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ABSTRACT
Polymorphic malcode remains a troubling threat. The ability for
malcode to automatically transform into semantically equivalent
variants frustrates attempts to rapidly construct a single, simple,
easily verifiable representation. We present a quantitative analy-
sis of the strengths and limitations of shellcode polymorphism and
consider its impact on current intrusion detection practice.

We focus on the nature of shellcode decoding routines. The em-
pirical evidence we gather helps show that modeling the class of
self–modifying code is likely intractable by known methods, in-
cluding both statistical constructs and string signatures. In addi-
tion, we develop and present measures that provide insight into the
capabilities, strengths, and weaknesses of polymorphic engines. In
order to explore countermeasures to future polymorphic threats, we
show how to improve polymorphic techniques and create a proof-
of-concept engine expressing these improvements.

Our results indicate that the class of polymorphic behavior is
too greatly spread and varied to model effectively. Our analysis
also supplies a novel way to understand the limitations of current
signature–based techniques. We conclude that modeling normal
content is ultimately a more promising defense mechanism than
modeling malicious or abnormal content.

Categories and Subject Descriptors
H.1.1 [Models and Principles]: Systems and Information The-
ory—Value of Information
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1. INTRODUCTION
Code injection attacks have traditionally received a great deal of

attention from both security researchers and the blackhat commu-
nity [1, 14], and researchers have proposed a variety of defenses,
from artificial diversity of the address space [5] or instruction set
[20, 4] to compiler-added integrity checking of the stack [10, 15]
or heap variables [34] and “safer” versions of library functions [3].
Other systems explore the use of tainted dataflow analysis to pre-
vent the use of untrusted network or file input [9, 29] as part of
the instruction stream. Finally, a large number of schemes propose
capturing a representation of the exploit to create a signature for
use in detecting and filtering future versions of the attack. Signa-
ture generation methods are based on a number of content mod-
eling strategies, including simple string–based signature matching
techniques like those used in Snort [36]. Many signature genera-
tion schemes focus on relatively simple detection heuristics, such
as traffic characteristics [35, 22] (e.g., frequency of various packet
types) or identification of the NOP sled [38], while others derive
a signature from the actual exploit code [24, 43, 25] or statistical
measures of packet content [41, 40, 28], including content captured
by honeypots [44].

This paper presents a study of the efficacy of contemporary poly-
morphism techniques, as well as methods to combine and improve
them. Our analysis focuses on what we consider the most con-
strained section of malcode, the decoder portion. Since this section
of a malcode sample or exploit instance must contain executable
code, it cannot easily be disguised (unlike most other parts of a
malcode sample, except, perhaps, the higher order bits of the re-
turn address section).

We derive our motivation from the challenge of modeling this
particular type of malcode data. We wondered whether, given un-
limited samples of polymorphic code, it is possible to compute and
store a set of signatures or a statistical model that could represent
this class of code. If so, how costly would such a task be in terms of
memory and processing time? In the span of the n-byte space that
these samples of code populate, how much overlap is there with the
class of benign network traffic? Unlike current research on poly-
morphic engines [17], our work focuses on the general class of code



that performs decryption independent of the payload. Although
other research focuses on determining if an arbitrary sequence of
bytes represents executable malcode (either by employing content
anomaly detection or detecting streams of executable code in net-
work traffic), our objective is quite different: we aim to determine
if malcode itself has any distinguishing features that might support
the construction and use of exploit signatures or statistical models.

1.1 Shellcode Background
Aleph0ne first illustrated the basics of smashing the stack [1].

The virus writer Dark Avenger’s Mutation Engine influenced the
shellcoder K2 to develop shellcode polymorphism [19]. rix then
proceeds to show how to perform alphanumeric encoding [32], Sinan
Eran showed how to smash the kernel stack [14], Obscue described
how to encode shellcode to make it survive ASCII to unicode trans-
formations [30], the CLET team developed the technique of spec-
trum spoofing and implemented a recursive NOP sled [13] and
most recently the Metasploit project combined vulnerability prob-
ing, code injection, and polymorphism (among other features) into
one complete system [26].

While injected malcode can follow a wide variety of internal ar-
rangements in order to trigger a particular vulnerability, such code
is conceptually structured as a set that contains a NOP sled, a se-
quence of positions containing the targeted return address, and the
executable payload of the exploit i.e., shellcode. Recently, both
polymorphism and metamorphism have been used to disguise mal-
code [19]. One approach is to use code obfuscation and masking,
such as encrypting the shellcode with a randomly chosen key. A
decoding engine is then inserted into the shellcode and must run
before the exploit to reverse the obfuscation during runtime, result-
ing in a fairly standard conceptual format for shellcode:
[NOP][DECODER][ENCPAYLOAD][RETADDR]
Only the decoding routine now need be polymorphic; this task
proves less daunting than morphing arbitrary exploit code. Rapid
development of polymorphic techniques has resulted in a number
of off–the–shelf polymorphic engines [19, 13, 26, 6]. Counter-
measures to polymorphism range from emulation methods [31] to
graph–theoretic paradigms aimed at detecting the underlying vul-
nerability [7] or signatures based on higher order information such
as the control-flow graph of the exploit [23, 8] or correlating pro-
tocol format information with memory corruption vulnerabilities
[12]. We elaborate on defense techniques in Section 5.

Contemporary shellcode polymorphism techniques typically em-
ploy two ways of disguising code. The first rewrites the code each
time so that it differs syntactically but retains the same operational
semantics. This process, akin to metamorphism, is decomposable
to graph isomorphism [37], and unlike virus metamorphism (see
Zmist [16]), it is, in general, a non–trivial solution to implement.
The other common approach is to self-cipher: the exploit is wrapped
as payload within a larger malcode component and is disguised
using a reversible cipher (usually a linear sequence of operational
loops e.g., xor, add, subtract, ror, rol, etc., although a looping con-
struct is not always required). An attacker typically uses several
rounds of ciphering. Polymorphism is obtained by randomizing the
order of these ciphers and using different keys. In order to reverse
the cipher, a clear–text program must exist immediately before (in
terms of execution flow) the payload. This program decodes the ex-
ploit payload at runtime. Such “decoders” typically have a length
of 30 to 50 bytes and can decode arbitrary payloads. Decoders pro-
vide an effective technique for rapid and simple dissemination of
malcode variants. Attackers reuse exploits in arbitrarily different
forms. In fact, many polymorphic engine in the wild llcarry a copy
of the shellcode listed in Aleph0ne’s seminal paper [1].

