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Abstract

The standard assumption of identically distributed training and test data is violated
when an adversary can exercise some control over the generation of the test data.
In a prediction game, a learner produces a predictive model while an adversary
may alter the distribution of input data. We study single-shot prediction games in
which the cost functions of learner and adversary are not necessarily antagonistic.
We identify conditions under which the prediction game has a unique Nash equi-
librium, and derive algorithms that will find the equilibrial prediction models. In a
case study, we explore properties of Nash-equilibrial prediction models for email
spam filtering empirically.

1 Introduction

The assumption that training and test data are governed by identical distributions underlies many
popular learning mechanisms. In a variety of applications, however, data at application time are
generated by an adversary whose interests are in conflict with those of the learner. In computer
and network security, fraud detection, and drug design, the distribution of data is changed – by a
malevolent individual or under selective pressure – in response to the predictive model.

An adversarial interaction between learner and data generator can be modeled as a single-shot game
in which one player controls the predictive model whereas the other player exercises some control
over the distribution of the input data. The optimal action for either player generally depends on
both players’ moves.

The minimax strategy minimizes the costs under the worst possible move of the opponent. This
strategy is motivated for an opponent whose goal is to inflict the highest possible costs on the learner;
it can also be applied when no information about the interests of the adversary is available. Lanckriet
et al. [1] study the so called Minimax Probability Machine. This classifier minimizes the maximal
probability of misclassifying new instances for a given mean and covariance matrix of each class.
El Ghaoui et al. [2] study a minimax model for input data that are known to lie within some hyper-
rectangle. Their solution minimizes the worst-case loss over all possible choices of the data in these
intervals. Similarly, minimax solutions to classification games in which the adversary deletes input
features or performs a feature transformation have been studied [3, 4, 5]. These studies show that
the minimax solution outperforms a learner that naively minimizes the costs on the training data
without taking the adversary into account.

When rational opponents aim at minimizing their personal costs, then the minimax solution is overly
pessimistic. A Nash equilibrium is a pair of actions chosen such that no player gains a benefit by
unilaterally selecting a different action. If a game has a unique Nash equilibrium, it is the strongest
available concept of an optimal strategy in a game against a rational opponent. If, however, multiple
equilibria exist and the players choose their action according to distinct ones, then the resulting
combination may be arbitrarily disadvantageous for either player. It is therefore interesting to study
whether adversarial prediction games have a unique Nash equilibrium.
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We study games in which both players – learner and adversary – have cost functions that consist of
data-dependent loss and regularizer. Contrasting prior results, we do not assume that the players’
cost functions are antagonistic. As an example, consider that a spam filter may minimize the error
rate whereas a spam sender may aim at maximizing revenue solicited by spam emails. These criteria
are conflicting, but not the exact negatives of each other. We study under which conditions unique
Nash equilibria exist and derive algorithms for identifying them.

The rest of this paper is organized as follows. Section 2 introduces the problem setting and defines
action spaces and cost functions. We study the existence of a unique Nash equilibrium and derive an
algorithm that finds it under defined conditions in Section 3. Section 4 discusses antagonistic loss
functions. For this case, we derive an algorithm that finds a unique Nash equilibrium whenever it
exists. Section 5 reports on experiments on email spam filtering; Section 6 concludes.

2 Modeling the Game

We study prediction games between a learner (v = +1) and an adversary (v = −1). We consider
static infinite games. Static or single-shot game means that players make decisions simultaneously;
neither player has information about the opponent’s decisions. Infinite refers to continuous cost
functions that leave players with infinitely many strategies to choose from. We constrain the players
to select pure (i.e., deterministic) strategies. Mixed strategies and extensive-form games such as
Stackelberg, Cournot, Bertrand, and repeated games are not within the scope of this work.

