
Evading Network Anomaly Detection Systems:
Formal Reasoning and Practical Techniques

Prahlad Fogla and Wenke Lee
College of Computing, Georgia Institute of Technology

Atlanta, Georgia, USA

prahlad@cc.gatech.edu, wenke@cc.gatech.edu

ABSTRACT
Attackers often try to evade an intrusion detection system (IDS)
when launching their attacks. There have been several published
studies in evasion attacks, some with available tools, in the research
community as well as the “hackers” community. Our recent empir-
ical case study showed that some payload-based network anomaly
detection systems can be evaded by a polymorphic blending attack
(PBA). The main idea of a PBA is to create each polymorphic in-
stance in such a way that the statistics of attack packet(s) match the
normal traffic profile. In this paper, we present a formal framework
for the open problem: given an anomaly detection system and an
attack, can one automatically generate its PBA instances? We show
that in general, generating a PBA that optimally matches the nor-
mal traffic profile is a hard problem (NP-complete). However, the
problem of finding a PBA can be reduced to the SAT or ILP prob-
lems so that solvers available in those domains can be used to find a
near-optimal solution. We also present a heuristic (hill-climbing) to
find an approximate solution. Our framework can not only expose
how the IDS can be exploited by a PBA but also suggest how the
IDS can be improved to prevent the PBA. We have experimented
with our framework using the PAYL 1-gram and 2-gram anomaly
detection system, and the results have validated our framework.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—Secu-
rity and protection

General Terms
Security

Keywords
anomaly detection, polymorphic blending attack, mimicry attack

1. INTRODUCTION
As defense techniques such as intrusion detection systems (IDSs)

become widely deployed, attackers now have to consider how to de-
feat these mechanisms when launching their attacks. In particular,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’06, October 30–November 3, 2006, Alexandria, Virginia, USA.
Copyright 2006 ACM 1-59593-518-5/06/0010 ...$5.00.

polymorphic attacks are designed to evade the detection of misuse
detection systems. In such an attack, each polymorphic instance of
an attack can look very different. Thus, there may not be an accu-
rate or reliable pattern that an IDS can use as an attack signature.
Anomaly detection systems offer a defense against polymorphic
attacks because typically each attack instance still looks different
from normal data. For example, the payload of an attack packet
may contain some non-printable characters or unusual byte struc-
ture; whereas the payload of a normal packet predominantly con-
tains ASCII characters with predefined structure, as required by
the application protocol. Indeed, several network-based anomaly
detection systems, e.g., PAYL [31, 32], which model the byte (or
n-gram) frequency characteristics of the normal packets, have been
shown to be effective against polymorphic attacks.

It is inevitable that attackers will attempt to evade anomaly de-
tection systems. Our previous work [10] showed that a polymor-
phic blending attack (PBA) can evade PAYL. A PBA is similar to
a mimicry attack [30], but is applied to network IDS rather than
host-based IDS. The main idea of a PBA is that, after learning the
normal profile using some normal packets, the attacker can mutate
a given attack instance so that the byte characteristics of the final
attack packet(s) match the normal profile. We showed that such
mutations can be achieved using a simple byte substitution scheme
followed by byte padding. However, these techniques are not gen-
eral in that they are based on heuristics that work well for PAYL
but not necessarily other anomaly detection systems.

Therefore, an important open problem with polymorphic blend-
ing attacks is: given an anomaly detection system and an attack,
can one automatically generate the PBA instances? The motiva-
tion for solving this problem is to provide a defender the means to
evaluate an IDS and even improve it.

In this paper, we present a formal framework for polymorphic
blending attacks. We first show that a wide range of IDS can be
represented using either a regular grammar or a stochastic regular
grammar. The problem of generating a PBA then becomes find-
ing a mutated attack instance that will be accepted by the IDS reg-
ular grammar. We show that in general, generating a PBA is a
hard problem (NP-complete), but it can be translated to the SAT
(satisfiability) or ILP (integer linear programming) problem. Thus,
solvers in these problem domains can be used to find a near optimal
solution for generating a PBA. In addition, we present heuristics to
find approximate solutions very efficiently. We also show that our
framework can not only expose how the IDS can be exploited by
a PBA but also suggest how the IDS can be modified to prevent
the PBA while maintaining the desired detection performance (e.g.,
low false positive rate). We have experimented with our framework
using the PAYL 1-gram and 2-gram anomaly detection system, and
the results have validated our framework.

59



The rest of the paper is organized as follows. Section 2 discusses
the related work. In section 3, we present our framework that
includes models for the class of IDS considered in this research,
and the basic steps to generate a polymorphic blending attack. In
section 4, we analyze the complexity of generating a polymorphic
blending attack and present some methods to find approximate so-
lutions for the problem. We show the results of our experiments in
section 5. In Section 6, we describe how to use our framework to
improve an IDS. Section 7 concludes the paper.

2. RELATED WORK
Various attack mutation techniques have been used by attackers

to evade misuse detection systems. [29] presents some mutation
techniques commonly used at the different layers of protocols. In
[23], Rubin et al. modeled different attack transformations as infer-
ence rules. These rules can be used repeatedly to generate different
attack instances from a given initial attack instance.

Several attack specification languages have been developed by
researchers to represent the attack signatures efficiently and accu-
rately. NETSTAT [6] represents the attack events using a state ma-
chine called STATL. Snort [21] represents a signature using regular
expressions consisting of network bytes. It also uses other packet
attributes. Liang et al. [17] presented extended FSA based attack
signatures. GARD [22] is a tool for regular language based gener-
ation of attack instances. It is observed that many of the proposed
signatures are based on a regular grammar or state machine.

Code polymorphism and metamorphism techniques [27] are used
to mutate and obfuscate the shellcodes present in the attack. Tools
like tPE, AdMutate, and CLET [5, 16, 33] perform advanced code
polymorphism, and are available on the Web. Several approaches
have been proposed to detect polymorphic attacks. [3] uses instruc-
tion semantics information to detect different instances of malware.
Kruegel et al. [13] presented graph coloring based detection of ma-
licious code. In [28], Toth et al. observed that the maximum binary
executable section in a normal http packet is very small and may
be used to detect the presence of shellcode in a packet. STRIDE [1]
checks for the presence of NOP sleds in a packet to find buffer
overflow attacks. Polygraph [20] generates signatures for worms
by finding a set of longest substrings shared between different in-
stances of the worm.

Payload-based anomaly IDS are used to detect application-layer
attacks, including polymorphic attacks. PAYL [31, 32] records
the byte (or n-gram) frequency characteristics of the normal pack-
ets. If the frequency characteristics of a packet differs significantly
from the normal, the packet is deemed suspicious. NETAD and
LERAD [14, 18] models the first few bytes of the application layer
headers of a packet using a set of rules. In [15], Kruegel et al. pro-
posed six different models, namely, length, character distribution,
probabilistic regular grammar, token set, attribute presence, and at-
tribute order for detection of http attacks. They modeled differ-
ent http attributes like URL path, SQL query string, etc. Sekar et
al. [25] presented an anomaly detection system based on network
protocol specifications. Specification is defined using extended fi-
nite state automaton. Statistical features based on the state transi-
tions are monitored to detect anomalies.