address byte values x86 code
-------- ------------ ------------------
00000000 EB2D jmp short 0x2f
00000002 59 pop ecx
00000003 31D2 xor edx,edx
00000005 B220 mov dl,0x20
00000007 8B01 mov eax,[ecx]
00000009 C1C017 rol eax,0x17
0000000C 35892FC9D1 xor eax,0xd1c92f89
00000011 C1C81F ror eax,0x1f
00000014 2D9F253D76 sub eax,0x763d259f
00000019 0543354F48 add eax,0x484f3543
0000001E 8901 mov [ecx],eax
00000020 81E9FDFFFFFF sub ecx,0xfffffffd
00000026 41 inc ecx
00000027 80EA03 sub dl,0x3
0000002A 4A dec edx
0000002B 7407 jz 0x34
0000002D EBD8 jmp short 0x7
0000002F E8CEFFFFFF call 0x2
00000034 FE db 0xFE
...
payload follows

Figure 1: A 35 byte polymorphic decryption loop. From left
to right, the columns contain the address or offset of the in-
struction, the byte value of the instruction, and an x86 assem-
bly representation. Note the five cipher operations, ror xor
ror sub add, that begin at 0x0C. The working register for
the cipher is %eax. Note the stop condition at 0x2B.

1.2 Shellcode Polymorphism
Polymorphic techniques no longer consist of simply disguising

the payload; attackers frequently conceal other sections of malcode.
• [NOP]: The most basic design of a nop-sled is a buffer of NOP
instructions {x90,x90,. . .,x90} inserted ahead of the decoder
to safely capture a future change in the value of the instruction
pointer. Many signature–based systems rely on this artifact for de-
tection. Attackers, however, have introduced various innovations
to make the NOP sled polymorphic. The sled need not consist of
actual NOP instructions — it only has to pass the flow of execution
safely into the decoder without causing instability. K2 described at
least 55 different ways to write such single byte benign instructions
[19] and implemented this method in the ADMmutate engine. This
technique provides the potential for 55n unique NOP sleds (where
n is the sled length).

The CLET polymorphic engine [13] employs a more advanced
NOP sled design. This method discovers benign instructions by
first finding a set of 1-byte benign instructions, then finding a set of
2-byte benign instructions that contains the 1-byte instructions in
the lower byte. Therefore, it does not matter if control flow enters
the 2-byte instruction or if it lands one byte to the right since that
position will hold another equally benign instruction. Recursive
use of this method to additional depths finds longer benign instruc-
tion sequences for a NOP sled. To the best of our knowledge, no
analysis of the potential of this method exists, but it serves as a use-
ful polymorphic technique because modeling this type of sled may
amount to modeling random instructions.
• [RETADDR]: Without address space randomization, the location
of the stack and stack variables on most architectures remains con-
sistent across program executions. Thus, the attacker has a basis for
guessing the appropriate value for an injected return address to redi-
rect the instruction pointer into the malcode. Generating signatures
that use these specific address values to filter out malcode seems



possible for certain types of code injection attacks. An attacker
can, however, achieve return address polymorphism by modifying
the lower order bits [19]. This method causes control flow to jump
into different positions in the stack. As long as it lands somewhere
in the sled, the exploit still works. The return address section con-
sists of the return target repeated m number of times. Each repeat
can be modified v times (where v is some tolerable variance in the
jmp target) for a total of vm possible variations.
• Spectrum shaping & byte padding: In polymorphic
blending attacks [17], exploits attempt to appear similar to benign
traffic in terms of the n-gram content distribution. The CLET team’s
polymorphic engine [13] is an example of such a technique. Their
engine alters the shellcode to take on the form:

[NOP][DECODER][ENC PAYLOAD][PADDING][RETADDR]
The engine adds junk bytes in the new padding area to ensure the 1-
gram distribution of the shellcode appears different. In addition, the
shellcode itself is ciphered with different length keys. These keys
exhibit a variety of byte distributions that reshape the byte spectrum
of the payload. This technique increases both the variation and
propagation strengths of a polymorphic engine to make it resistant
to a statistical content anomaly detectors [40].

Perhaps the most worrisome threat is that these individual tech-
niques are interchangeable and can be combined into a single poly-
morphic engine. Section 3 shows that this engine is simple to
implement. Furthermore, the structure used by modern shellcode
(i.e., [NOP][DECODER][ENC PAYLOAD][RETADDR]) is really just
a conventional design that happens to work. Nothing prevents the
attacker from modifying the sections between the sled and the re-
turn address. With some additional jmp instructions, it is not hard
to imagine seeing future shellcode of the forms:
[NOP][ENCRYPTED PAYLOAD][DECODER][RETADDR]
[NOP][DECODER 1][ENC. PAYLOAD][DECODER 2][RETADDR]
[NOP][PADDING][ENC. PAYLOAD][PADDING][DECODER][RETADDR]
and so on. These types of encoding will present difficulty for both
static and dynamic code analysis.

1.3 Contributions
Conventional wisdom has held that attackers retain a significant

advantage by using polymorphic tactics to disguise their shellcode.
To the best of our knowledge, however, there exists no quantitative
analysis of this advantage. Our work provides empirical evidence
to support this folk wisdom and helps improve understanding of the
polymorphic shellcode problem in the following ways:

• We illustrate the ultimate futility of string–based signature
schemes by showing that the class of n-byte decoder sam-
ples spans n-space. Although our results should not be inter-
preted as a call for the immediate abandonment of all signature–
based techniques, we believe there is a strong case for inves-
tigating other protection paradigms.

• As a corollary, we show that given any normal statistical
model, there is a significant probability that an attacker can
craft successful targeted attacks against it.

• We propose metrics to gauge the relative strengths of poly-
morphic engines, and we use these to examine some of the
current state-of-the-art engines. We believe our methodol-
ogy is novel and helps provide some insight in a space that
has generally been lacking in quantitative analysis.

• We show how to augment existing polymorphic engines and
demonstrate this process by presenting our implementation
of a proof-of-concept engine.

The problem we address can be stated as follows:

PROBLEM DEFINITION Given n bytes, there can be a set of
256n possible strings. The specific class of x86 code of length n

that corresponds to decoders is a subset of this superset, i.e., span-
ning a subspace within this larger space. How difficult is it to model
this subspace — in other words, what is the magnitude of this span?
What are polymorphic threats we can expect to see in the immediate
future? Finally, what are the theoretical limits?