Both players can access an input matrix of training instances X with outputs y, drawn according
to a probability distribution q(X,y) =

∏n
i=1 q(xi, yi). The learner’s action a+1 ∈ A+1 now is

to choose parameters of a linear model ha+1(x) = a+1
Tx. Simultaneously, the adversary chooses

a transformation function φa−1 that maps any input matrix X to an altered matrix φa−1(X). This
transformation induces a transition from input distribution q to test distribution qtest with q(X,y) =
qtest(φa−1(X),y) =

∏n
i=1 qtest(φa−1(X)i, yi). Our main result uses a model that implements

transformations as matrices a−1 ∈ A−1 ⊆ Rm×n. Transformation φa−1(X) = X + a−1 adds
perturbation matrix a−1 to input matrix X, i.e., input pattern xi is subjected to a perturbation vector
a−1,i. If, for instance, inputs are word vectors, the perturbation matrix adds and deletes words.

The possible moves a = [a+1,a−1] constitute the joint action space A = A+1 × A−1 which is
assumed to be nonempty, compact, and convex. Action spaces Av are parameters of the game. For
instance, in spam filtering it is appropriate to constrain A−1 such that perturbation matrices contain
zero vectors for non-spam messages; this reflects that spammers can only alter spam messages.

Each pair of actions a incurs costs of θ+1(a) and θ−1(a), respectively, for the players. Each player
has an individual loss function `v(y′, y) where y′ is the value of decision function ha+1 and y
is the true label. Section 4 will discuss antagonistic loss functions `+1 = −`−1. However, our
main contribution in Section 3 regards non-antagonistic loss functions. For instance, a learner may
minimize the zero-one loss whereas the adversary may focus on the lost revenue.

Both players aim at minimizing their loss over the test distribution qtest. But, since q and con-
sequently qtest are unknown, the cost functions are regularized empirical loss functions over the
sample φa−1(X) which reflects test distribution qtest. Equation 1 defines either player’s cost func-
tion as player-specific loss plus regularizer. The learner’s regularizer Ωa+1 will typically regularize
the capacity of ha+1 . Regularizer Ωa−1 controls the amount of distortion that the adversary may
inflict on the data and thereby the extent to which an information payload has to be preserved.

θv(av,a−v) =
n∑

i=1

`v(ha+1(φa−1(X)i), yi) + Ωav (1)

Each player’s cost function depends on the opponent’s parameter. In general, there is no value av

that maximizes θv(av,a−v) independently of the opponent’s choice of a−v . The minimax solution
arg minav

maxa−v
θv(av,a−v) minimizes the costs under the worst possible move of the opponent.

This solution is optimal for a malicious opponent whose goal is to inflict maximally high costs on
the learner. In absence of any information on the opponent’s goals, the minimax solution still gives
the lowest upper bound on the learner’s costs over all possible strategies of the opponent.

If both players – learner and adversary – behave rationally in the sense of minimizing their personal
costs, then the Nash equilibrium is the strongest available concept of an optimal choice of av . A

2



Nash equilibrium is defined as a pair of actions a∗ = [a∗+1,a
∗
−1] such that no player can benefit

from changing the strategy unilaterally. That is, for both players v ∈ {−1, +1},

θv(a∗v,a∗−v) = min
av∈Av

θv(av,a∗−v). (2)

The Nash equilibrium has several catches. Firstly, if the adversary behaves irrationally in the sense
of inflicting high costs on the other player at the expense of incurring higher personal costs, then
choosing an action according to the Nash equilibrium may result in higher costs than the minimax
solution. Secondly, a game may not have an equilibrium point. If an equilibrium point exists, the
game may thirdly possess multiple equilibria. If a∗ = [a∗+1,a

∗
−1] and a′ = [a′+1,a

′
−1] are distinct

equilibria, and each player decides to act according to one of them, then a combination [a∗v,a′−v]
may be a poor joint strategy and may give rise to higher costs than a worst-case solution. However,
if a unique Nash equilibrium exists and both players seek to minimize their individual costs, then
the Nash equilibrium is guaranteed to be the optimal move.