In host based IDS, system call sequence is commonly used to de-
tect intrusions. Sekar et al. [24] proposed to use a program counter
along with system calls to model the normal system call sequence
as a DFA. [8, 7] proposed to use call stack information to reliably
detect carefully crafted intrusions. Mimicry attack was first intro-
duced by Wager et al. [30]. It modifies the system call sequence
generated by the attack code so that it matches the normal system
call sequence. An advanced mimicry attack was described in [12]

that can evade the IDSs that uses call stack information. Polymor-
phic blending attack is similar to mimicry attacks because both try
to evade anomaly IDS by matching the attack characteristics to the
normal profile. Mimicry attacks target host-based IDSs, whereas
polymorphic blending attacks target network IDSs.

[2] raises doubts on the security of machine learning based IDSs
in the face of a determined and resourceful attacker. It discussed
the possible manipulation of the IDS training process so that the
normal space of an IDS is gradually moved to include attack pack-
ets. A polymorphic blending attack takes a different approach and
modifies the attack instance to move it closer to the normal space.
CLET [5] is a publicly available polymorphism tool which tries to
perform preliminary blending. CLET adds extra padding bytes in a
given attack packet in an effort to match the byte frequency distri-
bution of the attack to the normal profile. Our recent work [10] ex-
plores polymorphic blending attacks and presents basic techniques
for generating such attacks. It shows that polymorphic blending at-
tacks are feasible, and presents a case study for PAYL 1-gram and
2-gram. In this paper, we present a methodical approach to poly-
morphic blending attacks. Our research includes formal models
and theoretical results, general algorithms, and efficient heuristics.

3. A FORMAL FRAMEWORK
The basic observation behind a PBA is that a network IDS moni-

toring high-speed and high-volume traffic typically uses simple sta-
tistical measures instead of complex structural or semantic informa-
tion to model the normal traffic. An attacker can exploit this sim-
plicity or limitation to devise attacks capable of evading the IDS.

In a polymorphic blending attack, it is assumed that the attacker
knows the features and the algorithms used in the IDS [10]. Given
some normal data packets, the attacker can generate an artificial
normal profile that is close to the normal profile being used by the
IDS. The attacker can roughly guess the error threshold of the IDS
using an estimation of the desired false positive and detection rate
of the IDS. After the attacker estimates the normal profile used
by the IDS, the attacker decides the various parameters (e.g., at-
tack vector, decryptor, encryption scheme, etc.) and structure (e.g.,
placement of each attack section in the payload) of the attack data.
Then the attacker carefully chooses an encryption key so that the
encrypted attack body closely matches the desired normal profile.
Lastly the attacker pads the attack data with some normal data to
match the attack packet even closer to the normal profile. A de-
tailed description of each of the above steps can be found in [10].

In this work, we study the problem: given an anomaly detection
system and an attack, can one automatically generate the PBA in-
stances? Our approach is to develop a formal framework that starts
with the models for the IDS. Based on these models, we can then
reason about the complexity of the problem of generating a PBA,
and develop the general algorithms for solving the problem.

3.1 Modeling Intrusion Detection Systems
In our recent work [10], we considered a class of anomaly de-

tection systems that use only simple byte statistics of the normal
traffic. We would like to generalize the concept of polymorphic
blending attack to include a wide range of anomaly detection sys-
tems that use other structural information of the normal traffic.

3.1.1 Anomaly Detection Systems
Since a polymorphic attack typically mutates only the packet

payload, we limit our scope to payload-based anomaly IDS. These
systems record the statistics and structure of the bytes present in
the normal network traffic packets. Such anomaly IDS proposed
by researchers include NETAD[18], LERAD [19], service-specific

60



IDS [14], PAYL [31], and structure based detection of Web attacks
by Kruegel et al. [15]. We observe that these IDSs can be repre-
sented as stochastic Finite State Automaton (sFSA) or equivalently
stochastic Regular Grammar (sRG). sFSA is similar to FSA and
has a probability assigned to all the transitions in the FSA.

3.1.1.1 PAYL.
PAYL records the average frequency of different unique n-grams

that appear in normal traffic packets. An n-gram model can be
described using an sFSA where each state represents the unique
(n−1)-gram corresponding to the last (n−1) bytes in the packet. A
transition from state A(a0a1 · · · an−2) to state A′(a1a2 · · · an−1)
exists if and only if n-gram (a0a1....an−2an−1) is present in the
normal traffic. The probability of a transition is equal to the prob-
ability of the corresponding n-gram in the normal traffic. Every
state is a start state and every state is an accept/end state. For ex-
ample, 1-gram model can be represented using a single state FSA:
for every unique byte in the normal traffic, there exists a transition
from the state to itself; and the probability of the transition is the
same as the frequency of the byte in normal traffic.

3.1.1.2 NETAD and LERAD.
Mahoney et al. presented a series of anomaly IDSs that use some

network level data along with some payload data to detect intru-
sions. These systems use attributes such as bytes or words present
at specific positions in the payload. A LERAD rule is of the form
(if word1 = x1, · · · , wordm−1 = xm−1 then wordm ∈ X =
{x1,m, · · · , xn,m}). Such a rule can be seen as a regular grammar
of the form (x1 x2 · · ·xm−1 {x1,m| · · · |xn,m}). Multiple rules can
be combined using the ‘|’ term to obtain a single regular grammar.

3.1.1.3 Structure-Based Systems.
Kruegel et al. presented an IDS for Web services. A Web traffic

packet is divided into attributes and different attributes are recorded
using different byte characteristics, including: attribute length, byte
frequency, byte structure using sRG, and token set. As in PAYL,
byte frequency can be represented using a sFSA with one state. To-
ken set (T = {t1, · · · , tn}) can be seen as a regular grammar of
the form (t1| · · · |tn). Models of the different attributes can be com-
bined to form a single sFSA. The length constraint on an attribute
is handled separately during the blending attack generation.

In summary, the above anomaly detection systems can be rep-
resented using a sFSA. An anomaly detection system normally al-
lows some errors. Typically, it uses some distance metric to define
the distance of an observed packet from the normal profile. If the
distance is smaller than a threshold, the packet is considered nor-
mal. Otherwise, the packet is considered anomalous. The distance
metric is orthogonal to the IDS models and cannot be directly in-
corporated in the corresponding sFSA. In later sections, we will
show how the distance metric is accounted for when generating a
polymorphic blending attack.

3.1.2 An Example
We have shown that a wide range of anomaly IDSs represent the

byte statistics and/or structure of a normal packet using either FSA
or sFSA. One main reason for using FSA (or equivalently, regular
expression) is that determining whether a string is generated by a
FSA is very fast, and can thus be used over high speed networks.

In this work, we assume that the attacker is trying to evade an
IDS that can be represented using either an FSA or sFSA. Figure 1
shows a simple example of a sFSA IDS. The IDS accepts the strings
containing only the following tuples: ab, ba, and bb. We use this
simple IDS as a running example throughout the paper.

a, 0.3

b,0.2

b,0.5

Figure 1: Simple sFSA IDS containing 3 tuples

aaba

AV
cbb

Dec
k1k2

Key
00h 01h 00h 00h

Attack Code

aaba

AV
cbb

Dec
k1k2

Key
00h ⊕ k1 01h ⊕ k2 00h ⊕ k1 00h ⊕ k2

Encrypted Attack Code

Figure 2: Simple attack example. Attack code is 4 byte string
with NUL and SOH ASCII characters.

3.2 Polymorphic Blending Attack
As in [10], we focus on the attacks that allow arbitrary code ex-

ecution. Thus, the attack packet contains a shellcode that is run on
the victim host. A polymorphic attack contains five sections:

• Attack vector: exploits the vulnerability present on the vic-
tim host. Polymorphism of attack vector is achieved using
different attack mutation techniques as discussed in [10].