We combine a number of methods to answer this question. First,
we introduce a set of measures to assess the randomness of a pop-
ulation of samples. We employ these measures to analyze a pool
of decoders generated by existing polymorphic engines. Next, we
demonstrate our improvements to existing polymorphic techniques.
Finally, we analyze the theoretical limits of polymorphism by ex-
amining a fixed size space of n-bytes. We explore this space using
efficient genetic algorithms to characterize the span of all x86 code
that exhibits polymorphic behavior. Along the way, we explain
why signature–based detection currently works, why it may work
in the short term, and why it will progressively become less valu-
able. We also discover that shellcode behavior varies enough to not
only present a challenge for signature systems, but also presents a
significant challenge for statistical approaches to model malcode.

2. POLYMORPHIC ENGINE ANALYSIS
This section explains the details of our approach for analyzing

the range of decoders generated by any given engine. We also ap-
ply our methods to analyzing some of the state-of-the-art polymor-
phic engines used in the wild. Six popular engines are examined:
ADMmutate, CLET, and four engines from Metasploit: Shikata
Gai Nai1, Jumpcall additive, Call4dword and fnstenv mov. Pre-
vious research on automatic generation of exploit signatures from
polymorphic code [22, 28] reports successful detection of exploits
from many existing engines, some of which are from Metasploit.
Our work makes it easy to visually observe the artifacts that some
of these engines leave in each shellcode instance that they gener-
ate: artifacts which can be taken advantage of for detection. We
show, however, that these artifacts are not strongly correlated with
polymorphic behavior itself and look very different across different
engines — thus they cannot be generalized to detect polymorphic
behavior outside of their training class.

We designed our measures2 around the following parameteriza-
tions for engine efficacy:

VARIATION STRENGTH: Given sequences of length n, the varia-
tion strength of an engine measures that engine’s ability to gener-
ate sequences of length n that span a sufficiently large portion of
n-space. This metric is meant to offer some insight into the mag-
nitude of the set of signatures that may be needed to accurately
encapsulate all decoders generated by a particular engine.

PROPAGATION STRENGTH: For the sequence of decoders, x1,. . . ,
xN that an engine can generate, the propagation strength of the
engine characterizes the efficacy of the engine in making any two
samples xi, xj for all i, j = 1 . . . N , look different from one an-
other. The purpose of this metric is to quantify the amount of infor-
mation gain obtained by isolating a few samples from a particular
engine.
1A common Japanese cultural phrase meaning “nothing can be
done about it.”
2Notations used in this paper: all variables in bold text font such as
x and y denote column vectors. We use xi to denote the ith vector
of a set of vectors and we use x(i) to denote the ith component of
the vector x.



Using these metrics, we analyze six current polymorphic en-
gines and provide some measurements for their relative polymor-
phic strengths, yielding a scaled score for each engine which we
call the “relative polymorphism strength score” or p-score. We use
this score to compare the samples generated by the polymorphic
engines to sequences that we generate at random. In addition, we
leverage the concept of a spectral image, which allows easy visual-
ization of the amount of distortion in a sample pool. We combine
this technique with the above metrics to derive our results and con-
firm the folk wisdom that the class of x86 polymorphic shellcode
is too random to model.
SPECTRAL IMAGE

Given any polymorphic engine, we can use it to generate a set of
D decoders, each of length N . For non-fixed length decoders, we
can add padding at the end to make the lengths equal so that they
can be displayed. We next sort these decoders and stack them to-
gether row-wise into a D×N matrix, then display this matrix as an
image, considering the ith byte of decoder j as the intensity value
for the (i, j)th pixel of the image. A byte value of 0x00 produces a
black pixel; 0xFF produces a white pixel. Values within this range
exhibit a shade of gray. This representation helps us visualize the
randomness of a set of generated decoders. Salient bytes – bytes
that exist in the same places within all generated decoders – are
easily identifiable artifacts since they show up as visible columns
within the spectral image. Figure 2 shows the spectral images of the
six engines we examined. They were generated by taking a single
shellcode sample and encrypting it with each engine 10,000 times
to generate 10,000 unique shellcode sequences for each engine. We
extracted the decoder portions from these sequences, sorted them,
down–sampled (so that the number of samples used is on the order
of the dimensions of the samples), then generated the images.

Notice how Shikata Ga Nai generates roughly three subclasses
of decoders. The same blocks of code exist in the engine but not al-
ways at the same place. The weaknesses of the c4d and fnstenv
mov engines are apparent as the vertical columns show that these
engines always embed large artifacts in every decoder. These arti-
facts can be used as signatures and are easily recovered using cur-
rent techniques [22, 28]. As the images show, even though these
engines perform the same basic actions to decode a string within
a small distance of itself in memory, these invariants do not hold
across different engines. For example, the vertical band for CLET
represents clearing of registers (we confirmed this by reading their
documentation).
MINIMUM EUCLIDEAN DISTANCE

Any string x of fixed length n can be considered as a single point
embedded in n-space, i.e., x ∈ R

n. For n = 2, we can imagine
a 2-D plane – the string “ab”, where the ASCII character “a” is 97
and “b” is 98, can be considered as a single point in this 2-D plane,
embedded at (97,98). The string “yz” would likewise be embedded
at (121,122). The Euclidean “distance” between these two strings
quantifies the length of the line drawn from (97,98) to (121,122)
and is calculated using the Euclidean norm, denoted ||·|| and de-
fined as: ||x|| =

p
Pn

i=1
(x(i))2. Without loss of generality, we

can see that this extends for strings up to higher order n-space for
any arbitrary n. We can therefore consider each decoder string a
single point within this n-space of all strings of length n.

The minimum Euclidean distance between two strings is defined
as the normalized Euclidean distance between the strings under ar-
bitrary byte–level rotation. We find this definition useful because
we expect decoders to employ forms of polymorphism that retain
the same ciphering methods but shift the order of operations.

δ(x,y) = min
r=1...n

»

||x− rot(y, r)||
||x|| + ||y||

–

(1)

rot(y, r) means rotate the string y to the left by r-bytes, with
wraparound. We divide by ||x|| + ||y|| to transform the metric
into a ratio of the distance between two vectors with respect to the
sum of their individual lengths. This normalizes the metric and re-
moves the number of dimensions (length) of a string as a factor in
the distance. This distance measure plays an important role in our
metrics, described more fully in the following sections.