3 Solution for Convex Loss Functions

In this section, we study the existence of a unique Nash equilibrium of prediction games with
cost functions as in Equation 1. We derive an algorithm that identifies the unique equilibrium if
sufficient conditions are met. We consider regularized player-specific loss functions `v(y′, y) which
are not assumed to satisfy the antagonicity criterion `+1 = −`−1. Both loss functions are, however,
required to be convex and twice differentiable, and we assume strictly convex regularizers Ωav

such as the l2-norm regularizer. Player- and instance-specific costs may be attached to the loss
functions; however, we omit such cost factors for greater notational harmony. This section’s main
result is that if both loss functions are monotonic in y′ with different monotonicities – that is, one is
monotonically increasing, and one is decreasing for any fixed y – then the game has a unique Nash
equilibrium that can be found efficiently.

Theorem 1. Let the cost functions be defined as in Equation 1 with strictly convex regularizers Ωav ,
let action spaces Av be nonempty, compact, and convex subsets of finite-dimensional Euclidean
spaces. If for any fixed y, both loss functions `v(y′, y) are monotonic in y′ ∈ R with distinct
monotonicity, convex in y′, and twice differentiable in y′, then a unique Nash equilibrium exists.

Proof. The players’ regularizers Ωav are strictly convex, and both loss functions
`v(ha+1(φa−1(X)i), yi) are convex and twice differentiable in av ∈ Av for any fixed a−v ∈ A−v .
Hence, both cost functions θv are continuously differentiable and strictly convex, and according to
Theorem 4.3 in [6], at least one Nash equilibrium exists. As each player has an own nonempty,
compact, and convex action space Av , Theorem 2 of [7] applies as well; that is, if function

σr(a) = rθ+1(a+1,a−1) + (1− r)θ−1(a+1,a−1) (3)

is diagonally strictly convex in a for some fixed 0 < r < 1, then a unique Nash equilibrium exists.
A sufficient condition for σr(a) to be diagonally strictly convex is that matrix Jr(a) in Equation 4
is positive definite for any a ∈ A (see Theorem 6 in [7]). This matrix

Jr(a) =
[

r∇2
a+1a+1

θ+1(a) r∇2
a+1a−1

θ+1(a)
(1− r)∇2

a−1a+1
θ−1(a) (1− r)∇2

a−1a−1
θ−1(a)

]
(4)

is the Jacobian of the pseudo-gradient of σr(a), that is,

gr(a) =
[

r∇a+1θ+1(a)
(1− r)∇a−1θ−1(a)

]
. (5)

We want to show that Jr(a) is positive definite for some fixed r if both loss functions `v(y′, y)
have distinct monotonicity and are convex in y′. Let `′v(y′, y) be the first and `′′v(y′, y) be the
second derivative of `v(y′, y) with respect to y′. Let Ai denote the matrix where the i-th col-
umn is a+1 and all other elements are zero, let Γv be the diagonal matrix with diagonal elements
γv,i = `′′v(ha+1(φa−1(X)i), yi), and we define µv,i = `′v(ha+1(φa−1(X)i), yi). Using these defini-
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tions, the Jacobian of Equation 4 can be rewritten,

Jr(a) =




φa−1(X) 0
0 A1

...
...

0 An




[
rΓ+1 rΓ+1

(1− r)Γ−1 (1− r)Γ−1

]



φa−1(X) 0
0 A1

...
...

0 An




T

+




r∇2Ωa+1 rµ+1,1I . . . rµ+1,nI
(1− r)µ−1,1I (1− r)∇2Ωa−1 . . . 0

...
...

. . .
...

(1− r)µ−1,nI 0 . . . (1− r)∇2Ωa−1


 . (6)

The eigenvalues of the inner matrix of the first summand in Equation 6 are rγ+1,i +(1−r)γ−1,i and
zero. Loss functions `v are convex in y′, that is, both second derivatives `′′v(y′, y) are non-negative
for any y′ and consequently rγ+1,i + (1 − r)γ−1,i ≥ 0. Hence, the first summand of Jacobian
Jr(a) is positive semi-definite for any choice of 0 < r < 1. Additionally, we can decompose the
regularizers’ Hessians as follows:

∇2Ωav = λvI + (∇2Ωav − λvI), (7)

where λv is the smallest eigenvalue of ∇2Ωav . As the regularizers are strictly convex, λv > 0 and
the second summand in Equation 7 is positive semi-definite. Hence, it suffices to show that matrix




rλ+1I rµ+1,1I . . . rµ+1,nI
(1− r)µ−1,1I (1− r)λ−1I . . . 0

...
...