• Attack code: the shellcode that the attacker wants to execute
at the victim host. The attack code is stored encrypted in the
attack packet.

• Polymorphic decryptor: decrypts the encrypted attack code
and transfers control to attack code. Various code obfusca-
tion techniques can be used to generate different instances of
polymorphic decryptor.

• Decryption table: used to decrypt the attack code.
• Padding: extra (junk) data appended in order to closely match

the normal profile.
In [10], we used a simple byte substitution scheme for encryp-

tion. During encryption, every attack character in the attack body is
substituted by a normal character. To store the reverse substitution
(or decoding) table of the simple byte substitution scheme, we use
the same technique as in [10]: the index of the decoding table deter-
mines the attack character, and the entry at an index is the normal
character used to substitute the corresponding attack character.

The polymorphic blending techniques studied in this paper in-
clude both XOR encryption scheme and byte substitution scheme.
It is important to consider XOR because there are several existing
polymorphism tools that use XOR based encryption already, and
these tools may be extended to generate PBA. Unlike substitution,
the decryption key for XOR is the same as the encryption key, and
can be stored in a straight forward manner.

Both substitution and XOR are very simple schemes and are used
in more complex encryption schemes. By studying PBA with these
simple schemes, we hope to develop a understanding as well as
solutions applicable to more complex schemes.

3.2.1 Generating An Attack Instance
Assume that the attacker has learned a (s)FSA corresponding to

the (artificial) normal profile of the targeted IDS, the next step is to
design an attack packet that can be accepted by the (s)FSA.

First, the attacker decides on the encryption scheme used for en-
crypting the attack code. Then a mutated instance of the attack vec-
tor and a polymorphic decryptor is generated, and their positions in
the attack packet are determined.

The attack packet sections of the attack vector and polymorphic

61



decryptor should preferably be accepted by the (s)FSA already. In
some cases, there does not exist a path in the (s)FSA that corre-
sponds to these attack packet sections (e.g., the mutated attack vec-
tor still contains characters not seen in normal packets), resulting
in errors when the packet is matched with the IDS normal profile.
If such error is greater than the IDS threshold, it means that it is not
possible to generate a successful polymorphic blending attack.

The next step is to determine the encryption key. The main re-
quirement is that the packet sections of the encrypted attack code
and the decryption key should be accepted by the (s)FSA . For a
sFSA, the additional requirement is for the whole attack packet to
also match the transition probabilities. One approach is to first ad-
just the sFSA for what have been already matched by the attack
packet sections of the attack vector and the polymorphic decryptor,
then find a encryption key so that the sections of the encrypted at-
tack code and the decryption key match the remaining parts of the
sFSA. More specifically, the path taken by the attack vector and the
decryptor in the sFSA is first identified. If there does not exist such
a complete path (e.g., some transitions are not in the sFSA), there
will be an error matching the attack packet with the normal profile
already. If there exists multiple paths, the path with high probabil-
ity transitions is chosen. Then the probabilities of the transitions
present in the path are reduced according to the number of times
a transition appears in the path. An encryption key is then chosen
so that the sections of the encrypted attack code and the decryption
key can match the adjusted sFSA closely.

The final, and sometimes optional, step is to pad the attack packet
to have a desired packet length. For a sFSA, padding can be used to
make the final attack packet match even more closely with the nor-
mal profile. The process works as follows. First, given the original
sFSA representing the IDS, adjust the probabilities of the transi-
tions in sFSA for the attack vector, the decryptor, the key table, and
the encrypted attack code. That is, similar to the step of determin-
ing the encryption key discussed above, the sFSA is adjusted ac-
cording to what have already been matched by these existing attack
packet sections. Then more bytes are padded to the attack packet
to match the remaining transitions and probabilities of the sFSA.

We use a simple blending attack (shown in Figure 2) to demon-
strate the different concepts presented in the paper. We use an XOR
encryption scheme with key length 2 (obviously, the encryption key
and the decryption key is the same in an XOR scheme). The attack
vector, decryptor, key, and attack code are concatenated in a given
order to produce an attack packet payload. Although we assume an
attack structure as shown in Figure 2, the techniques presented in
this paper should work for other attack structures.

For convenience, we denote the string corresponding to the de-
cryption key concatenated with the encrypted attack code as Skey ac.

4. FORMAL ANALYSIS
As discussed in Section 3.2.1, one of the steps in generating a

PBA is to find an encryption key so that the attack packet sections
of the decryption key and the encrypted attack code, or Skey ac,
can be accepted by the FSA or the adjusted sFSA (for convenience,
in this section we simply call the adjusted sFSA a sFSA). We will
show that this is a hard problem even when using very simple en-
cryption schemes, namely, substitution and XOR. As a corollary,
the problem is hard when using more complex encryption schemes.
The most direct and important corollary, however, is that the prob-
lem of generating a PBA is a hard problem.

A brute force approach to find the encryption key requires gen-
erating every possible key and checking the distance (as defined
by the IDS) of the Skey ac to the (s)FSA. For a simple substitution-
based (encryption) scheme, this will take at least nPm(n − m)n−m

iterations, where n is the number of unique normal characters and
m is the number of unique attack characters. For XOR encryption
with key of length l, finding an optimal polymorphic blending at-
tack will take at least nl iterations. These numbers can be very
large, and thus a brute force approach is often impractical.

In this section, we first analyze the hardness of finding an encryp-
tion key that ensures Skey ac is a valid string accepted by the FSA
(without any transition probabilities) corresponding to the IDS. We
show that this problem is NP-complete. Thus, it may not be solv-
able deterministically in polynomial time of the key length l or m.
We show this result for both byte substitution based encryption and
XOR based encryption. This result can be extended to show that
even if we allow a solution to contain ε‖Skey ac‖ number of invalid
transitions, the problem is still NP-complete. We extend the above
results and argue that the problem of finding an encryption key that
optimally matches the Skey ac to sFSA or finding a solution within
an ε range of the optimal solution is also NP-complete.

4.1 NP-Completeness of the Blending Attack
Problem

4.1.1 Substitution Based Encryption Scheme
We formally define the problem of finding a substitution key that

ensures Skey ac is accepted by the FSA of an IDS.

DEFINITION 4.1. Given an attack code and the FSA of an IDS,
the problem PBAF SA

sub is to find a one-to-one mapping from attack
characters to normal characters such that Skey ac is accepted by
the given FSA.

THEOREM 4.1. Problem PBAF SA
sub is NP-complete.

PROOF. For a problem to be NP-complete, the problem should
be in NP and should be NP-hard.

A problem is in NP if a given solution can be verified for its
correctness in polynomial time. Given a one-to-one mapping, we
can easily generate the decryption key (a table) and the encrypted
attack code. Since FSA is a decidable language, we can verify in
polynomial time whether or not Skey ac string will be accepted by
the FSA. Thus, we can efficiently verify if the one-to-one mapping
is correct or not.