VARIATION STRENGTH
Following our previously described notion of viewing decoders

as embedded points in n-dimensional space, we can conceptually
visualize a set of decoders generated by a particular engine as a
cloud of points in this n-space. The magnitude of the space covered
by the span of these points is what we refer to as the variation
strength of the engine. The magnitude and complexity of the span
is directly proportional to the difficulty of modeling the engine, i.e.
the number of signatures in the case of signature based methods
or model complexity in the case of statistical models. We present
a method to bound this magnitude, making use of the covariance
matrix, which is defined as the following:

Σ =
1

N

N
X

i=1

(xi − µ)(xi − µ)T (2)

This gives us a symmetric matrix with dimensions n×n for decoder
sequences of dimensionality n. Here, xi is a decoder sample and
µ = 1

N

PN

i
xi is the sample mean of the set of decoders. x and µ

are column vectors and T denotes the vector transpose operator.
The covariance matrix describes the shape of an n-dimensional

ellipsoid in n-space. Therefore, recovering the covariance matrix
for a set of decoders recovers hyper-ellipsoidal Θ bound on the data
set. Calculating the span of the set is a problem of measuring the
radii of the principle axes of the ellipsoid, which is an eigenvec-
tor decomposition problem. Recall that eigenvector decomposition
finds a new set of basis vectors that spans a space defined by any
given symmetric matrix. The new basis vectors are called eigenvec-
tors, and their corresponding eigenvalues reveal the scale of these
vectors. Thus, we recover v and λ such that Σv = vλ, where v is
the set of n eigenvectors and λ is the set of n eigenvalues. We now
define the variation strength of a polymorphic engine as:

Ψ(engine) =
1

n

n
X

i=1

√
λi (3)

The square roots of the eigenvalues are taken to whiten the distri-
bution, and we take the average of the eigenvalues since we are
interested in the relative scatter of the decoders in n-space; higher
dimensions should not increase the score. The utility of the nor-
malization procedures is shown in Table 1, where the distribution
spanning [0..128] is shown to exhibit half of the “randomness” of
one that spans [0..256].

To analyze the variation strength of an engine, we encoded a
shellcode sample 10,000 times and extracted the corresponding 10,000
decoder sequences. After generating the covariance matrix accord-
ing to Equation 2, we recovered the eigenvalues and obtained the
score using Equation 3. The larger the number of samples used to
generate the covariance matrix, the more accurate the estimate will
be. In practice, around a few hundred samples is usually enough3 .
3Defining a full ranked covariance matrix requires more samples



(a) (b) (c) (d) (e) (f)

Figure 2: Spectral images to show variation strength (a) Shikata Na Gai (b) jcadd (c) call4dword (d) fnstenv mov (e) ADMmutate (f)
CLET. Each pixel row represents a decoder from that engine and each individual pixel value represents the corresponding byte from that decoder.
A column of identical intensities indicates an identifiable artifact left by the engine.

PROPAGATION STRENGTH
If the true decoder distribution happens to exhibit a large span

but lies on a lower-dimensional “manifold” in n-space where the
significant dimensions of the manifold is much less than n (in the
worst case, imagine a hollow n-dimensional sphere with large radii)
then the variation strength might overestimate the bound on the n-
space scatter since the decoders do not exist in the space between
the sphere and the origin. This is why we introduce a second com-
ponent to the engine strength metric based on the expected dis-
tances between decoders. To visualize this metric, imagine a fully
connected graph where each node is a decoder sample and the edge
weight is the distance between any two nodes. The average of the
edge weight is then proportional to the scale of the graph. We
call this metric the propagation strength because of its close re-
lationship to the problem of connecting any two decoder samples
together.

Φ(engine) = (1 − η

n
)

Z Z

p(δ(x,y)) · δ(x,y)) dx dy (4)

δ(x,y) is a function that returns the distance between any two de-
coder sequences. Flexibility in choosing the δ function allows us
to fine tune this metric. For our experiments we set delta as Equa-
tion 1, which is rotation invariant. If the engine performs a simple
shift in the different layers of cipher operations, then the bytes are
decoupled from one another, and the variance in the samples would
be great. The propagation strength, however, would be very low
since δ is shift invariant, thus lowering the overall score. In addi-
tion, we introduce the η variable which is defined as the number
of salient bytes within all of the decoder samples generated by an
engine. This parameter is used as a scaling factor to decrease the
strength of engines that leave consistent artifacts in their decoders
which signature–based IDS implementation can lock on to. If prior
information is available in the form of probability density function
(pdf) for p(δ(x,y)) such as a Gaussian then the above equation is
solvable in closed form and can act as a regularizer for this met-
ric. If not we can use a uniform prior i.e. p(δ(·)) = 1 and the
result can be approximated by generating the matrix D such that
Di,j = δ(xi,xj) and taking the average of this matrix. Since δ(·)
is symmetric (Di,j = Dj,i), we only find the average of the upper
diagonal of the matrix. We use this simpler estimation procedure
to derive the results presented in this paper.

A polymorphic engine might have a restricted span, but if the
sequences that it generates are sparsely spread out and each de-
coder looks very different from the next, then it will be difficult to
than the dimensionality of the data sample.

train any generalized statistical models or extract useful signatures
until a sufficiently large number of samples from this engine are
seen. Our propagation metric is proportional to how long an en-
gine’s generated shellcode can propagate before a detector can be
properly trained.
OVERALL STRENGTH

We define the overall strength of a polymorphic engine Π(·) to
be the product of the variation strength and propagation strength
since they are positively correlated.

Π(engine) = Ψ(engine) · Φ(engine) (5)

To normalize the metric, we find the “strengths” of completely ran-
dom distributions of data we generated, then divide the strengths
of each engine by these strengths to generate a scaled score, which
we call the “relative polymorphism score”, or (p-score) for short.
Non–linear combinations (such as adding exponents to weight the
two strengths differently) of the Φ(·) and Ψ(·) metrics are possible.
Althougth we could attempt to find tighter bounds, our main goal
was to introduce this particular dual approach to quantifying the
capacity of polymorphic engines, allowing them to be ranked rela-
tive to one another. We therefore keep the metric in its basic setting
and leave open problems such as what is the most appropriate δ

function.