. . .
...

(1− r)µ−1,nI 0 . . . (1− r)λ−1I


 (8)

is positive definite. We derive the eigenvalues of this matrix which assume only three different
values; these are (1− r)λ−1 and

1
2

(
rλ+1 + (1− r)λ−1 ±

√
(rλ+1 − (1− r)λ−1)2 + 4r(1− r)µT

+1µ−1

)
. (9)

Eigenvalue (1− r)λ−1 is positive by definition. The others are positive if the value under the square
root is non-negative and less than (rλ+1 + (1 − r)λ−1)2. The scalar product b = µT

+1µ−1 is non-
positive as both loss functions `v(y′, y) are monotonic in y′ with distinct monotonicity, i.e., both
derivatives have a different sign for any y′ ∈ R and consequently b ≤ 0. This implies that the
value under the square root is less or equal to (rλ+1 − (1− r)λ−1)2 < (rλ+1 + (1− r)λ−1)2. In
addition, b is bounded from below as action spaces Av , and therefore the value of ha+1(φa−1(X)i),
is bounded. Let b = infa∈A µT

+1µ−1 be such a lower bound with −∞ < b ≤ 0. We solve for r such
that the value under the square root in Equation 9 attains a non-negative value, that is,

0 < r ≤
(λ+1 + λ−1)λ−1 − 2b− 2

√
b2 − λ+1λ−1b

(λ+1 + λ−1)2 − 4b
(10)

or alternatively

(λ+1 + λ−1)λ−1 − 2b + 2
√

b2 − λ+1λ−1b

(λ+1 + λ−1)2 − 4b
≤ r < 1. (11)

For any λ+1, λ−1 > 0 there are values r that satisfy Inequality 10 or 11 because, for any fixed b ≤ 0,

0 < (λ+1 + λ−1)λ−1 − 2b± 2
√

b2 − λ+1λ−1b < (λ+1 + λ−1)2 − 4b. (12)

For such r all eigenvalues in Equation 9 are strictly positive which completes the proof.

According to Theorem 1, a unique Nash equilibrium exists for suitable loss functions such as the
squared hinge loss, logistic loss, etc. To find this equilibrium, we make use of the weighted Nikaido-
Isoda function (Equation 13). Intuitively, Ψrv

(a,b) quantifies the weighted sum of the relative cost
savings that the players can enjoy by changing from strategy av to strategy bv while their opponent
continues to play a−v . Equation 14 defines the value function Vrv

(a) as the weighted sum of greatest
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possible cost savings attainable by changing from a to any strategy unilaterally. By these definitions,
a∗ is a Nash equilibrium if, and only if, Vrv (a∗) is a global minimum of the value function with
Vrv (a∗) = 0 for any fixed weights r+1 = r and r−1 = 1− r, where 0 < r < 1.

Ψrv (a,b) =
∑

v∈{+1,−1}
rv(θv(av,a−v)− θv(bv,a−v)) (13)

Vrv (a) = max
b∈A

Ψrv (a,b) (14)

To find this global minimum of Vrv (a) we make use of Corollary 3.4 of [8]. The weights rv are
fixed scaling factors of the players’ objectives which do not affect the Nash equilibrium in Equa-
tion 2; however, these weights ensure the main condition of Corollary 3.4, that is, the positive
definiteness of the Jacobian Jr(a) in Equation 4. According to this corollary, vector d = b̂ − a is
a descent direction for the value function at any position a, where b̂ is the maximizing argument
b̂ = arg maxb∈A Ψrv (a,b). In addition, the convexity of A ensures that any point a + td with
t ∈ [0, 1] (i.e., a point between a and b̂) is a valid pair of actions.

Algorithm 1 Nash Equilibrium of Games with Convex Loss Functions
Require: Cost functions θv as defined in Equation 1 and action spaces Av .