To prove that the problem is NP-hard, we reduce the well known
3-SAT problem to PBAF SA

sub . Consider a 3-SAT problem with
q, q ≤ 128, variables and r clauses. If q is smaller than 128, we
add dummy unused variables to make the total number of variables
to be 128. Suppose the 3-SAT problem is,

SAT = (x10 ∨ x11 ∨x12)∧ (x20 ∨ x21 ∨ x22)∧ · · · ∧ (xr0 ∨ xr1 ∨ xr2),

where x10, x11, · · · , xr2 ∈ {x0, x0, x1, x1, · · ·x127, x127}.
Given the above 3-SAT, we design the PBAF SA

sub problem as
follows. For every variable xi in the 3-SAT, we have an attack
character atti, two normal characters normi and normi+128, and
a corresponding entry eatti in the decryption table. eatti , 128 ≤
i ≤ 255, is a dummy decryption table entry. The value of the
variable xi is related to eatti as follows.

xi = 1, if and only if eatti
= normi and eatti+128 = normi+128

= 0, if and only if eatti
= normi+128 and eatti+128 = normi (1)

For every clause clauseα, 1 ≤ α ≤ r in the 3-SAT, we construct
a section of FSA (FSAα) as shown in Figure 3. First, we construct
the truth table of the clause (see Table 1). For each entry in the
truth table, we have a path containing three edges where each edge
corresponds to the value of a variable in the truth table entry. In ad-
dition to FSAα, 1 ≤ α ≤ r, we have a section of FSA (FSAKT )
of length 256 corresponding to the key.

62



FSA FSA FSA FSA r1 2KT

(Enc. Key) (Attack Substring 1) (Attack Substring 2) (Attack Substring r)

KEY + ATTACK CODE

Figure 4: FSA and Skey ac corresponding to the SAT problem

x1 x3 x8 eatt1 eatt3 eatt8

0 0 0 norm129 norm131 norm136

0 0 1 norm129 norm131 norm8

0 1 1 norm129 norm3 norm8

1 0 0 norm1 norm131 norm136

1 0 1 norm1 norm131 norm8

1 1 0 norm1 norm3 norm136

1 1 1 norm1 norm3 norm8

Table 1: Truth table and corresponding key table for clause
x1 ∨ x3 ∨ x8

FSA α

Attack Substring

129 136

129

129

136

136

1

8

1

1

1

8

8

8

att attatt 8 1  3

131

131

3

131

131

3

3

Figure 3: FSAα and attack substring for clause x1 ∨ x3 ∨ x8.
For convenience, we represent normi by just i.

Also, for every variable xi or xi in a clauseα, we have an attack
character atti in the attack code. Thus for every clause clauseα,
we have a substring (strα) of length 3 in the attack code. Figure 3
shows an example attack code substring for a hypothetical clause.
The encoded attack substring will be eatt1eatt3eatt8 .

In Figure 3, we can observe that the encrypted strα is accepted
by the FSAα if and only if the encoding of attack characters are
chosen from one of the entries in the given encoding table shown
in Table 1. Since every entry in the encoding table corresponds to
an entry in the truth table of the clauseα, the encrypted strα is
accepted by the FSAα if and only if clauseα is true.

The final FSA, FSASAT , and the attack code corresponding to

the 3-SAT problem are shown in Figure 4. The construction of
the above FSASAT takes polynomial time. Please note that there
exists a solution to the given PBAF SA

sub problem if and only if the
encrypted strα is accepted by FSAα for all 1 ≤ α ≤ r.

If the above PBAF SA
sub problem has a solution mapping eatti ,

0 ≤ i ≤ m−1, then one can find assignments for variables xi, 0 ≤
i ≤ 127 using Equation 1. Since Skey ac is accepted by FSASAT

for mapping eatti , 0 ≤ i ≤ m − 1, the encrypted strα is accepted
by FSAα for all 1 ≤ α ≤ r. However, the encrypted strα is
accepted by FSAα only if clauseα is true. Thus, all clauses of the
3-SAT problem is true and the 3-SAT is satisfied.

Also, if there exists an assignment of variables xi such that the
3-SAT problem is satisfied, then we can compute eatti using Equa-
tion 1. Since 3-SAT is satisfied, all clauseα, 1 ≤ α ≤ r, are
true. But clauseα is true only if the encrypted strα is accepted
by FSAα. Thus, all encrypted strα, 1 ≤ α ≤ r, are accepted by
FSAα, and Skey ac is accepted by FSASAT .

From above, we can conclude that PBAF SA
sub is at least as hard

as 3-SAT. Since 3-SAT is NP-hard, PBAF SA
sub is also NP-hard.

Since PBAF SA
sub is also in NP, PBAF SA

sub is an NP-complete prob-
lem.

4.1.2 XOR Encryption Scheme
We formally define the problem statement of finding a XOR en-

cryption key that ensures Skey ac is accepted by the FSA of an IDS.

DEFINITION 4.2. Given an attack code and the FSA of an IDS,
the problem PBAF SA

xor is to find an encryption key, of length l, so
that Skey ac is accepted by the given FSA.

THEOREM 4.2. Problem PBAF SA
xor is NP-complete.

PROOF. The proof of NP-completeness of PBAF SA
xor is similar

to the proof of PBAF SA
sub . The proof is not provided in the paper

due to the space restrictions.

4.1.3 Corollaries
We have now proved that finding an encryption key that ensures

Skey ac is accepted by the FSA of an IDS is NP-complete. Sup-
pose we allow the solution to have ε‖Skey ac‖ number of invalid
transitions, the problem still remains NP-hard because of the fact
that (1 − ε)-SAT (or ε-UNSAT, ε < 1) is an NP-hard problem.

Now consider the problem of finding an encryption key that op-
timally matches the Skey ac to sFSA. This problem is considered
harder than PBAF SA

sub/xor because in addition to the requirement of

63



using only valid edges of the sFSA, we need to match the prob-
ability of each transition in the sFSA. Thus, finding the suitable
encryption key for sFSA should be NP-hard. Following logic sim-
ilar to above, we can also conclude that finding an encryption key
that matches the Skey ac to sFSA within ε bound of the optimal
solution is also NP-hard.

Substitution and XOR are very basic encryption schemes. In fact,
the more complex encryption schemes such AES and DES [11] use
substitution and XOR as basic operations. Since we have shown
that the problem is hard when the simpler schemes are in use, we
can conclude that the problem is still hard when using the other
more complex encryption schemes.

To conclude, we have shown that finding an encryption key that
ensures Skey ac is accepted by the (s)FSA of an IDS is a hard prob-
lem (NP-complete). The most direct and important corollary is that
the problem of generating a polymorphic blending attack is hard.
In fact, the problem of determining whether or not a polymorphic
blending attack exists is also a hard problem. This follows from the
fact that it is NP-hard to verify if a given SAT or ε-UNSAT problem
has a solution or not.

4.2 Reduction to SAT and ILP
In Section 4.1, we showed that the problem of finding an ap-

propriate encryption key for a polymorphic blending attack is very
hard. That is, it may take time exponential to the key length or
character size. Although an attacker may not have any time restric-
tions, a polynomial time solution is clearly more desirable. There
are good heuristic solvers available for the SAT problems or Inte-
ger Linear Programming (ILP) problems. These solvers provide
approximate solutions in very reasonable amount of time. If we
have a non-stochastic, or FSA based, IDS, we can reduce the poly-
morphic blending attack problem to a SAT problem. For a sFSA
based IDS, we can map the problem to ILP. Then a heuristic solver
can be used to obtain solution for the reduced problem.

Before we show the SAT or ILP reduction, we would reduce the
problem of finding an appropriate encryption key to the problem
of finding a path from the start state to accept states in a Directed
Acyclic Graph (DAG). An edge in the DAG may have constraints
of the form ki = j, j ∈ U , where ki is the ith key and U is the
set of all characters. The chosen path should contain a minimal
number of conflicting constraints. In addition, we may have some
restrictions on the frequency of occurrences of edges corresponding
to the frequency matching requirement for sFSA. In the following
sections, we use the example shown in Figures 1 and 2 to illustrate
the concept.