Engine Prop. St. Var. St. Overall St. p-score
Shikata 0.14 53.24 7.24 0.62
Jjcadd 0.11 44.62 4.87 0.42
C4d 0.06 14.62 0.83 0.07

Fnstenv 0.07 15.70 1.05 0.09
Clet 0.14 53.00 7.37 0.63

Admmutate 0.15 68.76 10.59 0.91
rand128 0.16 36.90 5.83 0.50
rand256 0.16 73.74 11.61 1.00

Table 1: Decoder polymorphism strengths of various engines
under our metric (the first four engines are from Metasploit).
Also shown are the scores for random distributions of strings
within range 128 and range 256. Compare with Figure 2.

Table 1 shows the strengths of these engines based on our met-
rics. The latter two rows in the table, rand128 and rand256, refer to
a set of randomly generated strings with each byte values between
[0..128] and [0..256], respectively.

This overall p-score, used in conjunction with the spectral im-
ages, can be used to gauge the effectiveness of polymorphic en-



gines relative to each other as well as to noise. This comparison
provides some utility for predicting detection success rates of var-
ious IDS systems for newly released engines. For example, IDS
solutions that cannot detect CLET samples have no hope against
ADMmutate. The p-score is also useful in determining identifia-
bility. Engines with scores higher than a certain threshold would
generate decoders which cannot be traced back to the same engine,
as we can see from the spectral image for ADMmutate. The value
of this threshold is the subject of our ongoing work.

Some of the engines we examined can be adjusted to obtain bet-
ter scores. For example, CLET allows the user to specify an ar-
bitrary number of decoding operations i.e., xor then sub then add,
and so on. Our experiments used the default setting of five instruc-
tion operations. CLET’s main weakness derives from the fixed way
in which it clears registers before decoding. Therefore, testing dif-
ferent levels of ciphering would not yield significantly different re-
sults. Note that three of the engines from Metasploit are not entirely
polymorphic (according to the Metasploit documentation) and it is
easy to see which ones these are.

While CLET’s cleverness and efficiency was on par with that of
ADMmutate in terms of disguising its payload, we found that all
decoders generated by CLET contained a unique 9-byte signature
string that represents a set of instructions used to clear the work-
ing registers and the appropriate jump/call instructions used to load
the needed loop counter variable into memory. While CLET is
one of the more creative engines that we have seen, this particular
feature makes the decoders easier to detect and identify than the
other engines, thus explaining the lowered score. The CLET team
acknowledged as one of their weaknesses this static structural lay-
out [13]. This weakness is not difficult to address, and we expect
future versions of CLET will eliminate these artifacts.

3. A HYBRID ENGINE: FULL SPECTRUM
POLYMORPHISM AND BLENDING

Previous sections illustrated how polymorphism works in vari-
ous engines and how efficient certain engines are at hiding their
payloads. In this section, we show how one can extend existing
polymorphic methods by combining two powerful engines: CLET
and ADMmutate. While CLET’s decoder leaves some noticeable
artifacts, it has very useful spectral ciphering techniques that al-
low the shellcode to blend to a target byte distribution. ADMmu-
tate cannot perform blending attacks, but it generates very random
looking decoders as well as a recursive NOP sled. We simply use
CLET to cipher the shellcode, then hide CLET’s decoder with AD-
Mmutate. We also take advantage of ADMmutate’s advanced NOP
sled generator. Section 1.2 outlines some of the techniques used to
make the other sections polymorphic, and we employ these tactics
in our engine design.

The combination of these engines makes the shellcode not only
impossible to model but also allows the exploit instance to blend
in with normal network traffic. Every section of the shellcode can
be made polymorphic, leaving only the blending section exposed,
as demonstrated in Figure 3. Here, we have added bytes into each
of padding sections of the shellcode samples, so that when stacked
together, the shellcode shows the ACM SIGSAC logo. Each row of
the three spectral images shown in Figure 3 represents a 512-byte
fully working shellcode sample that was tested and confirmed to
execute successfully.

The polymorphic capabilities employed by ADMmutate, which
uses two layers of ciphering on the payload using 16-bit random
keys, allows the payload to be scattered across n-space and thus
avoids being detected by signature detectors. The padding section

(a)

(b)

(c)

Figure 3: Spectral images. (a) A single CLET mutated exploit
is stacked row-wise 100 times (note the vertical bands). Next
to it, CLET’s polymorphic blending ability leaves a padding
area open for arbitrary filler bytes which are never reached in
the execution. We fill it with the ACM logo. (b) CLET’s de-
coder and exploit is hidden by ADMMutate, leaving only the
blending bytes exposed. The repeating columns represent the
[RETADDR] section, which is shown morphed in (c) using the
random offset method.

can carry an arbitrary byte combination since the exploit exists to
the left of the section and triggers immediately before the execu-
tion flow ever passes into the padding section. “Normal-looking”
n-grams, placed within this padding section, can thus allow the
shellcode to blend into normal traffic — slipping by statistical IDS
methods as well. It is also non–trivial to model the blending bytes
section; one simply takes as input a distribution model and for
every byte feature i, multiply it with the length of the section to
find how many of these bytes to use. The section is then filled
up with accordingly with the appropriate number of bytes for each
0x00. . .0xFF value, then this section is randomly permuted (for
example, rearranging the order of the bytes). This alteration pre-
vents the derivation of signatures. Statistically speaking, the sec-
tion has not changed since all of the bytes are still present in their
corresponding frequencies. We implemented this technique in our
engine and report results later in the section.

For this particular demonstration, we have chosen a padding sec-
tion of size 100 bytes, out of a total shellcode size of 512 bytes. Of
course, this section and the entire shellcode sample can be enlarged.
The only change that needs to be made is to increment the values
in the [RETADDR] section to “aim a little higher” into memory to
compensate for the larger shellcode.

The [RETADDR] section is the series of repeated columns seen
to the right of the padding section in Figure 3(a) and (b) — notice
the periodicity. As mentioned above, the [RETADDR] is not easily
modeled. This portion normally has variable length, is mutable,
and is both platform and vulnerability dependent. This mutability
feature is demonstrated in Figure 3(c) where we have mutated the
[RETADDR] section by aiming the instruction pointer at the center
of the NOP sled and adding a random byte offset of approximately
50 bytes in each of the repeated return addresses. This gives us
about 100m possible unique sequences for the [RETADDR] section,
where m is the number of times the target address is repeated. The
base of the exponent (100) can be larger or smaller, depending on
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Figure 4: adm+clet engine. (a) 1-gram distribution (b) 3-gram
scatter. Comparing this to Figure (7), we can see that this en-
gine is equally difficult to model.

how large the NOP sled section is. The only real weakness we see
from ADMMutate is a white column, representing a 4-byte salient
artifact generated by the engine, which is too small to use as a sig-
nature or statistical model.

