hold for

both O(mn). The following theorem explicitly relates the the example(x;,y;). Moreover, this condition becomes

optimization problem in Eq. (4) with the one in Eq. (3).  both sufficient and necessary in the special case where

Theorem 1. If (w*,b*, £, A", ..., ) is an optimal U € {0,.1} forall j € [n]. Wg now proceeq with prov-

solution to Eq. (4), thettw*, b*, £*) is a feasible point of ing the flr_st_ part of Thm. 1 using claim (a) in I__emma 1.

Eq. (3), and therefore the value of Eq. (4) upper-bounds thérh? remaining pa_rts of the theorem follow similarly from

value of Eq. (3). Moreover, i; € {0,1} forall j € [],  claims (b) and (c) in the lemma.

then(w*, b*, £*) is an optimal solution to Eq. (3). Finally, -

if it does not hold that); € {0,1} for all j € [n], and Proof of Theorem 1Let (w*,b%, £, A%, af, ..., a;,) be

assuming|x;|| < 1 for all 4, then the difference between an optl_mal solution to Fhe linear program in Eq. (4). Specif-

the value of Eq. (4) and the value of Eq. (3) is at mogt. |cally,. it holds for alli € [m] that af and A} are non-
negative, thaP\; — -7, af ; +y;b* > —&, and that

As a first step towards proving Thm. 1, we momentarily v

forget about the optimization problem at hand and focuson ~ VJ € [n] ywjz;; — ?J > ANvj—aj; .

another question: given a specific triplat, b, ), is it a

feasible point of Eq. (3) or not? More concretely, for each

training exampléx;, y;), we would like to determine if for

Therefore, it also holds that the value of the following op-
timization problem

all J with V([n] \ J) < N it holds that max P)\; — 2?21 i+ yib* (8)
vilb+ s wimig) > T~ & 5) st Vjeln yawje; — T = Ny —aig,

. . . . Vje ii>0and ), >0,
We can answer this question by comparing; with the jeln] iz

value of the following integer program: is at least—¢>*. The strong duality principle of linear pro-
v gramming (Boyd & Vandenberghe, 2004) states that the
min y;b+ >0 7 (yiwjzi; — ) (6)  value of Eq. (8) equals the value of its dual optimization
T7€{0,1}" . .
st. P < Y v problem, which is:
For example, if the value of this integer program is less than' 7 ¥ 2= (yiwjaij = ") ©)
—&;, then letr’ be an optimal solution and we have that st Vje[n] 0<7; <1 and P < Y " 7ju; .
yi(b+ 20 Thwiw ) < (v Y7, Tjv;)/ P —&. Namely,
the set/ = {j € [n] : 7/ = 1} violates Eq. (5). On the
other hand, if there exists sordewith V'([n]\ J) < N that
. o ! . . Vi
violates Eq. (5) thep |ts.|nd|cator_vector is a feasible poin yi (b* + Zje.] w;xi’j) > 2 1§ ) _ 1
of Eq. (6) whose objective value is less thag;.

In other words, the value of Eq. (9) is also at least’.
Using claim (a) of Lemma 1, we have that

. . . ) _ holds for all J with V([n] \ J) < N. The optimization
Directly solving the integer program in Eq. (6) may be dif- problem in Eq. (4) also constraifisv|.. < C' and¢; > 0
ficult, so instead we examine the properties of the followinggg, 51 ; < [m], thus,(w*, b*, £*) satisfies the constraints in

linear relaxation: Eq. (3). Since Eq. (3) and Eq. (4) have the same objective
. n v, function, the value of Eg. (3) is upper bounded by the value
min yib+ 35 7 (viwsig — 75 (D ofEq. (a). m

st. Vjen] 0<7; <1 and P < 2?21 TjV;
2.3. Generalization Bounds

To analyze this relaxation we require the following Iemma.We now prove a generalization bound on the risk of the

Lemma 1. Fix an example(x;,y;), a linear classifier classifier learned in our framework, using PAC-Bayesian
(w,b), and a scalag; > 0, and letd be the value of Eq. (7) techniques (McAllester, 2003). Throughout, we assume
with respect to these choices. (aplf> —¢; then Eq. (5) that||x|. < 1 with probability 1 over D. For simplic-
holds. (b) In the special case wherg < {0,1} for all  ity, we assume that the bias tetnis 0, and thatv; > 0

j € [n] and whereN is an integergd > —¢; ifand only if ~ for all j. These assumptions can be relaxed at the cost of
Eq. (5) holds. (c) There exists a minimizer of Eq. (7) witha somewhat more complicated analysis. Given a classifier
at most one coordinate if0, 1). w, let £, (w,x,y) denote they-loss attained on the exam-

ple (x,y), defined as
The proof of the lemma is straightforward but technical,

and is omitted due to lack of space. Lemma 1 tells us that [{ min y Z wz; < ’VV(J)]] ’ (10)
comparing the value of the linear program in Eq. (7) with V(NS SN o P
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where[-] again denotes the indicator function. Note thatrelates the risk of a classifier in the above setting, to its
E[to(w,x,y)] = R(w,0), whereR is defined in Eq. (1).  expectedy-loss in the feature deletion setting, where the