4.2.1 Construction of DAG
Given a (s)FSA, a key length (lk), and an attack code ac of length

lac, we construct a DAG of depth lk + lac as follows. Suppose s0

is the end state of the path in (s)FSA as traced by the attack vector
and the decryptor. v0 is the root vertex of the DAG corresponding
to state s0. At every depth d of the DAG, we have a set of vertices
Vd = {vdi} such that the state vi is reachable from state s0 in
exactly d transitions in (s)FSA. The accept vertices of the DAG
are the leaf vertices at depth lk + lac, which correspond to accept
states in the (s)FSA. There exists an edge edij from vdi to v(d+1)j

if and only if there exists a transition tij from state vi to state vj

in (s)FSA. The weight of the edge is proportional to the probability
of transition tij . The constraint constrdij associated with an edge
edij at depth d is shown below.

constrdij
= (kd == charij), if d < lk,

= (kac[d−lk] == charij), if d ≥ lk and substitution,

= (k(d mod lk) ⊕ ac[d − lk] == charij), if d ≥ lk and XOR

where charij is the normal character corresponding to transition
tij and ac[i] is the attack character at the i position of attack code.
An example construction of DAG is shown in Figure 5. The DAG
corresponds to the example FSA and example attack shown in Fig-
ure 1 and 2, respectively.

k = a

k = b

k = b

k = a

k = b

k = b0

0

0 k = a

k = b

k = b0

0

0 k = a

k = b

k = b

s0

k = a

k = b

0

0

1

1

1

k = a

k = a

k = b

1

1

1

1

1

1

Figure 5: DAG corresponding to example FSA

x 0a

0x b

1 x  a

1bx

1bx 0x b

x 0a x 0a

0x b1 x  a

1bx

1bx

1 x  a

0x b

1 x  a 0x b 1bx

Figure 6: SAT representation of example DAG

The problem of finding an appropriate encryption key for a given
attack code and FSA is equivalent to finding a path from the root
vertex to an accept vertex in the DAG. Given a path Pdag in DAG
consisting of edges with no (or minimal) conflicting constraints,
we can find the encryption key by setting the constraints of the
edges on the path to true. The path Pfsa followed by Skey ac in
the (s)FSA is similar to the path Pdag . If edij is an edge at depth d
in Pdag then transition tij is in Pfsa at depth d.

4.2.2 Translation to SAT
If the given IDS is an FSA with no probabilities on edges, the

problem of finding a appropriate path in DAG can be translated to
SAT. First, we translate the DAG problem to CIRCUIT-SAT [4].
Then we can efficiently translate CIRCUIT-SAT to SAT. For each
constraint of the form ki = j in the DAG, we have a variable xij

that is true if and only if the constraint is satisfied, and false other-
wise. Now we can directly translate the DAG to CIRCUIT-SAT. A
vertex v with input degree degin in DAG has a corresponding OR
gate (ORv) in CIRCUIT-SAT with degin inputs. For every outgo-
ing edge (with some constraint ki = j) of a vertex v, we have an
AND gate whose input is xij and ORv . The final output is OR
of all the accept states. Figure 6 shows the conversion of our ex-
ample DAG to CIRCUIT-SAT. We can then efficiently translate the
CIRCUIT-SAT into a SAT problem. In the given SAT problem, we
need to add additional requirement that a given key ki is assigned
to only one normal character. This means if xij is true then xij′
is false for all j′ �= j. Also, for substitution based encryption
scheme, we need to add additional clauses in SAT to ensure that a
normal character is assigned to a single attack character. These car-
dinality constraints can be efficiently represented in SAT [26]. Fur-
thermore, for a substitution scheme, there exists empty entries in
the decryption key table corresponding to the characters not present
in the attack code. These characters can be mapped to any unas-
signed normal character. This requirement can be written as clause
V

j∈N ((
W

i∈M xij) ∨ (
W

i∈M xij)), where M and N are the set
of attack and normal characters, respectively. We can solve the fi-
nal SAT problem using one of the several available SAT solvers,

64



which are capable of solving huge SAT (or ε-UNSAT) problems in
reasonable amount of time.

4.2.3 Translation to ILP
For a sFSA IDS, we propose translating the problem of finding a

good path in a DAG into an Integer Linear Programming problem.
ILP is known to be NP-hard but there exists multiple good heuris-
tics to solve big ILP problems. An ILP tries to find the minimum
of a linear function over a set of variables defined by a finite num-
ber of linear constraints. All the variables in the solution should be
integers. An ILP is called 0-1 ILP if all the variables are required
to be either 0 or 1. Now we will show the reduction of finding the
optimal path in a DAG to ILP problem.

For every edge edij at level d in the DAG, we have a variable
hedij

.

hedij
= 1 if edge edij

is in the solution path of DAG,

= 0 otherwise

For every constraint xi = j in the DAG, we have a variable
constrij .

constrij = 1 if constraint xi = j is true in the solution of DAG,

= 0 otherwise

There is a valid path from the start vertex to an accept vertex if and
only if the number of selected outgoing edges at the start state is
one, the number of selected incoming edges is equal to the number
of selected outgoing edges for all the intermediate vertices, and the
number of selected incoming edges is equal to one for one of the
end vertices. An edge is selected if it is in the solution path. These
three conditions can be represented in terms of linear equations as
follows:

X

e∈OUT (v0)

he + errv0 = 1

X

e∈IN(Vaccept)

he + erraccept = 1

X

e∈IN(vdi)

he + errdi =
X

e∈OUT (vdi)

he, ∀ vdi at depth d, ∀1 ≤ d ≤ lk + lac − 1

where IN(v) and OUT (v) are the sets of in and out edges of
vertex v, respectively. vdi is the ith vertex at depth d. The err
terms account for invalid paths in the solution and are 0 if the path
conditions are satisfied. In case the condition is not satisfied, errdi

can be either 1 or -1 depending on the difference of the number of
selected incoming and outgoing edges at the given node.

At any depth d, 0 ≤ d ≤ lk + lac − 1, the number of edges from
vertices at depth d to vertices at depth d+1 should be one. That is,

X

e∈OUT (Vd)

he + errVd
= 1, ∀0 ≤ d ≤ lk + lac − 1 (2)

where Vd is the set of vertices at depth d. Again, the errVd term
accounts for the errors. errVd can take values 0 or 1 depending on
the number of outgoing edges at a given depth.

If an edge in the DAG is chosen in the path, the correspond-
ing constraint should be satisfied. Suppose constre represents the
constraint associated with edge e. Then the requirement can be
satisfied using following equation:

constre ≥ he, ∀ edge e ∈ DAG (3)

Further, we can ensure that a given key is assigned to only one
character by using following equation:

X

j∈U

constrij = 1, ∀0 ≤ i ≤ lk (4)

where U is the set of all possible characters and lk is the key length.

For a one-to-one byte substitution scheme, a normal character
should not be assigned to multiple attack characters. That is,

X

i∈M

constrij ≤ 1, ∀j ∈ N (5)

where M and N are the set of attack and normal characters, re-
spectively. The following set of equations ensure that the characters
not present in the attack character set are mapped only to normal
characters not assigned to attack characters.