In terms of statistical features, Figure 4(a) shows the 1-gram dis-
tribution of the ADMmutate decoder section of the above engine,
which was calculated by finding the average 1-byte histogram of
these decoders, then normalizing it by dividing by the variance
along each dimension.

Dividing by the variance normalizes the values so that we obtain
their discriminative scores. For example, if a feature is consistently
present, it has low variance. Therefore, dividing by its variance will
increase the prominence of that feature. Conversely, if a feature ex-
hibits very high variance, then its reliability in statistical modeling
is correspondingly low. From Figure 4(a), we see that there is lit-
tle to no signal from the 1-byte distribution. Figure 4(b) shows the
3-gram scatter of these 100 decoders, showing us the range of 3-
grams present. As we can see, for 3-grams, it is a full spectrum
spread. If 3-space is saturated, then so is 2-space since it is a sub-
space within 3-space. Having the decoder bytes spread across n-
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Figure 5: Our combined adm+clet engine executing a blending
attack. Image (a) shows target distribution, while image (b)
shows distance to target given padding section size.

space means we have some freedom to perform blending attacks,
since it means the engine can generate decoders which do not ap-
pear “too binary.” We implemented a blending attack function into
our adm+clet engine.

Figure 5 displays a simulation of a blending attack using our
engine. We first artificially generate a target distribution, shown
in Figure 5(a). We created a distribution from a mixture of three
Gaussians with centroids at 55 (ASCII character “7”), 77 (ASCII
character “M”) and 109 (ASCII character “m”) in order to simulate
the network traffic distribution of a server hosting many clear text
transfers. We also added some binary noise to account for binary
transfers (e.g., images and video). Each centroid has a variance of

15. Next, we implemented the Mahalanobis distance classifier:

Mahdist(x, µ|Σ) = (x− µ)T Σ−1(x − µ) (6)

Here, µ is the 1-byte target distribution, and we set Σ = 0.1I
where I is the identity matrix. Statistical IDS systems such as
PayL [41] employ the Mahalanobis distance classifier. We chose
our estimates in the same manner.

Figure 5(b) shows the engine’s blending attack converging on the
target distribution. The Y-axis shows the Mahalanobis distance as
a function of the size of the blending section. For each size, we
generate a new malcode sample with a blend section of that size.
Next, we fill the section with bytes generated using the method we
outlined at the start of this section, then calculate the 1-byte distri-
bution of the shellcode with these new bytes in place and find the
Mahalanobis distance to the target distribution using Equation 6.

We see that a padding section of around 200 bytes is needed to
blend an executable shellcode sample generated from our engine
into the given target distribution, under our chosen threshold value.
In our example, we have given our engine the correct target distri-
bution. In practice, the target distribution will have to be estimated
in some way. We included this demo only to demonstrate the po-
tential of combining many different attack vectors into the same
engine. Our blending attack is not meant to be the most advanced;
we refer the reader to related work on this topic [17].

We could also make use of binary to text encryption to transform
the decoder portion of the shellcode into a string that consists of
only printable characters by using techniques such as the ones pro-
vided in ShellForge engine [6]. This technique could improve the
blending strength of the engine with relatively little implementa-
tion effort. In addition, there are other techniques that will allow
the shellcode survive sanitization functions such as to upper()
and to lower().

4. EXPLORING N-SPACE
We have so far focused our attention primarily on understanding

and extending existing engines and techniques. This section in-
vestigates the extent to which polymorphic code exists in n-space.
More specifically, given n-space, we have 28n possible strings. We
want to explore the entirety of this space and find all of the se-
quences that “behave” like polymorphic code. Since completing
this search is intractable for large n (e.g., n > 4), we restrict our
attention to byte strings of length 10 in order to make our search
feasible. From the structure of the decoder, we know that it must
contain two components: (1) a modification operation (e.g., add,
sub, xor, etc.), and (2) some form of a loop component e.g.,
jmpz, that sweeps the cipher across the payload. Figure 1 shows
that real full decoders are longer and more complex than these sim-
ple requirements. For example, they contain maintenance oper-
ations such as clearing registers, multiple cipher operations, and
some exotic code to calculate the location of the executable. We
believe, however, that our restrictions retain the most critical oper-
ations for examining decoding behavior.

Our restricted, 10-byte examination reduces the search space to
280 strings. This problem remains intractable if we plan to ex-
plore the space one unique string at a time. Starting at {0x00
0x00. . .0x00}, testing to see if it exhibits polymorphic behav-
ior, proceeding to {0x00 0x00. . .0x01}, testing that string, and
so on until we reach {0xFF 0xFF. . .0xFF} represents a signifi-
cant dedication of time and resources with little reason to suggest
that such a complete procedure conveys substantially more mean-
ingful data than a more intelligent and judiciously directed search.
Instead, we make use of genetic algorithms [33] to perform the
search in a directed manner by choosing to explore areas were ex-



isting polymorphic code resides as a form of local search. To sat-
isfy these requirements, we define a function that accepts a string as
input and determines whether that string represents x86 code that
exhibits polymorphic behavior.

4.1 Decoder Detector
We designed our “decoder detector” and implemented it as a pro-

cess monitoring tool within the Valgrind emulation environment.
Valgrind’s [27] binary supervision enables us to add instrumenta-
tion to a process without modifying its source code or altering the
semantics of the process’s operations. Most importantly, Valgrind
provides support for examining memory accesses, thus allowing us
to track what parts of memory a process touches during execution.
Our tool detects “self-modifying code,” which we define as code
that modifies bytes within a small distance of itself. We restrict
our attention to instruction sequences that modify code within two
hundred bytes of itself in either direction in memory — that is,
we sandwich the code within two NOP sleds of two hundred bytes
each. The GA-search framework compiles and executes a buffer
overflow exploit in the emulation environment and checks for any
polymorphic behavior.

The following polymorphic behaviors are of interest: we de-
fine self–write as writing to a memory location within two hundred
bytes of the executing instruction. We define self–modify as read-
ing from a memory location within two hundred bytes and then,
within the next four instructions, performing a write to the same lo-
cation, simulating the behavior of in-place modification operations
effected via instructions such as xor, add, sub. Of course,
some polymorphic techniques may not replace code in–place, but
any such examples further saturate n-space.