1: Select initial a0 ∈ A+1 ×A−1, set k := 0, and choose r that satisfies Inequality 10 or 11.
2: repeat
3: Set bk := arg maxb∈A+1×A−1 Ψrv (ak,b) where Ψrv is defined in Equation 13.
4: Set dk := bk − ak.
5: Find maximal step size tk ∈ {2−l : l ∈ N} with Vrv (ak + tkdk) ≤ Vrv (ak)− ε‖tkdk‖2.
6: Set ak+1 := ak + tkdk and k := k + 1.
7: until ‖ak − ak−1‖ ≤ ε.

Algorithm 1 exploits these properties and finds the global minimum of Vrv and thereby the unique
Nash equilibrium, under the preconditions of Theorem 1. Convergence follows from the fact that if
in the k-th iteration dk = 0, then ak is a Nash equilibrium which is unique according to Theorem 1.
If dk 6= 0, then dk is a descent direction of Vrv at position ak. Together with term ε‖tkdk‖2,
this ensures Vrv (ak+1) < Vrv (ak), and as value function Vrv is bounded from below, Algorithm 1
converges to the global minimum of Vrv . Note that r only controls the convergence rate, but has no
influence on the solution. Any value of r that satisfies Inequality 10 or 11 ensures convergence.

4 Solution for Antagonistic Loss Functions

Algorithm 1 is guaranteed to identify the unique equilibrium if the loss functions are convex, twice
differentiable, and of distinct monotonicities. We will now study the case in which the learner’s cost
function is continuous and convex, and the adversary’s loss function is antagonistic to the learner’s
loss, that is, `+1 = −`−1. We abstain from making assumptions about the adversary’s regularizers.
Because of the regularizers, the game is still not a zero-sum game. In this setting, a unique Nash
equilibrium cannot be guaranteed to exist because the adversary’s cost function is not necessarily
strictly convex. However, an individual game may still possess a unique Nash equilibrium, and we
can derive an algorithm that identifies it whenever it exists.

The symmetry of the loss functions simplifies the players’ cost functions in Equation 1 to

θ+1(a+1,a−1) =
n∑

i=1

`+1(ha+1(φa−1(X)i), yi) + Ωa+1 , (15)

θ−1(a−1,a+1) = −
n∑

i=1

`+1(ha+1(φa−1(X)i), yi) + Ωa−1 . (16)

Even though the loss functions are antagonistic, the cost functions in Equations 15 and 16 are not,
unless the player’s regularizers are antagonistic as well. Hence, the game is not a zero-sum game.
However, according to Theorem 2, if the game has a unique Nash equilibrium, then this equilibrium
is a minimax solution of the zero-sum game defined by the joint cost function of Equation 17.
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Theorem 2. If the game with cost functions θ+1 and θ−1 defined in Equations 15
and 16 has a unique Nash equilibrium a∗, then this equilibrium also satisfies a∗ =
arg mina+1 maxa−1 θ0(a+1,a−1) where

θ0(a+1,a−1) =
∑n

i=1
`+1(ha+1(φa−1(X)i), yi) + Ωa+1 − Ωa−1 . (17)

The proof can be found in the appendix. As a consequence of Theorem 2, we can identify the unique
Nash equilibrium of the game with cost functions θ+1 and θ−1, if it exists, by finding the minimax
solution of the game with joint cost function θ0. The minimax solution is given by

a∗+1 = arg min
a+1∈A+1

max
a−1∈A−1

θ0(a+1,a−1). (18)

To solve this optimization problem, we define θ̂0(a+1) = θ0(a+1, â−1) to be the function of a+1

where â−1 is set to the value â−1 = arg maxa−1 θ0(a+1,a−1). Since cost function θ0 is continuous
in its arguments, convex in a+1, and A−1 is a compact set, Danskin’s Theorem [9] implies that θ̂0

is convex in a+1 with gradient

∇θ̂0(a+1) = ∇a+1θ0(a+1, â−1). (19)

The significance of Danskin’s Theorem is that when calculating the gradient ∇a+1θ0(a+1, â−1) at
position a+1, argument â−1 acts as a constant in the derivative instead of as a function of a+1.
The convexity of θ̂0(a+1) suggests the gradient descent method implemented in Algorithm 2. It
identifies the unique Nash equilibrium of a game with antagonistic loss functions, if it exists, by
finding the minimax solution of the game with joint cost function θ0.