NACj × ‖M‖ ≥
X

i∈M

xij , ∀j ∈ N,

NACj +
X

i∈M

xij ≤ 1, ∀j ∈ N

The first equation makes sure that NACj is 1 if any non-attack
character is mapped to a normal character j. The second equation
ensures that if NACj is 1, then the normal character j is not as-
signed to any attack character, and vice-versa.

The above set of equations guarantee that there exists a path from
the start vertex to the end vertex with some errors. Now we present
the minimization criteria to reduce the errors and the distance of
Skey ac from the sFSA. Assume a distance metric of the form:

dist =
X

transition t∈sF SA

κt × |pt − numt

lk + lac

| (6)

where κt is some constant associated with transition t, pt is the
probability of the transition to be taken in sFSA, and numt is the
number of times the transition t is taken by the Skey ac.

The minimization criteria for the ILP problem can be written as:

X

transition t∈sF SA

constt × |pt −
P

d hdt

lk + lac

| + σ × (
X

v∈Vdag

|errv |+
X

d

errVd
)

(7)

where Vdag is the set of vertices in the DAG and σ is the weight
of the errors caused by taking a invalid edge in the sFSA. Note that
the |α − β| term in minimization can be rewritten as absdiff where,
α − β ≥ −absdiff and α − β ≤ absdiff.

Solving the above ILP for the given minimization criteria will
provide the encryption key. Using this we can generate the en-
crypted attack code and prepare the polymorphic blending attack
packet by concatenating attack vector, decryptor, decryption key,
and the encrypted attack code. We can then perform padding to
match the final attack packet even closer to the normal, as discussed
in Section 3.2.1.

4.3 Heuristic Solutions
Rather than finding the optimal solution, an attacker may sim-

ply apply some heuristics that produce an approximate (or good
enough) solution using much less resources (time and memory).
Here we present a simple heuristic that finds a good approximate
solution very efficiently.

The heuristic is based on the hill climbing algorithm, which is
used widely in artificial intelligence and constraint solving. Hill
climbing starts with an initial solution and iteratively improves it.
At each step, the algorithm looks at the neighboring solutions and
chooses one that is better than the current solution. The definition
of neighbors depends on the problem domain.

We now present our heuristic. Given an IDS and an attack in-
stance, we choose a random encryption key and calculate the dis-
tance between Skey ac and (s)FSA. Now, we randomly choose a
ki to modify in the key. For all the possible character (c) values,
we first temporarily assign ki = c. For a substitution scheme, if
c is already assigned to some attack character kj , we temporarily
swap the normal characters assigned to ki and kj . We then find
the new distance to (s)FSA using the temporary key. We choose
the character that reduces the distance by the maximum value and

65



assign it to ki. At this point, a new key position (kj) is chosen to
modify and the process is repeated. This above process is iterated
for the desired number of iterations or until a satisfactory solution
is produced.

It is possible in the above approach to reach a local maximum
that is not very close to the optimal solution. We reach a local
maximum if modifying any key increases the distance to (s)FSA.
To overcome this problem, whenever we reach local maximum, we
choose a small set of key positions and set them to some random
values, and restart the above iterative process of finding solution.
The idea is by randomly picking another starting point in the solu-
tion space, the new solution point may belong to a locale that has
better local maximum.

The above heuristic can give us very good solution with suffi-
cient number of iterations.

5. EXPERIMENTS AND RESULTS
The motivation of our research was to address the open problem:

given an anomaly detection system and an attack, can one automat-
ically generate the PBA instances? Thus, in our experiments, we
wanted to directly compare our formal framework with the more
ad-hoc approaches developed in our previous work [10]. The key
elements of our experimental set-up were the same as in [10]. That
is, we used the same anomaly detection systems, namely, PAYL
1-gram and 2-gram, as well as the same attack and same traffic
datasets, as in [10]. The results showed that, although our frame-
work is based on an abstract model of IDS and uses general algo-
rithms, it automatically generated PBA instances that were more
evasive (i.e. better matched the IDS normal profiles) than or at
least as good as the PBA instances from the more PAYL specific
algorithms in [10].

Briefly, the experimental dataset contains 15 days of Web traffic
with 4.7 million packets. 14 days of traffic were used for training
the IDS profile. A part of the remaining 1 day of traffic was used to
generate/train an artificial profile used by the attacker. We gener-
ated PAYL 1-gram and 2-gram models (using the 14 days of traffic)
for three different packet lengths, namely, 418, 730, and 1460. The
attack vector is based on the implementation of firew0rker [9].
More information of the dataset can be found in [10].

For all the experiments, we divided the attack flow into multi-
ple packets. The attack vector was placed at the start of the first
packet. The decryptor was divided into several sections and allot-
ted to different attack packets. The attack body was also divided
into multiple chunks. The sFSA corresponding to the artificial pro-
file was adjusted for attack vector and polymorphic decryptor. A
separate encryption key for each attack body fragment was gener-
ated using our framework to match the adjusted artificial profile.
Each attack body fraction was encrypted using the corresponding
key and appended to the corresponding attack packet. Then each
attack packet was padded to the desired packet length. The final
attack packets were then used together to launch an attack.

5.1 PAYL 1-gram Evasion
We applied our framework to generate polymorphic blending at-

tacks to evade 1-gram PAYL, using substitution-based encryption
and XOR encryption, respectively. For the XOR scheme, we used
a 64 byte key. For each encryption scheme, we translated the prob-
lem of finding the optimal encryption key for 1-gram evasion to an
ILP problem. We used ILOG CPLEX to solve the ILP problems.
CPLEX is a commercial optimization tool for solving Mixed In-
teger Programs (MIP). We obtained a near-optimal solution (i.e.,
encryption key) for the ILP problems. The attack code was then
encrypted using this key, and padding was performed. For com-

parison, we also generated polymorphic blending attacks using the
one-to-one local substitution scheme presented in [10].

It took 6.5 seconds on average to solve an ILP problem on a
Pentium-M 2GHz machine. The solution provided was within 0.2%
of the optimal solution. Figure 7 shows the distance of the at-
tack flow from the artificial profile and the IDS profile. The re-
sults for both substitution and XOR encryption schemes, as well as
the scheme from [10], are shown in the figure. The x-axis shows
the number of packets attack flow was divided into and the y-axis
shows distance of the attack flow from the artificial profile and IDS
normal profile. This distance is the maximum of the distances of
individual attack packets in a flow. A horizontal line correspond-
ing to anomaly error threshold for the 1% IDS false positive is also
shown.

The error distance of attacks generated using substitution based
encryption with ILP is almost identical to the previous approach
from [10]. Thus, the 1-gram blending approach in [10] also pro-
vides a near optimal substitution table.

The error distance for attacks generated using the XOR encryp-
tion scheme is much higher. This is expected. For substitution,
by replacing attack characters with normal characters, we can en-
sure that only normal characters are present in the mutated attack
packet. For XOR, it is harder to find an appropriate key such that it
contains only normal characters and XORing it with attack charac-
ters also results in only normal characters. For packet length 418
and 730, the error distance of PBA generated using XOR based
scheme is twice or more than the substitution-based scheme. For
packet length 1460, the error distance for XOR based scheme is
comparatively smaller. Also, the difference decreases as the num-
ber of attack packets in the attack flow increases. The large amount
of padding space available masks the error produced by the attack
code in XOR based scheme.