4.2 Genetic Algorithms
Genetic algorithms is a classic optimization technique from AI

and have proved most useful in problems with a large search space
domain and where closed formed solutions are not available or di-
rectly optimizeable. Instead, various solutions are represented in
coded string form and evaluated. A function is used to determine
the “fitness” of the string. GA algorithms combine fit candidates to
produce new strings over a sequence of epochs. In each epoch, the
search evaluates a pool of strings, and the best strings are used to
produce the next generation according to some evolution strategy.
For a more detailed discussion, we refer the reader to [33].

The fitness function used for our GA search framework is the
decoder detector described above. We score each self–write op-
eration a 1 and each self–modify operation a 3. The higher score
for the latter operation reflects our interest in identifying instruc-
tion sequences that represent the xor, add, sub-style decoder
behavior. The sum of the behavior scores of a 10-byte string de-
fines its fitness. Any string with a non-zero score therefore exhibits
polymorphic behavior.

We relax our GA optimization constraint since we do not need to
find the “best” decoder. Instead, we have a low limit for polymor-
phic behavior and will admit any string that passes that threshold
into the population. We used a dynamic threshold for minimum ac-
ceptable polymorphic behavior as 5% of the average polymorphic
score of the previously found sequences; we bootstrapped with an
overall minimum score of 6. The threshold was used in order to
ignore strings which performed very few self-modifications; we
wanted to capture strings that exhibited a significant amount of
polymorphic behavior (i.e., it encapsulated some form of a loop
construct)4. We stored all unique strings that met the polymorphic
criteria in what we term the candidate decoder pool. We observed
4We used a four second runtime limit in our Valgrind decoder de-

that the average fitness value reached into the hundreds after a few
hundred epochs.

Genetic algorithms perform intelligent searching by restricting
their attention to searching the space surrounding existing samples.
Therefore, this form of local search needs quality starting posi-
tions to achieve reasonable results. We seeded our search engine
with two decoder strings extracted from ShellForge [6] and roughly
45,000 strings from Metasploit [26] in order to obtain a good distri-
bution of starting positions. We implemented a standard GA-search
framework using some common evolution strategies, listed here:

1. Increment: The lowest significant byte is incremented by
one modulo 255, with carry. We use this technique after find-
ing one decoder to then undertake a local search of the sur-
rounding space.

2. Mutate: A random number of bytes within the string are
changed randomly. Useful for similar reasons, except we
search in a less restricted neighborhood.

3. Block swap: A random block of bytes within one string
is randomly swapped with another random block from the
same string. This technique helps move blocks of instruc-
tions around.

4. Cross breed: A random block of bytes within one string
is randomly swapped with another random block from an-
other string. This technique helps combine different sets of
instructions.

5. Rotate: The elements of the string are rotated to the left
position-wise by some random amount with a wrap-around.
This is to put the same instructions in different order.

6. Pure random: A new purely random string is generated.
This adds variation to the pool and help prevent the search
from getting stuck on local max. It is used mainly to intro-
duce some entropy into the population and is not useful by
itself since the likelihood of finding executable x86 code with
self modification and an inner loop at random is low.

For each sequence, we automatically generate a new program that
writes the string into a character buffer between two NOP sleds of
200 bytes each. The program then redirects execution into that
buffer, effectively simulating a buffer overflow attack. We then
retrieve the fitness score of that string from the decoder detector,
evaluate it, and continue with the search according to the process
described above. An alternative search procedure would parame-
terize the actual x86 instruction set into a genetic algorithm search
package and dynamically write decoders. This is the subject of our
ongoing work. This technique bears a strong similarity to work
done by Markatos et al. [31]. Whereas they implemented their tool
as a detector, dynamically filtering network content through the de-
tector to search for the presence of decryption engines, we use our
decoder detector in an offline manner where we generate the strings
ourselves in order to precompute a set of byte strings that perform
self–modification.

4.3 GA-Search results
This evaluation aims to assess the hypothesis that the class of

self-modifying code spans n-space where n is the length of the de-
coder sequence. Our GA-search framework found roughly two mil-
lion unique sequences after several weeks of searching and shows
no signs of diminishing returns. The results that we derive show
that the class of n-byte self-modifying code not only spans n-space
but saturates it as well. First let us look at the (rounded) mean
and variances of the generated sample pool of 10-byte sequences,
tector tool as we periodically find strings that perform infinite self
modifying loops.
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Figure 6: Decoder search engine flow chart. We construct our
library of decoders using a feedback loop that creates candidate de-
coders, confirms that they exhibit sufficient decoding behavior, and
generates more samples from them.

shown in decimal for each reading:

Mean: {90,66,145,153,139,127,123,138,134,126}
Standard deviation: {72,71,86,78,80,84,86,82,75,76}

The mean exists near the center of n-space (in this case, n-space
is a vector of 10 entries each of value 128). The high variance
along each dimension shows that the samples are widely scattered.
Statistical IDS detectors typically operate under the assumption
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Figure 7: Results. (a) 1-gram distribution - note the uniform
byte distribution. (b) 3-gram scatter plot - each dot represents
a 3-gram, note the 3-space saturation.

that the class of malcode being modeled exhibit a certain n-gram
distribution. This “byte-spectrum” can be modeled and used to de-
sign a classifier to separate malcode from normal traffic (n = 1
in the case of PayL [40] and n = 3, 4, 5, 6, 7 in the case of Ana-
gram [21]).We examined our generated samples to see if such a
signal existed. For each sequence in our sample pool, we compute
the 1-byte distribution, then find the average for all sequences, nor-
malized by dividing by the variances along each dimension, as we
did in Section 3. Figure 7(a) shows the average 1-bytes distribu-
tion. We can see that the sample pool contains no distinguishable
distribution but rather is closer to white noise (with the exception
of the {x00} and {xFF} values, which are likely to be padding
artifacts). For 3-space, Figure 7(b) shows the 3-gram scatter plot
of all 3-grams extracted from all the candidates in the pool. This

plot shows that, for 3-grams, the space is well saturated. Since it
is a subspace of 3-space, 2-space also saturated. The p-score of
these samples was close to 1.00. This result can be expected as
“polymorphic code” is less constrained than the full decoders we
have worked with in the previous sections. Nevertheless, our re-
sults show that there is a significant degree of variance in x86 code
that performs operations that we can associate with self–decryption
routines.