Theorem 2. LetS be a sample of size drawn i.i.d from  latter can be bounded with Thm. 2.

D. For anyd > 0, with probability at leastl — ¢, it holds  Theorem 3. Lete, C, and N be arbitrary positives, and
for all w € R with |[w||» < C that the risk associated let v be at leastC'\/N In(1/¢)/2. Assume that we solve

with w is at most Eq. (4) with parameters, C, N and withv; = 1 for all
s j € [n]. Letw be the resulting linear classifier, and assume
sup {e : KL (% Yo by (WX, i) 6) < %} ) for simplicity that the bias terrhis zero. Letf be arandom

vector-valued function o, such that for everx € X,
where 3(m,d,7) = In(m/d) + 3°7_ In(4PC/(yv;))  f(x) is the instancex after the feature corruption scheme
and KL is the Kullback-Leibler divergence. The above described above. Then, usifgas defined in Eq. (10), for
is upper-bounded by the empiricatloss (which equals (x,y) drawn randomly fronD, we have:

LS 0 (w,xi,v;)), plus the additional term
m 2z o v P Pr (y(w, f(x)) <0) < E[ly(w,x,y)] +¢€ .

2 m m,0, 25(771,57 7)
\/m S (W, g, i) PO 1 Proof. Let (x,y) be an example and let denote the fea-
ture subset which remains uncorrupted by the adversary.

Proof sketch.The proof follows along similar lines to the Using Hoeffding’s bound and our assumption gnwe
PAC-Bayesian bound for linear classifiers in (McAllester, have thatPr (y ngjwjfj (x) < —7> is upper bounded
2003). First, define the axis-aligned b&x=[]_,[w; — by e. Therefore, with probability at least — ¢ over the
T wj + T#] N [-C,C]. We use the margin concept to randomness of, y(w, f(x)) is equal to:

upper boundE . ,)~p[lo(W,x,y)] by the expected. /,

loss overD of a classifier sampled uniformly from® N Yy wizi+y > wifi(x) >y Y wir; -y . (11)
[-C,C)™. We can upper bound this expected loss us- jeJ jeJ jeJ

ing the PAC-Bayesian theorem (McAllester, 2003), where . -

the uniform distribution ove3 N [~C, C]" is the poste-  1hus, with probability at least — ¢, Pr(y(w, f(x)) < 0)

rior classifier distribution, and the uniform distributiomer IS Upper bounded bi[¢, (w, x, y)]. Otherwise, with prob-
[—C, C]™ is the prior. The bound we get is defined in terms bility at moste, Pr(y(w, f(x)) < 0) < 1. a

of the average empiricdl, ,, loss of a random classifier . _ _ .

from B, plus a complexity term dependent on the volumeWe conclude with an interesting observation. In the fea-
ratio betweenB and [—C, C]". Finally, this average loss ture corruption setting, making a correct prediction boils
can be upper bounded by the empiri¢aloss ofw by re- down to achieving a sufficiently large margin on the uncor-
peating the technique of the first stage. The weaker bountHpted features. Let € (0,1) be a fixed ratio between
stated in the theorem follows from a lower bound on the!N andn, and letn grow to infinity. Assuming a reason-

KL divergence, presented in (McAllester, 2003). [  able degree of feature redundancy, the tgr ;. ; w;x;
grows agd(n). On the other hand, Hoeffding’s bound tells

us thaty >, w;z; grows only asO(v/N). Therefore,
Jor r arbitrarily close tol and a large enough, the first

It is interesting to note that ., regularization emerges as

the most natural one in this setting, since itinduces the mo _ _ .
convenient type of margin for relating tig, £ », (-, loss sum in Eq. (11) dominates the second. Namely, by setting

functions as described above. This lends theoretical supt = Q(VN) in Eq. (4), our ability to withstand feature cor-
port to our choice of thé ., norm in our algorithms. ruption matches our ability to withstand feature deletion.