In the plots, all the attack points below the horizontal error thresh-
old line will not be detected by the IDS with a 1% false positive
rate. If the false positive rate is decreased, typically the anomaly
error threshold is increased. That is, if the horizontal line is moved
up, more attack points will be missed by the IDS.

For packet length 730 and 1460, we need only two packets to
evade PAYL 1-gram when using substitution. The IDS can be
evaded using attack flow of size as low as 1460. For packet length
418, we need 8 packets to evade the IDS. The XOR based scheme
can also evade the IDS for packet lengths 730 and 1460, although
with bigger attack size. For packet length 418, XOR needs to di-
vide attack packets into many more packets in order to evade the
IDS.

5.2 PAYL 2-gram Evasion
We also generated polymorphic blending attacks to evade PAYL

2-gram. We used the heuristic presented in Section 4.3 to generate
such attacks. We started with a random solution and iterated the
hill climbing steps 25000 times. The best encryption key seen dur-
ing the process was recorded. The attack code was then encrypted
using this key and the attack packet was padded to the desired
length. The distance of the attack flow from the normal profiles
was recorded. For comparison, we also generated the polymorphic
blending attacks using the 2-gram blending algorithm presented in
[10].

For substitution based encryption, it took 10min on average to
perform 25000 iterations on a given problem. For XOR encryp-
tion, performing 25000 iterations took little more than an hour on
average. The time of each iteration is dependent on the range of
keys and the number of terms in the distance calculation. For sub-
stitution, the range of keys is all the normal characters; whereas

66



 50

 100

 150

 200

 250

 300

 350

 400

 3  4  5  6  7  8  9  10  11  12

A
no

m
al

y 
S

co
re

Number of attack packets

art-xor
ids-xor
art-sub
ids-sub
art-prev
ids-prev

(a) 418

 0

 50

 100

 150

 200

 250

 300

 350

 2  4  6  8  10  12

A
no

m
al

y 
S

co
re

Number of attack packets

art-xor
ids-xor
art-sub
ids-sub
art-prev
ids-prev

(b) 730

 0

 50

 100

 150

 200

 250

 300

 0  2  4  6  8  10  12

A
no

m
al

y 
S

co
re

Number of attack packets

art-xor
ids-xor
art-sub
ids-sub
art-prev
ids-prev

(a) 1460

Figure 7: Anomaly score or error distance of 1-gram blending attack. The plots with prefix art and ids corresponds to distance from
the artificial profile and the IDS profile, respectively. xor and sub corresponds to the PBA generated for XOR and substitution based
schemes using our framework. prev denotes the algorithm from previous paper.

in XOR, the range of keys can be the set of all the possible char-
acters. Also, since XOR is not able to match the normal profiles
closely, there are several new 2-grams in the attack packet and thus
the number of terms in the distance calculation may be large. These
two reasons account for the long running time for XOR.

The distances of the attack packets from the normal profiles are
shown in Figure 8. The results for substitution-based encryption
and XOR encryption, as well as the scheme from [10], are shown,
along with a horizontal line corresponding to error threshold of the
1% IDS false positive rate.

Using substitution, our heuristic-based approach is able to better
match the normal profile than the previous approach [10] for most
attack instances. For packet length 418, when the number of at-
tack packets is 8 or 9, the previous approach matches the normal
profile better than the heuristic from our framework. Checking the
distance of individual attack packets, we observed that for some
packets, the heuristic got stuck in a bad local maximum for consid-
erable number of iterations. Thus, the heuristic was not able to find
a good solution in the given number of iterations. In such cases,
one can restart the heuristic using another random solution or run
the heuristic for more number of iterations.

Compared with PAYL 1-gram, we needed a larger number of
attack packets to evade PAYL 2-gram. The minimum attack size
required to evade the PAYL 2-gram is 2190, or 3 packets of length
730.

6. HARDENING THE IDS AGAINST POLY-
MORPHIC BLENDING ATTACKS

Our framework can be used to improve an stochastic IDS to
make it harder for an attacker to evade the IDS. The basic idea is to
find transitions (or edges) in the sFSA that are traversed frequently
by multiple polymorphic blending attacks. If an edge contributes
only a small error term in computing the distance of PBAs to nor-
mal profile but contributes a large error term for normal packets, we
can exclude the edge when calculating the distance of a monitored
packet from the normal file. The result will be increased detection
rate against attacks, including the PBAs, with maybe only slightly
increased false alarm rate.

We now explain in more details how to improve the IDS against
PBA. First, we collect multiple attack instances for different known
attacks on the system. For each of these instances, we generate
multiple polymorphic blending attacks using techniques described
in Section 4.2. For all of these attacks pbai, we find paths pathi

taken by pbai in the sFSA. Suppose the number of times an edge
ej is present in the pathi is denoted by nji and their contributing
term in distance calculation is distji. Then the relative contribution

of edge ej in the distance between polymorphic blending attacks

and sFSA is calculated as pba rel distej
=

P
pbai

distjiP
ek∈E (

P
pbai

distki)
,

where E is the set of all edges in the sFSA. Similarly, we calculate
the relative contribution of edge ej in the distance between normal

packets and sFSA as nor rel distej =
P

nori∈T distjiP
ek∈E(

P
nori∈T distki)

,

where T is the set of training data packets.
We would like to exclude the edges that have a high value of

nor rel distej

pba rel distej
and that occur with high frequency in PBAs. Let

degej =
nor rel distej

pba rel distej
× pba pej , where pba pej is the probabil-

ity of an edge ej being present in a PBA. degej denotes the degree
with which an edge ej is assisting the attacker in evading the IDS.
We exclude the edges that have the higher values of degej . Note
that we are not actually removing the edge from the sFSA. Rather,
by excluding the distance term corresponding to edge ej , we are
marginally reducing the distance of blending attack packets from
the IDS but significantly reducing the distance of normal packets
from the IDS. Thus, the error distance threshold of the IDS can be
reduced while keeping the false positive rate almost same and in-
creasing the detection rate for a PBA. If an attacker launches a new
PBA against the IDS using a new exploit, the IDS will have a high
probability of detecting the new attack if it takes the similar path
(in sFSA) as the attacks pbai. We plan to perform more detailed
analysis of above proposed technique.

7. CONCLUSION
In this paper, we presented a formal framework for polymorphic

blending attacks. We modeled a variety of IDSs as either FSA or
sFSA. We then reduced the problem of finding an optimal PBA
that matches the IDS normal profile to the problem of finding an
encryption key that optimally matches the string representing the
decryption key concatenated with the encrypted attack code to the
(s)FSA of the IDS. We showed that finding such an encryption key
is an NP-complete problem. We presented some techniques to re-
duce this problem to a satisfiability problem and an nteger linear
programming problem. Thus, optimization algorithms available for
these problem domains can be used to generate a near-optimal en-
cryption key and hence, a near-optimal PBA. We also proposed a
heuristic that can be used to find good approximate encryption keys
very efficiently. We validated our framework using PAYL 1-gram
and 2-gram. We also proposed a technique to improve the perfor-
mance of an IDS against PBAs.