Algorithm 2 Nash Equilibrium of Games with Antagonistic Loss Functions
Require: Joint cost function θ0 as defined in Equation 17 and action spaces Av .

1: Select initial a0
+1 ∈ A+1 and set k := 0.

2: repeat
3: Set ak

−1 := arg maxa−1∈A−1 θ0(ak
+1,a−1).

4: Set dk := −∇ak
+1

θ0(ak
+1,a

k
−1).

5: Find maximal step size tk ∈ {2−l : l ∈ N} with

θ0(ak
+1 + tkdk,ak

−1) ≤ θ0(ak
+1,a

k
−1)− ε‖tkdk‖2.

6: Set ak+1
+1 := ak

+1 + tkdk and k := k + 1.
7: Project ak

+1 to the admissible set A+1, if necessary.
8: until ‖ak

+1 − ak−1
+1 ‖ ≤ ε

A minimax solution arg mina+1 maxa−1 θ+1(a+1,a−1) of the learner’s cost function minimizes
the learner’s costs when playing against the most malicious opponent; for instance, Invar-SVM [4]
finds such a solution. By contrast, the minimax solution arg mina+1 maxa−1 θ0(a+1,a−1) of the
joint cost function as defined in Equation 17 constitutes a Nash equilibrium of the game with cost
functions θ+1 and θ−1, defined in Equations 15 and 16. It minimizes the costs for each of two players
that seek their personal advantage. Algorithmically, Invar-SVM and Algorithm 2 are very similar;
the main difference lies in the optimization criteria and the resulting properties of the solution.

5 Experiments

We study the problem of email spam filtering where the learner tries to identify spam emails while
the adversary conceals spam messages in order to penetrate the filter. Our goal is to explore the
relative strengths and weaknesses of the proposed Nash models for antagonistic and non-antagonistic
loss functions and existing baseline methods. We compare a regular SVM, logistic regression, SVM
with Invariances (Invar-SVM, [4]), the Nash equilibrium for antagonistic loss functions found by
identifying the minimax solution of the joint cost function (Minimax, Algorithm 2), and the Nash
equilibrium for convex loss functions (Nash, Algorithm 1).
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Figure 1: Adversary’s regularization parameter and AUC on test data (private emails).

We use the logistic loss as the learner’s loss function `+1(h(x), y) = log(1 + e−yh(x)) for the
Minimax and the Nash model. Consequently, the adversary’s loss for the Minimax solution is the
negative loss of the learner. In the Nash model, we choose `−1(h(x), y) = log(1 + eyh(x)) which is
a convex approximation of the adversary’s zero-one loss, that is, correct predictions by the learner
incur high costs for the adversary. We use the additive transformation model φa−1(X)i = xi+a−1,i

as defined in Section 2. For spam emails xi, we impose box constraints − 1
2xi ≤ a−1,i ≤ 1

2xi on
the adversary’s parameters; for non-spam we set a−1,i = 0. That is, the spam sender can only
transform spam emails. This model is equivalent to the component-wise scaling model [4] with
scaling factors between 0.5 and 1.5, and ensures that the adversary’s action space is nonempty,
compact, and convex. We use l2-norm regularizers for both players, that is, Ωav = λv

2 ‖av‖22 where
λv is the regularization parameter of player v. For the Nash model we set r to the mean of the
interval defined by Inequality 11, where b = −n

4 is a lower bound for the chosen logistic loss and
regularization parameters λv are identical to the smallest eigenvalues of ∇2Ωav .

We use two email corpora: the first contains 65,000 publicly available emails received between 2000
and 2002 from the Enron corpus, the SpamAssassin corpus, Bruce Guenter’s spam trap, and several
mailing lists. The second contains 40,000 private emails received between 2000 and 2007. All
emails are binary word vectors of dimensionality 329,518 and 160,981, respectively. The emails are
sorted chronologically and tagged with label, date, and size. The preprocessed corpora are available
from the authors. We cannot use a standard TREC corpus because there the delivery dates of the
spam messages have been fabricated, and our experiments require the correct chronological order.