2.4. Feature Corrupting Noise 3. Solving the Problem with the Perceptron

We now shift our attention to the case where a subset of th@Ve now turn to our second learning algorithm, taking a
features is corrupted with random noise, and show that thdifferent angle on the problem. We momentarily forget
the same LP approach used to handle missing features cafvout the original statistical learning problem and indtea
also deal with corrupted features if the margin parametedefine a related online prediction problem. In online learn-
~in Eg. (4) is sufficiently large. For simplicity, we shall ing there is no distinction between the training phase and
assume that all features are supported-oh 1] with zero  the classification phase, so we cannot perfectly replicate
mean. Unlike the feature deleting noise, we now assuméhe classification-time noise scenario discussed above. In
that the each feature selected by the adversary is replaceatead, we assume that an adversary removes features from
with noise sampled from some distribution, also supportedvery instance that is presented to the algorithm. We ad-
on [—1,1] and having zero mean. The following theorem dress this online problem with a modified version of the
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Perceptron algorithm (Rosenblatt, 1958) and use an onlinaised above is the value that optimizes the cumulative loss
to-batch conversion technique to convert the online algobound below. As in the previous section, restricting the

rithm back into a statistical learning algorithm. The de-online classifier to the hyper-cube helps us control its com-
tour through online learning gives us efficiency while the plexity, while promoting dense classifiers. It also comes in

online-to-batch technique provides us with the statisticahandy in the next stage, when we convert the online algo-
generalization properties we are interested in. rithm into a statistical learning algorithm.

Using a rather straightforward adaptation of standard Per-
ceptron loss bounds, to the case where the hypothesis is

We start with a modified version of the well-known Per- confined to the hyper-cube, leads us to the following the-
ceptron algorithm (Rosenblatt, 1958), which observes a se@rem, which compares the cumulative loss suffered by the

quence of example@(xi, yi))m one example at a time, algorithm with the cumulative loss suffered by any fixed

=1’ m .. .
and incrementally builds a sequeng@v;, b)), of lin- hypothesis in the hyper-cube of raditis

ear margin-based classifiers, while constraining them to Zheorem 4. Choose anyC' > 0 and letw* € R”
hyper-cube. Before processing exampleghe algorithm and b* € R be such that|w*|. < C and |p*| <
has the vectow,; and the bias term; stored in its mem- C. Let (<Xiv3/i))z-il be an arbitrary sequence of exam-
ory. An adversary takes the instankgand reveals only ples, with||x;||y; < 1 for all . Assume that this se-

a subset/; of its features to the algorithm, attempting to quence is presented to our modified Perceptron, and let
cause the online algorithm to make a prediction mistake¢(w;, b;, x;,y;) be as defined in Eg. (12). Then it holds
In choosingJ;, the adversary is restricted by the constraintthat %n Yot &(wy, bi, x4, ;) is upper-bounded by

V([n] \ J) < N. Next, the algorithm predicts the label
associated witk; to be

3.1. Perceptron with Projections onto the Cube

1 — C [2(n+1
7Z£(W*7b*7xi7yi) + — M .
ym o= Y m

Slgl’](bz =+ ZjEJi wi’jxi?j)

The next step is to convert our online algorithm into a sta-

After the prediction is made, the correct labels revealed "'~ ; ;
tistical learning algorithm.

and the algorithms suffers a hinge-lo§swv, b, x, y), de-

fined as ] ]
3.2. Converting Online to Batch

[ 1V (J)
max
J:V(n\J)<N P

- y(b+ EjeJ wjmj)} , (12)  To obtain a statistical learning algorithm, with risk guar-

+ antees, we assume that the sequence of examples pre-
whereP = V([n]) — N and|a], denotes the hinge func- sented to thg _modified Perceptron. algo.rith_m i_s a training
tion, max{a, 0}. Note thaté(w;, b;, x;, y:) upper-bounds set sampled i.i.d. from the underlying distributién We
~ times the indicator of a prediction mistake on the currenf!'n 1 the simple averaging tgzcihnlqule presented in (Cesa-
example, for any choice of, made by the adversary. We Bianchi et al., 2004) and define = =5 ", w;, and

_1Nm g AN i
choose to denote the loss byo emphasize the close rela- b= Zizl bi—1. (W,b)is cal_l_ed theaverage hypot_hegls .
tion betweert (wi, bi, x:, ;) andé, in Eq. (3). Due to our and defines our robust classifier. We use the derivation in

choice of loss function, we can assume that the adversa§?es""'B,i"’mchi etal., 2004) to prove that the_ average elassi
chooses the subsgt that inflicts the greatest loss. ler provides an adequate solution to our original problem.