The results of our experiments showed that our framework can
automatically generate PBAs that can evade an IDS. The PBAs

67



 350

 400

 450

 500

 550

 600

 650

 700

 750

 800

 5  6  7  8  9  10  11  12

A
no

m
al

y 
S

co
re

Number of attack packets

art-xor
ids-xor
art-sub
ids-sub
art-prev
ids-prev

(a) 418

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 2  4  6  8  10  12

A
no

m
al

y 
S

co
re

Number of attack packets

art-xor
ids-xor
art-sub
ids-sub
art-prev
ids-prev

(b) 730

 100

 200

 300

 400

 500

 600

 700

 800

 0  2  4  6  8  10  12

A
no

m
al

y 
S

co
re

Number of attack packets

art-xor
ids-xor
art-sub
ids-sub
art-prev
ids-prev

(a) 1460

Figure 8: Anomaly scores of 2-gram blending attacks.

generated by our framework were able to match the normal profile
more closely than the PBAs produced by the previously proposed
IDS specific algorithms. The time required to solve the ILP prob-
lem to generate a PBA to evade PAYL 1-gram was only a few sec-
onds. Generating attack packets to evade PAYL 2-gram took sev-
eral minutes. A substitution-based encryption scheme was shown
to be more effective than XOR encryption for evading an IDS.

A polymorphic blending attack is also achievable using other
shellcode transformation techniques, for e.g., equivalent instruc-
tion substitution and garbage insertions. We plan to further study
polymorphic blending attacks by incorporating different attack mu-
tation techniques, metamorphism and code obfuscation. Our cur-
rent framework focuses on algorithms for generating the (optimal)
encryption key. We plan to extend it to automatically determine the
best mutation techniques as well the optimal padding bytes.

Acknowledgements
This work is supported in part by NSF grant CCR-0133629 and
Office of Naval Research grant N000140410735. The contents of
this work are solely the responsibility of the authors and do not
necessarily represent the official views of NSF and the U.S. Navy.
The authors would like to thank Dr. Emilie Danna for her valuable
suggestions.

8. REFERENCES
[1] P. Akritidis, E. P. Markatos, M. Polychronakis, and K. Anagnostakis. Stride:

Polymorphic sled detection through instruction sequence analysis. In 20th
IFIP International Information Security Conference, 2005.

[2] M. Barreno, B. Nelson, R. Sears, A. D. Joseph, and J. D. Tygar. Can machine
learning be secure? In Proceedings of the ACM Symposium on Information,
Computer, and Communication Security (ASIACCS), 2006.

[3] M. Christodorescu, S. Jha, S. Seshia, D. Song, and R. Bryant.
Semantics-aware malware detection. In Proceedings of the IEEE Symposium
on Security and Privacy, 2005.

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to algorithms.
The MIT Press/McGraw-Hill, 1990.

[5] T. Detristan, T. Ulenspiegel, Y. Malcom, and M. Underduk. Polymorphic
shellcode engine using spectrum analysis. Phrack Issue 0x3d, 2003.

[6] S. T. Eckmann, G. Vigna, and R. A. Kemmerer. Statl: An attack language for
state-based intrusion detection. JOURNAL OF COMPUTER SECURITY,
10:71–104, 2002.

[7] H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and B. Miller. Formalizing
sensitivity in static analysis for intrusion detection. In Proceedings of the IEEE
Symposium on Security and Privacy, 2004.

[8] H. Feng, O. Kolesnikov, P. Fogla, W. Lee, and W. Gong. Anomaly detection
using call stack information. In Proceedings of the IEEE Symposium on
Security and Privacy, 2003.

[9] Firew0rker. Windows media services remote command execution exploit.
http://www.k-otik.com/exploits/07.01.nsiilog-titbit.cpp.php, 2003.

[10] P. Fogla, M. Sharif, R. Perdisci, O. M. Kolesnikov, and W. Lee. Polymorphic
blending attacks. In 15th USENIX Security Symposium, 2006.

[11] C. Kaufman, R. Perlman, and M. Speciner. Network security: Private
communication in a public world. Prentice Hall, 2002.

[12] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Automating
mimicry attacks using static binary analysis. In 14th Usenix Security
Symposium, 2005.

[13] C. Kruegel, E. Kirda, D. Mutz, W. Robertson, and G. Vigna. Polymorphic
worm detection using structural information of executables. In Recent
Advances in Intrusion Detection (RAID), 2005.

[14] C. Kruegel, T. Toth, and E. Kirda. Service specific anomaly detection for
network intrusion detection. In Proceedings of the ACM SIGSAC, 2002.

[15] C. Kruegel and G. Vigna. Anomaly detection of web-based attacks. In
Proceedings of the ACM Conference on Computer and Communication
Security (ACM CCS), pages 251–261, 2003.

[16] Ktwo. Admmutate: Shellcode mutation engine.
http://www.ktwo.ca/ADMmutate-0.8.4.tar.gz, 2001.

[17] Z. Liang and R. Sekar. Fast and automated generation of attack signatures: a
basis for building self-protecting servers. Proceedings of the 12th ACM
Conference on Computer and Communications Security (ACM CCS), pages
213 – 222, 2005.

[18] M. Mahoney. Network traffic anomaly detection based on packet bytes. In
Proceedings of the ACM SIGSAC, 2003.

[19] M. Mahoney and P.K. Chan. Learning nonstationary models of normal
network traffic for detecting novel attacks. In Proceedings of the SIGKDD,
2002.

[20] J. Newsome, B. Karp, and D. Song. Polygraph: Automatically generating
signatures for polymorphic worms. In Proceedings of the IEEE Symposium on
Security and Privacy, 2005.

[21] Martin Roesch. Snort-lightweight intrusion detection for networks. In
Proceedings of the 13th USENIX conference on System administration, pages
229 – 238, 1999.

[22] S. Rubin, S. Jha, and B. P. Miller. Language-based generation and evaluation
of nids signatures. In Proceedings of the IEEE Symposium on Security and
Privacy, 2005.

[23] S. Rubin, S. Jha, and B.P. Miller. Automatic generation and analysis of nids
attacks. In Annual Computer Security Applications Conference (ACSAC),
2004.

[24] R. Sekar, M. Bendre, D. Dhurjati, and P. Bollineni. A fast automaton-based
method for detecting anomalous program behaviors. In Proceedings of the
IEEE Symposium on Security and Privacy, 2001.

[25] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A. Tiwari, H. Yang, and S. Zhou.
Specification-based anomaly detection: A new approach for detecting network
intrusions. In Proceedings of the ACM conference on Computer and
communications security (ACM CCS), 2002.

[26] C. Sinz. Towards an optimal cnf encoding of boolean cardinality constraints.
In Principles and Practice of Constraint Programming, pages 827–831, 2005.

[27] P. Szor. Advanced code evolution techniques and computer virus generator
kits. The Art of Computer Virus Research and Defense, 2005.

[28] T. Toth and C. Kruegel. Accurate buffer overflow detection via abstract
payload execution. In Recent Advances in Intrusion Detection (RAID), 2002.

[29] G. Vigna, W. Robertson, and D. Balzarotti. Testing network-based intrusion
detection signatures using mutant exploits. In Proceedings of the ACM
Conference on Computer and Communication Security (ACM CCS), pages
21–30, 2004.

[30] D. Wagner and P. Soto. Mimicry attacks on host-based intrusion detection
systems. In Proceedings of the ACM Conference on Computer and
Communication Security (ACM CCS), 2002.

[31] K. Wang and S. Stolfo. Anomalous payload-based network intrusion
detection. In Recent Advances in Intrusion Detection (RAID), 2004.

[32] K. Wang and S. Stolfo. Anomalous payload-based worm detection and
signature generation. In Recent Advances in Intrusion Detection (RAID), 2005.

[33] T. Yetiser. Polymorphic viruses: Implementation, detection, and protection.
Technical Report, VDS Advanced Research Group, 1993.

68



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