Our evaluation protocol is as follows. We use the 6,000 oldest instances as training portion and
set the remaining emails aside as test instances. We use the area under the ROC curve as a fair
evaluation metric that is adequate for the application; error bars indicate the standard error. We train
all methods 20 times for the first experiment and 50 times for the following experiments on a subset
of 200 messages drawn at random from the training portion and average the AUC values on the test
set. In order to tune both players’ regularization parameters, we conduct a grid search maximizing
the AUC for 5-fold cross validation on the training portion.

In the first experiment, we explore the impact of the regularization parameter of the transformation
model, i.e., λ−1 for our models and K – the maximal number of alterable attributes – for Invar-SVM.
Figure 1 shows the averaged AUC value on the private corpus’ test portion. The crosses indicate the
parameter values found by the grid search with cross validation on the training data.

In the next experiment, we evaluate all methods into the future by processing the test set in chrono-
logical order. Figure 2 shows that Invar-SVM, Minimax, and the Nash solution outperform the reg-
ular SVM and logistic regression significantly. For the public data set, Minimax performs slightly
better than Nash; for the private corpus, there is no significant difference between the solutions of
Minimax and Nash. For both data sets, the l2-regularization gives Minimax and Nash an advantage
over Invar-SVM. Recall that Minimax refers to the Nash equilibrium for antagonistic loss functions
found by solving the minimax problem for the joint cost function (Algorithm 2). In this setting, loss
functions – but not cost functions – are antagonistic; hence, Nash cannot gain an advantage over
Minimax. Figure 2 (right hand side) shows the execution time of all methods. Regular SVM and
logistic regression are faster than the game models; the game models behave comparably.

Finally, we explore a setting with non-antagonistic loss. We weight the loss functions with player-
and instance specific factors cv,i, that is, `c

v(ha+1(φa−1(X)i), yi) = cv,i`v(ha+1(φa−1(X)i), yi).
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Figure 2: Left, center: AUC evaluated into the future after training on past. Right: execution time.
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Figure 3: Average storage costs versus non-spam recall.

Our model reflects that an email service provider may delete detected spam emails after a latency pe-
riod whereas other emails incur storage costs c+1,i proportional to their file size. The spam sender’s
costs are c−1,i = 1 for all spam instances and c−1,i = 0 for all non-spam instances. The classifier
threshold balances a trade-off between non-spam recall (fraction of legitimate emails delivered) and
storage costs. For a threshold of −∞, storage costs and non-spam recall are zero for all decision
functions. Likewise, a threshold of ∞ gives a recall of 1, but all emails have to be stored. Fig-
ure 3 shows this trade-off for all methods. The Nash prediction model behaves most favorably: it
outperforms all reference methods for almost all threshold values, often by several standard errors.
Invar-SVM and Minimax cannot reflect differing costs for learner and adversary in their optimiza-
tion criteria and therefore perform worse. Logistic regression and the SVM with costs perform better
than their counterparts without costs, but worse than the Nash model.

6 Conclusion

We studied games in which each player’s cost function consists of a data-dependent loss and a
regularizer. A learner produces a linear model while an adversary chooses a transformation matrix
to be added to the data matrix. Our main result regards regularized non-antagonistic loss functions
that are convex, twice differentiable, and have distinct monotonicity. In this case, a unique Nash
equilibrium exists. It minimizes the costs of each of two players that aim for their highest personal
benefit. We derive an algorithm that identifies the equilibrium under these conditions. For the case
of antagonistic loss functions with arbitrary regularizers a unique Nash equilibrium may or may
not exist. We derive an algorithm that finds the unique Nash equilibrium, if it exists, by solving a
minimax problem on a newly derived joint cost function.

We evaluate spam filters derived from the different optimization problems on chronologically or-
dered future emails. We observe that game models outperform the reference methods. In a setting
with player- and instance-specific costs, the Nash model for non-antagonistic loss functions excels
because this setting is poorly modeled with antagonistic loss functions.
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