4.4 Results Discussion
Our results show that the span of polymorphic code likely reaches

across n-space. The challenge of signature–based detection is to
model a space on the order of O(28·n) signatures to catch potential
attacks hidden by polymorphism. To cover thirty-byte decoders re-
quires O(2240) potential signatures, for comparison there exist an
estimated 280 atoms in the universe. We would much sooner run
out of atoms than attackers run out of decoders. Current signature
schemes work only because of advances in rapid isolation and gen-
eration of signatures. This strategy may work for the short term;
however, our work indicates that defenders cannot capture the ini-
tiative from the attacker under this reactive defense strategy. Some-
what troubling is the additional implication that regardless of what
a normal model of traffic for a particular site may be, there exists
a certain probability that a range of decoders would fall within the
span of that normal model because sequences which exhibit poly-
morphic behavior span most of n-space.

5. RELATED WORK
Countering attacks and malcode is a hard problem. Spinellis

showed that identification of bounded length metamorphic virii is
NP-complete [37] by decomposing the problem into one of graph
isomorphism. In addition, Fogla et al. [17] showed that finding a
polymorphic blending attack is also an NP-complete problem.
TRAFFIC CONTENT ANALYSIS

Snort [36] is a widely deployed open-source signature-based de-
tector. Exploring how to automatically generate exploit signatures
has been the focus of a great deal of research [22, 35, 28, 24, 44,
43, 25, 2]. To generate a signature, most of these systems either ex-
amine the content or characteristics of network traffic or instrument
the host to identify malicious input. Host–based approaches filter
traffic through an instrumented version of the application to detect
malcode. If confirmed, the malcode is dissected to dynamically
generate a signature to stop similar future attacks.

Abstract Payload Execution (APE) [38] treats packet content as
machine instructions. SigFree [42] adopts similar techniques. In-
struction decoding of packets can identify the sled, or sequence of
instructions in an exploit whose purpose is to guide the program
counter to the exploit code. Krugel et al. [23] detect polymorphic
worms by learning a control flow graph for the worm binary. Con-
vergent static analysis [8] also aims at revealing the control flow of
a random sequence of bytes.

Statistical content anomaly detection is another avenue of re-
search, and PayL [40] models the 1-gram distributions of normal
traffic using the Mahalanobis distance as a metric to gauge the nor-
mality of incoming packets. Anagram [21] caches known benign
n-grams extracted from normal content in a fast hash map and com-
pares ratios of seen and unseen grams to determine normality.
COUNTERING POLYMORPHISM

Recent work [39] calls into question the ultimate utility of exploit-
based signatures, and research on vulnerability–specific protection
techniques [11, 7, 18] explores methods for defeating exploits de-
spite differences between instances of their encoded form. The un-
derlying idea relies on capturing the characteristics of the vulnera-



bility (such as a conjunction of equivalence relations on the set of
jump addresses that lead to the vulnerability being exercised. Cui
et al. [12] combine dataflow analysis and protocol or data format
parsing to construct network or file system level “data patches” to
filter input instances related to a particular vulnerability.

Brumley et al. [7] supply an initial exploration of some of the
theoretical foundations of vulnerability–based signatures. Vulner-
ability signatures help classify an entire set of exploit inputs rather
than a particular exploit instance. As an illustration of the difficulty
of creating vulnerability signatures, Crandall et al. [11] discuss
generating high quality vulnerability signatures via an empirical
study of the behavior of polymorphic and metamorphic malcode.
The authors present a vulnerability model that explicitly considers
that malcode can be arbitrarily mutated. They outline the difficulty
of identifying enough features of an exploit to generalize about a
specific vulnerability. For example, the critical features of an ex-
ploit may only exist in a few or relatively small number of input
tokens, and if the attacked application is using a binary protocol,
telltale byte values indicating an attack may be common or oth-
erwise unextraordinary values. For example, the Slammer exploit
essentially contains a single “flag” value of 0x4. For other pro-
tocols, detecting that the exploit contained the string “HTTP” or
some URL typically does not provide enough evidence to begin
blocking arbitrary requests — or if it does, our analysis indicates
that such exploits can be arbitrarily mutated, thus vastly increasing
the signature database and the processing time for benign traffic.

One way to counter the presence of the engine we propose in
Section 3 is to use an anomaly detection (AD) sensor to shunt sus-
pect traffic (that is, traffic that does not match normal or whitelisted
content) to a heavily instrumented replica to confirm the sensor’s
initial classification. In fact, Anagnostakis et al. [2] propose such
an architecture, called a “shadow honeypot.” A shadow honeypot
is an instrumented replica host that shares state with a production
application and receives copies of messages sent to a production
application — messages that a network anomaly detection compo-
nent deems abnormal. If the shadow confirms the attack, it creates
a network filter for that attack and provides positive confirmation
to the anomaly detector. If the detector misclassified the traffic,
the only impact will be slower processing of the request (since the
shadow shares full state with the production application). The in-
tuition behind this approach is that the normal content model for a
site or organization is regular and well–defined relative to the al-
most random distribution representative of possible polymorphic
exploit instances. If content deemed normal is put on the fast path
for service and content deemed abnormal is shunted to a heavily
protected copy for vetting, then we can reliably detect exploit vari-
ants without heavily impacting the service of most normal requests.

Since network traffic may look similar enough across sites, pre-
trained blending attacks such as the ones we explored in section 3
pose a real threat. Future statistical IDS techniques should take
measures to hide the profiles of the normal content from the at-
tacker. If we can force the attacker to guess where to aim his attack
then perhaps we can turn the complexity of n-space to our favor.

6. CONCLUSIONS
Our empirical results demonstrate the difficulty of modeling poly-

morphic behavior. We briefly summarized the achievements of the
shellcoder community in making their code polymorphic and ex-
amined ways to improve some of these techniques. We presented
analytical methods that can help assess the capabilities of polymor-
phic engines and applied them to some state-of-the-art engines. We
explained why signature–based modeling works in some cases and
confirmed that the viability of such approaches matches the intu-

itive belief that polymorphism will eventually defeat these method-
ologies. The strategy of modeling malicious behavior leads to an
unending arms race with an attacker. Alternatively, white–listing
normal content or behavior patterns (perhaps in randomized ways
in order to defend against blending attacks) might ultimately be
safer than blacklisting arbitrary and highly varied malicious behav-
ior or content.
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