Note that the loss function we use, defined in Eq. (12), is
bounded and convex in its first two arguments. This al-
lows us to apply (Cesa-Bianchi et al., 2004, Corollary 2) to
relate the risk of w, b) with the cumulative online loss suf-
fered by the Perceptron. It also allows us to apply Hoeffd-
ing’s bound to relate the expected loss of any fixed classifier
' [wij +yitaig)ee 1fj€J; (w™, b*) with its empirical loss on the training set. Com-
jen] wip; = { w; s otherwise ®@  bining both bounds results in the following corollary.
Corollary 1. For anyé > 0, with probability at least —

andb;yy = [b; + yi7] ., Wwherer = Y2E1C and[a].  over the random sampling &, our algorithm constructs

V2m = _ = .
abbreviates the functianax { min{a, C}, —C'}. This up- (W, b) such thatE ,)p [£(W, b, x,y)] is at most

date is nothing more than the standard Perceptron update
with constant learning rate, with an added projection step . 2(n+1+1n(2))
onto the hyper-cube of radiu. The specific value of (W%QHE [E(w, b, %, )] + BO+I)\ ————

The algorithm now uses the correct lapgto construct the
pair (w;11,b;+1), which is used to make the next predic-
tion. If £(w, b, x,y) = 0, the algorithm definew, .1 = w;
andb; 1 = b;. Otherwise, the algorithm defines;, ; us-
ing the following coordinate-wise update
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Following the lead of (Globerson & Roweis, 2006),
—©—LP-Based ; we conducted experiments using the SPAM and MNIST
I datasets. The SPAM dataset, taken from the UCI reposi-
tory, is a collection of spam and non-spam e-mails. Spam
can be detected by different word combinations, so we ex-
pect considerable feature redundancy in this dataset. The
MNIST dataset is a collection of pixel-maps of handwritten
digits. Again, following (Globerson & Roweis, 2006), we
0 10 20 30 40 500 25 50 75 100 125 150 focused on the binary problem of distinguishing the digit
Num deleted Num deleted from the digit7. Adjacent pixels often contain redundant

Figure 1.A comparison of our LP-based approach with the algo-information, making MNIST well-suited for our needs.

rithm of (Globerson & Roweis, 2006) (GR) and with SVM on o aach dataset, we performztypes of experiments. The
SPAM (left) and MNIST (right), with random noise. first type follows exactly the protocol used in (Globerson
& Roweis, 2006). Namely, the algorithm is trained with a
small training set ob0 instances, and its performance is
where¢ = ymax .y )\ <N (V(J)/P), andH is the  tested in the face alindomfeature-deleting noise, which
set of all pairs(w, b) such that|w||., < C and|b] < C. uniformly deletesN non-zero features from each test in-
stance, for various choices &f. Notice that this setting
Using the fact that the hinge loss upper-boundines the deviates from the adve_rsarigl setting cons.idered so fdr, an
indicator function of a prediction mistake, regardlesshef t the reason for conducting this experiment is to compare our

adversary’s choice of the feature set, we have that the e){_esuIFs to those _reported in (Globerson &_ Raweis, 2006)'
pected hinge loss upper-bound® (w, b). A validation set is used for parameter tuning. We did not

test our online-to-batch algorithm within this setting)c
. . it has little advantage with such a small training set. The
4. Experiments and Conclusions results are presented in Fig. 1, and show test error as a

We compare the performance of our two algorithms (Lp_function of_ the number of_ deleted features. Compared to
based and online-to-batch) with that of a lindar SVM its competitors, our algorithm has a clear and substantial
(Joachims, 1998) and with the results reported in (Glober2dvantage.

son & Roweis, 2006). We used the GLPK packageThe second type of experiment simulates more closely the
(http: // www. gnu. or g/ sof t war e/ gl pk) to solve  adversarial setting discussed throughout the paper. Using
the LP formulation of our LP-based algorithm. 10-fold cross-validation, we corrupted each test instance

We begin with a highly illustrative sanity check. We gener- USing & greedy adversary, which deletes the most valuable
ated a synthetic datasetsf00 linearly separable instances €atures of éach instance until either the lidvits reached
in R20 and added label noise by flipping each label with ©" all useful features are deleted,/9 of the training set
probability 0.2. Then, we added two copies of the actual was used for parameter tuning. Due to computational con-

label as additional features to each instance, for a totgpd€rations when running our LP-based algorithm, we per-
of 22 features. We randomly split the data into equa"yformed a variant of bagging by randomly splitting the train-

sized training and test sets, and trained an SVM classind Set into chunks, training on each chunk individually,
fier on the training set. We set = 1 for j € [20] and and finally averaging the resulting weight vectors. In con-
a1 = vag = 10, expressing our prior kndwledge that the trast, our online-to-batch algorithm trained on the entire

last two features are more valuable. Using these featur@ining set at once, and so did the SVM algorithm. We
values, we applied our technique with different values of €Peated this process for different valuesiéf For the
the parametedN. We removed one or both of the high- SPAM (_:Iataset, we repeated thls_ent|re experiment twice,
value features from the test set and evaluated the class?C€ With features values set uniformly tol, and once
fiers. With only one feature removed both SVM and our With v; set using a mutual information heuristic. Formally,
approach attained a test error of zero. With two featured'€ Set

removed, the test error of the SVM classifier jumped to v = % rg{leagf([[mj > C]];y) )

0.477 + 0.004 (over 100 random repetitions of the exper- i

iment), indicating that it essentially put all of its weight whereZ is such thad  v; = n, and where ([z; > ];y)

on the two perfect features. With the noise parameter sds the mutual information between the predichte > ]

to N = 20, our approach attained a test error of only and the labe};, over all examples in the training set. Intu-
0.22 +0.002. This is only marginally above the best possi- itively, we are calculating the amount of information con-
ble error rate for this setting. tained in each individual feature on the label, provided tha

Test Error




Learning to Classify with Missing and Corrupted Features

LP-Based LP-Based LP-Based
Online-Batch Online-Batch Online-Batch

—B—svM —B—svm —B—svM

o
™

0.8 0.4

o
=)
o
o
1)
=
o
w

Test Error
o
=
A\
Test Error
o
iy
A4
Test Error
o
N

0.1

o
N

0.2

0 2 4 6 0O 2 4 6 8 10 12 14 ' 10 20 30 40 50

N N N
Figure 2.Experiments on SPAM with'j € J,v; = 1 (left) and withv; set with a mutual information heuristic (center). Experiments
on MNIST withv; set with a mutual information heuristic (right).

we are looking only at linear threshold functions. When ex-Dietterich, T. G., & Bakiri, G. (1995). Solving multiclass
perimenting with the MNIST dataset, we only used the val- learning problems via error-correcting output codes.
ues ofv; set by our heuristic. This is a natural choice since Journal of Artificial Intelligence Research, 263-286.

the features of MNIST are of markedly different impor-
tance levels. For example, the corner pixels, which are a
ways zero, are completely uninformative, while other pix-
els may be very informative. The results are presented in

Fig. 2 and show test error as a function/éf Clearly, our Globerson, A., & Roweis, S. (2006). Nightmare at test
algorithms have the advantage. SVM repeatedly puts all of 4ie- robust learning by feature deletidProceedings of
its eggs in a small number of baskets, and is severely pun- ;oL 23 (pp. 353-360).

ished for this, while our technique anticipates the actions

of the adversary and hedges its bets accordingly. Joachims, T. (1998). Making large-scale support vector
machine learning practical. lddvances in kernel meth-
ods - support vector learningvIT Press.

|Gamble, E., Macskassy, S., & Minton, S. (2007). Classifi-
cation with pedigree and its applicability to record link-
age.Workshop on Text-Mining & Link-Analysis

Moreover, the results in Fig. 2 demonstrate the tradeoffs
between our LP-based and online-to-batch algorithms. Al-
though we have handicapped the LP-based algorithm byittlestone, N. (1991). Redundant noisy attributes, latite:
chunking the training set, its performance is comparable errors, and linear-threshold learning using winnéo-
and sometimes superior to that of the online-to-batch algo- ceedings of the COLT @p. 147-156).

rithm. With less or without chunking, we expect its perfor-
mance to be even better. McAllester, D. A. (2003). Simplified PAC-bayesian margin

i bounds.Proceedings of COLT 1(pp. 203-215).
We conclude that our proposed algorithms successfully

withstand feature corruption at classification time, antkco Rosenblatt, F. (1958). The perceptron: A probabilistic
siderably improve upon the current state of the art. On a model for information storage and organization in the
more general note, this work has interesting connections to brain. Psychological Reviey65, 386—407.

a recent trend in machine learning research, which is to de-

velop sparse classifiers supported on a small subset of thge© C--H., Globerson, A, Roweis, S., & Smola, A. (2008).
features. In our setting, we are interested in the exact op- CONvex leaming with invariancefdvances in NIPS 21

posite, and the efficacy of using the. norm is clearly  yppnik v, N. (1998).Statistical learning theoryWiley.
demonstrated here. The trade-off between robustness and
sparsity provides fertile ground for future research.
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